integer-sqrt-rs/src/lib.rs

166 lines
4.7 KiB
Rust

//!
//! This module contains the single trait [`IntegerSquareRoot`] and implements it for primitive
//! integer types.
//!
//! # Example
//!
//! ```
//! extern crate integer_sqrt;
//! // `use` trait to get functionality
//! use integer_sqrt::IntegerSquareRoot;
//!
//! # fn main() {
//! assert_eq!(4u8.integer_sqrt(), 2);
//! ```
//!
//! [`IntegerSquareRoot`]: ./trait.IntegerSquareRoot.html
/// A trait implementing integer square root.
pub trait IntegerSquareRoot {
/// Find the integer square root.
///
/// See [Integer_square_root on wikipedia][wiki_article] for more information (and also the
/// source of this algorithm)
///
/// # Panics
///
/// For negative numbers (`i` family) this function will panic on negative input
///
/// [wiki_article]: https://en.wikipedia.org/wiki/Integer_square_root
fn integer_sqrt(&self) -> Self where Self: Sized {
self.integer_sqrt_checked().expect("cannