exif-rs/src/tiff.rs

863 lines
28 KiB
Rust

//
// Copyright (c) 2016 KAMADA Ken'ichi.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
// OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
// SUCH DAMAGE.
//
use mutate_once::MutOnce;
use std::fmt;
use crate::endian::{BigEndian, Endian, LittleEndian};
use crate::error::Error;
use crate::tag::{Context, Tag, UnitPiece};
use crate::util::{atou16, ctou32};
use crate::value;
use crate::value::get_type_info;
use crate::value::Value;
// TIFF header magic numbers [EXIF23 4.5.2].
const TIFF_BE: u16 = 0x4d4d;
const TIFF_LE: u16 = 0x4949;
const TIFF_FORTY_TWO: u16 = 0x002a;
pub const TIFF_BE_SIG: [u8; 4] = [0x4d, 0x4d, 0x00, 0x2a];
pub const TIFF_LE_SIG: [u8; 4] = [0x49, 0x49, 0x2a, 0x00];
// Partially parsed TIFF field (IFD entry).
// Value::Unknown is abused to represent a partially parsed value.
// Such a value must never be exposed to the users of this library.
#[derive(Debug)]
pub struct IfdEntry {
// When partially parsed, the value is stored as Value::Unknown.
// Do not leak this field to the outside.
field: MutOnce<Field>,
}
impl IfdEntry {
pub fn ifd_num_tag(&self) -> (In, Tag) {
if self.field.is_fixed() {
let field = self.field.get_ref();
(field.ifd_num, field.tag)
} else {
let field = self.field.get_mut();
(field.ifd_num, field.tag)
}
}
pub fn ref_field<'a>(&'a self, data: &[u8], le: bool) -> &'a Field {
self.parse(data, le);
self.field.get_ref()
}
pub fn into_field(self, data: &[u8], le: bool) -> Field {
self.parse(data, le);
self.field.into_inner()
}
fn parse(&self, data: &[u8], le: bool) {
if !self.field.is_fixed() {
let mut field = self.field.get_mut();
if le {
Self::parse_value::<LittleEndian>(&mut field.value, data);
} else {
Self::parse_value::<BigEndian>(&mut field.value, data);
}
}
}
// Converts a partially parsed value into a real one.
fn parse_value<E>(value: &mut Value, data: &[u8])
where
E: Endian,
{
match *value {
Value::Unknown(typ, cnt, ofs) => {
let (unitlen, parser) = get_type_info::<E>(typ);
if unitlen != 0 {
*value = parser(data, ofs as usize, cnt as usize);
}
}
_ => panic!("value is already parsed"),
}
}
}
/// A TIFF/Exif field.
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Field {
/// The tag of this field.
pub tag: Tag,
/// The index of the IFD to which this field belongs.
pub ifd_num: In,
/// The value of this field.
pub value: Value,
}
/// An IFD number.
///
/// The IFDs are indexed from 0. The 0th IFD is for the primary image
/// and the 1st one is for the thumbnail. Two associated constants,
/// `In::PRIMARY` and `In::THUMBNAIL`, are defined for them respectively.
///
/// # Examples
/// ```
/// use exif::In;
/// assert_eq!(In::PRIMARY.index(), 0);
/// assert_eq!(In::THUMBNAIL.index(), 1);
/// ```
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct In(pub u16);
impl In {
pub const PRIMARY: In = In(0);
pub const THUMBNAIL: In = In(1);
/// Returns the IFD number.
#[inline]
pub fn index(self) -> u16 {
self.0
}
}
impl fmt::Display for In {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.0 {
0 => f.pad("primary"),
1 => f.pad("thumbnail"),
n => f.pad(&format!("IFD{}", n)),
}
}
}
/// Parse the Exif attributes in the TIFF format.
///
/// Returns a Vec of Exif fields and a bool.
/// The boolean value is true if the data is little endian.
/// If an error occurred, `exif::Error` is returned.
pub fn parse_exif_compat03(data: &[u8]) -> Result<(Vec<Field>, bool), Error> {
parse_exif(data).map(|(entries, le)| {
let fields = entries
.into_iter()
.map(|e| e.into_field(data, le))
.collect();
(fields, le)
})
}
pub fn parse_exif(data: &[u8]) -> Result<(Vec<IfdEntry>, bool), Error> {
// Check the byte order and call the real parser.
if data.len() < 8 {
return Err(Error::InvalidFormat("Truncated TIFF header"));
}
match BigEndian::loadu16(data, 0) {
TIFF_BE => parse_exif_sub::<BigEndian>(data).map(|v| (v, false)),
TIFF_LE => parse_exif_sub::<LittleEndian>(data).map(|v| (v, true)),
_ => Err(Error::InvalidFormat("Invalid TIFF byte order")),
}
}
fn parse_exif_sub<E>(data: &[u8]) -> Result<Vec<IfdEntry>, Error>
where
E: Endian,
{
// Parse the rest of the header (42 and the IFD offset).
if E::loadu16(data, 2) != TIFF_FORTY_TWO {
return Err(Error::InvalidFormat("Invalid forty two"));
}
let mut ifd_offset = E::loadu32(data, 4) as usize;
let mut ifd_num_ck = Some(0);
let mut entries = Vec::new();
while ifd_offset != 0 {
let ifd_num = ifd_num_ck.ok_or(Error::InvalidFormat("Too many IFDs"))?;
// Limit the number of IFDs to defend against resource exhaustion
// attacks.
if ifd_num >= 8 {
return Err(Error::InvalidFormat("Limit the IFD count to 8"));
}
ifd_offset = parse_ifd::<E>(&mut entries, data, ifd_offset, Context::Tiff, ifd_num)?;
ifd_num_ck = ifd_num.checked_add(1);
}
Ok(entries)
}
// Parse IFD [EXIF23 4.6.2].
fn parse_ifd<E>(
entries: &mut Vec<IfdEntry>,
data: &[u8],
offset: usize,
ctx: Context,
ifd_num: u16,
) -> Result<usize, Error>
where
E: Endian,
{
// Count (the number of the entries).
if data.len() < offset || data.len() - offset < 2 {
return Err(Error::InvalidFormat("Truncated IFD count"));
}
let count = E::loadu16(data, offset) as usize;
// Array of entries. (count * 12) never overflows.
if data.len() - offset - 2 < count * 12 {
return Err(Error::InvalidFormat("Truncated IFD"));
}
for i in 0..count as usize {
let tag = E::loadu16(data, offset + 2 + i * 12);
let typ = E::loadu16(data, offset + 2 + i * 12 + 2);
let cnt = E::loadu32(data, offset + 2 + i * 12 + 4);
let valofs_at = offset + 2 + i * 12 + 8;
let (unitlen, _parser) = get_type_info::<E>(typ);
let vallen = unitlen
.checked_mul(cnt as usize)
.ok_or(Error::InvalidFormat("Invalid entry count"))?;
let mut val = if vallen <= 4 {
Value::Unknown(typ, cnt, valofs_at as u32)
} else {
let ofs = E::loadu32(data, valofs_at) as usize;
if data.len() < ofs || data.len() - ofs < vallen {
return Err(Error::InvalidFormat("Truncated field value"));
}
Value::Unknown(typ, cnt, ofs as u32)
};
// No infinite recursion will occur because the context is not
// recursively defined.
let tag = Tag(ctx, tag);
match tag {
Tag::ExifIFDPointer => {
parse_child_ifd::<E>(entries, data, &mut val, Context::Exif, ifd_num)?
}
Tag::GPSInfoIFDPointer => {
parse_child_ifd::<E>(entries, data, &mut val, Context::Gps, ifd_num)?
}
Tag::InteropIFDPointer => {
parse_child_ifd::<E>(entries, data, &mut val, Context::Interop, ifd_num)?
}
_ => entries.push(IfdEntry {
field: Field {
tag: tag,
ifd_num: In(ifd_num),
value: val,
}
.into(),
}),
}
}
// Offset to the next IFD.
if data.len() - offset - 2 - count * 12 < 4 {
return Err(Error::InvalidFormat("Truncated next IFD offset"));
}
let next_ifd_offset = E::loadu32(data, offset + 2 + count * 12) as usize;
Ok(next_ifd_offset)
}
fn parse_child_ifd<E>(
entries: &mut Vec<IfdEntry>,
data: &[u8],
pointer: &mut Value,
ctx: Context,
ifd_num: u16,
) -> Result<(), Error>
where
E: Endian,
{
// The pointer is not yet parsed, so do it here.
IfdEntry::parse_value::<E>(pointer, data);
// A pointer field has type == LONG and count == 1, so the
// value (IFD offset) must be embedded in the "value offset"
// element of the field.
let ofs = pointer
.get_uint(0)
.ok_or(Error::InvalidFormat("Invalid pointer"))? as usize;
match parse_ifd::<E>(entries, data, ofs, ctx, ifd_num)? {
0 => Ok(()),
_ => Err(Error::InvalidFormat("Unexpected next IFD")),
}
}
pub fn is_tiff(buf: &[u8]) -> bool {
buf.starts_with(&TIFF_BE_SIG) || buf.starts_with(&TIFF_LE_SIG)
}
/// A struct used to parse a DateTime field.
///
/// # Examples
/// ```
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// use exif::DateTime;
/// let dt = DateTime::from_ascii(b"2016:05:04 03:02:01")?;
/// assert_eq!(dt.year, 2016);
/// assert_eq!(dt.to_string(), "2016-05-04 03:02:01");
/// # Ok(()) }
/// ```
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct DateTime {
pub year: u16,
pub month: u8,
pub day: u8,
pub hour: u8,
pub minute: u8,
pub second: u8,
/// The subsecond data in nanoseconds. If the Exif attribute has
/// more sigfinicant digits, they are rounded down.
pub nanosecond: Option<u32>,
/// The offset of the time zone in minutes.
pub offset: Option<i16>,
}
impl DateTime {
/// Parse an ASCII data of a DateTime field. The range of a number
/// is not validated, so, for example, 13 may be returned as the month.
///
/// If the value is blank, `Error::BlankValue` is returned.
pub fn from_ascii(data: &[u8]) -> Result<DateTime, Error> {
if data == b" : : : : " || data == b" " {
return Err(Error::BlankValue("DateTime is blank"));
} else if data.len() < 19 {
return Err(Error::InvalidFormat("DateTime too short"));
} else if !(data[4] == b':'
&& data[7] == b':'
&& data[10] == b' '
&& data[13] == b':'
&& data[16] == b':')
{
return Err(Error::InvalidFormat("Invalid DateTime delimiter"));
}
Ok(DateTime {
year: atou16(&data[0..4])?,
month: atou16(&data[5..7])? as u8,
day: atou16(&data[8..10])? as u8,
hour: atou16(&data[11..13])? as u8,
minute: atou16(&data[14..16])? as u8,
second: atou16(&data[17..19])? as u8,
nanosecond: None,
offset: None,
})
}
/// Parses an SubsecTime-like field.
pub fn parse_subsec(&mut self, data: &[u8]) -> Result<(), Error> {
let mut subsec = 0;
let mut ndigits = 0;
for &c in data {
if c == b' ' {
break;
}
subsec = subsec * 10 + ctou32(c)?;
ndigits += 1;
if ndigits >= 9 {
break;
}
}
if ndigits == 0 {
self.nanosecond = None;
} else {
for _ in ndigits..9 {
subsec *= 10;
}
self.nanosecond = Some(subsec);
}
Ok(())
}
/// Parses an OffsetTime-like field.
pub fn parse_offset(&mut self, data: &[u8]) -> Result<(), Error> {
if data == b" : " || data == b" " {
return Err(Error::BlankValue("OffsetTime is blank"));
} else if data.len() < 6 {
return Err(Error::InvalidFormat("OffsetTime too short"));
} else if data[3] != b':' {
return Err(Error::InvalidFormat("Invalid OffsetTime delimiter"));
}
let hour = atou16(&data[1..3])?;
let min = atou16(&data[4..6])?;
let offset = (hour * 60 + min) as i16;
self.offset = Some(match data[0] {
b'+' => offset,
b'-' => -offset,
_ => return Err(Error::InvalidFormat("Invalid OffsetTime sign")),
});
Ok(())
}
/// Parses an SubsecTime-like field.
pub fn with_subsec(mut self, data: &[u8]) -> Result<Self, (Error, Self)> {
let mut subsec = 0;
let mut ndigits = 0;
for &c in data {
if c == b' ' {
break;
}
subsec = subsec * 10
+ match ctou32(c) {
Ok(it) => it,
Err(e) => return Err((e, self)),
};
ndigits += 1;
if ndigits >= 9 {
break;
}
}
if ndigits == 0 {
self.nanosecond = None;
} else {
for _ in ndigits..9 {
subsec *= 10;
}
self.nanosecond = Some(subsec);
}
Ok(self)
}
/// Parses an OffsetTime-like field.
pub fn with_offset(mut self, data: &[u8]) -> Result<Self, (Error, Self)> {
if data == b" : " || data == b" " {
return Err((Error::BlankValue("OffsetTime is blank"), self));
} else if data.len() < 6 {
return Err((Error::InvalidFormat("OffsetTime too short"), self));
} else if data[3] != b':' {
return Err((Error::InvalidFormat("Invalid OffsetTime delimiter"), self));
}
let hour = match atou16(&data[1..3]) {
Ok(it) => it,
Err(e) => return Err((e, self)),
};
let min = match atou16(&data[4..6]) {
Ok(it) => it,
Err(e) => return Err((e, self)),
};
let offset = (hour * 60 + min) as i16;
self.offset = Some(match data[0] {
b'+' => offset,
b'-' => -offset,
_ => return Err((Error::InvalidFormat("Invalid OffsetTime sign"), self)),
});
Ok(self)
}
}
impl fmt::Display for DateTime {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"{:04}-{:02}-{:02} {:02}:{:02}:{:02}",
self.year, self.month, self.day, self.hour, self.minute, self.second
)
}
}
#[cfg(feature = "time")]
impl core::convert::TryFrom<DateTime> for time::OffsetDateTime {
// TODO fill in a type
type Error = ();
fn try_from(value: DateTime) -> core::result::Result<Self, Self::Error> {
time::OffsetDateTime::try_from(&value)
}
}
#[cfg(feature = "time")]
impl core::convert::TryFrom<&DateTime> for time::OffsetDateTime {
// TODO fill in a type
type Error = ();
fn try_from(value: &DateTime) -> core::result::Result<Self, Self::Error> {
let naive = time::PrimitiveDateTime::new(
time::Date::from_calendar_date(value.year as i32, value.month, value.day).map_err(|_| ())?,
time::Time::from_hms_nano(value.hour, value.minute, value.second, value.nanosecond.unwrap_or(0)).map_err(|_| ())?,
);
let offset = value
.offset
.ok_or(())
.and_then(|o| {
let h = o % 60;
let m = o - (h * 60);
time::UtcOffset::from_hms(h as i8, m as i8, 0).map_err(|_| ())
})
.unwrap_or(time::UtcOffset::current_local_offset().unwrap_or(time::UtcOffset::UTC));
Ok(naive.assume_offset(offset))
}
}
impl Field {
/// Returns an object that implements `std::fmt::Display` for
/// printing the value of this field in a tag-specific format.
///
/// To print the value with the unit, call `with_unit` method on the
/// returned object. It takes a parameter, which is either `()`,
/// `&Field`, or `&Exif`, that provides the unit information.
/// If the unit does not depend on another field, `()` can be used.
/// Otherwise, `&Field` or `&Exif` should be used.
///
/// # Examples
///
/// ```
/// use exif::{Field, In, Tag, Value};
///
/// let xres = Field {
/// tag: Tag::XResolution,
/// ifd_num: In::PRIMARY,
/// value: Value::Rational(vec![(72, 1).into()]),
/// };
/// let resunit = Field {
/// tag: Tag::ResolutionUnit,
/// ifd_num: In::PRIMARY,
/// value: Value::Short(vec![3]),
/// };
/// assert_eq!(xres.display_value().to_string(), "72");
/// assert_eq!(resunit.display_value().to_string(), "cm");
/// // The unit of XResolution is indicated by ResolutionUnit.
/// assert_eq!(xres.display_value().with_unit(&resunit).to_string(),
/// "72 pixels per cm");
/// // If ResolutionUnit is not given, the default value is used.
/// assert_eq!(xres.display_value().with_unit(()).to_string(),
/// "72 pixels per inch");
/// assert_eq!(xres.display_value().with_unit(&xres).to_string(),
/// "72 pixels per inch");
///
/// let flen = Field {
/// tag: Tag::FocalLengthIn35mmFilm,
/// ifd_num: In::PRIMARY,
/// value: Value::Short(vec![24]),
/// };
/// // The unit of the focal length is always mm, so the argument
/// // has nothing to do with the result.
/// assert_eq!(flen.display_value().with_unit(()).to_string(),
/// "24 mm");
/// assert_eq!(flen.display_value().with_unit(&resunit).to_string(),
/// "24 mm");
/// ```
#[inline]
pub fn display_value(&self) -> DisplayValue {
DisplayValue {
tag: self.tag,
ifd_num: self.ifd_num,
value_display: self.value.display_as(self.tag),
}
}
}
/// Helper struct for printing a value in a tag-specific format.
pub struct DisplayValue<'a> {
tag: Tag,
ifd_num: In,
value_display: value::Display<'a>,
}
impl<'a> DisplayValue<'a> {
#[inline]
pub fn with_unit<T>(&self, unit_provider: T) -> DisplayValueUnit<'a, T>
where
T: ProvideUnit<'a>,
{
DisplayValueUnit {
ifd_num: self.ifd_num,
value_display: self.value_display,
unit: self.tag.unit(),
unit_provider: unit_provider,
}
}
}
impl<'a> fmt::Display for DisplayValue<'a> {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.value_display.fmt(f)
}
}
/// Helper struct for printing a value with its unit.
pub struct DisplayValueUnit<'a, T>
where
T: ProvideUnit<'a>,
{
ifd_num: In,
value_display: value::Display<'a>,
unit: Option<&'static [UnitPiece]>,
unit_provider: T,
}
impl<'a, T> fmt::Display for DisplayValueUnit<'a, T>
where
T: ProvideUnit<'a>,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if let Some(unit) = self.unit {
assert!(!unit.is_empty());
for piece in unit {
match *piece {
UnitPiece::Value => self.value_display.fmt(f),
UnitPiece::Str(s) => f.write_str(s),
UnitPiece::Tag(tag) => {
if let Some(x) = self.unit_provider.get_field(tag, self.ifd_num) {
x.value.display_as(tag).fmt(f)
} else if let Some(x) = tag.default_value() {
x.display_as(tag).fmt(f)
} else {
write!(f, "[{} missing]", tag)
}
}
}?
}
Ok(())
} else {
self.value_display.fmt(f)
}
}
}
pub trait ProvideUnit<'a>: Copy {
fn get_field(self, tag: Tag, ifd_num: In) -> Option<&'a Field>;
}
impl<'a> ProvideUnit<'a> for () {
fn get_field(self, _tag: Tag, _ifd_num: In) -> Option<&'a Field> {
None
}
}
impl<'a> ProvideUnit<'a> for &'a Field {
fn get_field(self, tag: Tag, ifd_num: In) -> Option<&'a Field> {
Some(self).filter(|x| x.tag == tag && x.ifd_num == ifd_num)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn in_convert() {
assert_eq!(In::PRIMARY.index(), 0);
assert_eq!(In::THUMBNAIL.index(), 1);
assert_eq!(In(2).index(), 2);
assert_eq!(In(65535).index(), 65535);
assert_eq!(In::PRIMARY, In(0));
}
#[test]
fn in_display() {
assert_eq!(format!("{:10}", In::PRIMARY), "primary ");
assert_eq!(format!("{:>10}", In::THUMBNAIL), " thumbnail");
assert_eq!(format!("{:10}", In(2)), "IFD2 ");
assert_eq!(format!("{:^10}", In(65535)), " IFD65535 ");
}
#[test]
fn truncated() {
let mut data = b"MM\0\x2a\0\0\0\x08\
\0\x01\x01\0\0\x03\0\0\0\x01\0\x14\0\0\0\0\0\0"
.to_vec();
parse_exif(&data).unwrap();
while let Some(_) = data.pop() {
parse_exif(&data).unwrap_err();
}
}
// Before the error is returned, the IFD is parsed multiple times
// as the 0th, 1st, ..., and n-th IFDs.
#[test]
fn inf_loop_by_next() {
let data = b"MM\0\x2a\0\0\0\x08\
\0\x01\x01\0\0\x03\0\0\0\x01\0\x14\0\0\0\0\0\x08";
assert_err_pat!(
parse_exif(data),
Error::InvalidFormat("Limit the IFD count to 8")
);
}
#[test]
fn inf_loop_by_exif_next() {
let data = b"MM\x00\x2a\x00\x00\x00\x08\
\x00\x01\x87\x69\x00\x04\x00\x00\x00\x01\x00\x00\x00\x1a\
\x00\x00\x00\x00\
\x00\x01\x90\x00\x00\x07\x00\x00\x00\x040231\
\x00\x00\x00\x08";
assert_err_pat!(
parse_exif(data),
Error::InvalidFormat("Unexpected next IFD")
);
}
#[test]
fn unknown_field() {
let data = b"MM\0\x2a\0\0\0\x08\
\0\x01\x01\0\xff\xff\0\0\0\x01\0\x14\0\0\0\0\0\0";
let (v, le) = parse_exif(data).unwrap();
assert_eq!(v.len(), 1);
assert_pat!(
v[0].ref_field(data, le).value,
Value::Unknown(0xffff, 1, 0x12)
);
}
#[test]
fn date_time() {
let mut dt = DateTime::from_ascii(b"2016:05:04 03:02:01").unwrap();
assert_eq!(dt.year, 2016);
assert_eq!(dt.to_string(), "2016-05-04 03:02:01");
dt.parse_subsec(b"987").unwrap();
assert_eq!(dt.nanosecond.unwrap(), 987000000);
dt.parse_subsec(b"000987").unwrap();
assert_eq!(dt.nanosecond.unwrap(), 987000);
dt.parse_subsec(b"987654321").unwrap();
assert_eq!(dt.nanosecond.unwrap(), 987654321);
dt.parse_subsec(b"9876543219").unwrap();
assert_eq!(dt.nanosecond.unwrap(), 987654321);
dt.parse_subsec(b"130 ").unwrap();
assert_eq!(dt.nanosecond.unwrap(), 130000000);
dt.parse_subsec(b"0").unwrap();
assert_eq!(dt.nanosecond.unwrap(), 0);
dt.parse_subsec(b"").unwrap();
assert!(dt.nanosecond.is_none());
dt.parse_subsec(b" ").unwrap();
assert!(dt.nanosecond.is_none());
dt.parse_offset(b"+00:00").unwrap();
assert_eq!(dt.offset.unwrap(), 0);
dt.parse_offset(b"+01:23").unwrap();
assert_eq!(dt.offset.unwrap(), 83);
dt.parse_offset(b"+99:99").unwrap();
assert_eq!(dt.offset.unwrap(), 6039);
dt.parse_offset(b"-01:23").unwrap();
assert_eq!(dt.offset.unwrap(), -83);
dt.parse_offset(b"-99:99").unwrap();
assert_eq!(dt.offset.unwrap(), -6039);
assert_err_pat!(dt.parse_offset(b" : "), Error::BlankValue(_));
assert_err_pat!(dt.parse_offset(b" "), Error::BlankValue(_));
}
#[cfg(feature = "time")]
#[test]
fn date_time_chrono() {
let mut dt = DateTime::from_ascii(b"2016:05:04 03:02:01").unwrap();
use core::convert::TryFrom;
let fmt = time::format_description::parse(
"[year]-[month]-[day]T[hour]:[minute]:[second][offset_hour \
sign:mandatory]:[offset_minute]",
).unwrap();
let dt_str = time::OffsetDateTime::try_from(dt)
.unwrap()
.format(&fmt).unwrap();
assert_eq!(dt_str, "2016-05-04T03:02:01-04:00");
assert_ne!(dt_str, "2016-05-04T03:02:01+04:00");
assert_ne!(dt_str, "2016-05-04T03:02:01Z");
}
#[test]
fn display_value_with_unit() {
let cm = Field {
tag: Tag::ResolutionUnit,
ifd_num: In::PRIMARY,
value: Value::Short(vec![3]),
};
let cm_tn = Field {
tag: Tag::ResolutionUnit,
ifd_num: In::THUMBNAIL,
value: Value::Short(vec![3]),
};
// No unit.
let exifver = Field {
tag: Tag::ExifVersion,
ifd_num: In::PRIMARY,
value: Value::Undefined(b"0231".to_vec(), 0),
};
assert_eq!(exifver.display_value().to_string(), "2.31");
assert_eq!(exifver.display_value().with_unit(()).to_string(), "2.31");
assert_eq!(exifver.display_value().with_unit(&cm).to_string(), "2.31");
// Fixed string.
let width = Field {
tag: Tag::ImageWidth,
ifd_num: In::PRIMARY,
value: Value::Short(vec![257]),
};
assert_eq!(width.display_value().to_string(), "257");
assert_eq!(
width.display_value().with_unit(()).to_string(),
"257 pixels"
);
assert_eq!(
width.display_value().with_unit(&cm).to_string(),
"257 pixels"
);
// Unit tag (with a non-default value).
// Unit tag is missing but the default is specified.
let xres = Field {
tag: Tag::XResolution,
ifd_num: In::PRIMARY,
value: Value::Rational(vec![(300, 1).into()]),
};
assert_eq!(xres.display_value().to_string(), "300");
assert_eq!(
xres.display_value().with_unit(()).to_string(),
"300 pixels per inch"
);
assert_eq!(
xres.display_value().with_unit(&cm).to_string(),
"300 pixels per cm"
);
assert_eq!(
xres.display_value().with_unit(&cm_tn).to_string(),
"300 pixels per inch"
);
// Unit tag is missing and the default is not specified.
let gpslat = Field {
tag: Tag::GPSLatitude,
ifd_num: In::PRIMARY,
value: Value::Rational(vec![(10, 1).into(), (0, 1).into(), (1, 10).into()]),
};
assert_eq!(gpslat.display_value().to_string(), "10 deg 0 min 0.1 sec");
assert_eq!(
gpslat.display_value().with_unit(()).to_string(),
"10 deg 0 min 0.1 sec [GPSLatitudeRef missing]"
);
assert_eq!(
gpslat.display_value().with_unit(&cm).to_string(),
"10 deg 0 min 0.1 sec [GPSLatitudeRef missing]"
);
}
#[test]
fn no_borrow_no_move() {
let resunit = Field {
tag: Tag::ResolutionUnit,
ifd_num: In::PRIMARY,
value: Value::Short(vec![3]),
};
// This fails to compile with "temporary value dropped while
// borrowed" error if with_unit() borrows self.
let d = resunit.display_value().with_unit(());
assert_eq!(d.to_string(), "cm");
// This fails to compile if with_unit() moves self.
let d1 = resunit.display_value();
let d2 = d1.with_unit(());
assert_eq!(d1.to_string(), "cm");
assert_eq!(d2.to_string(), "cm");
}
}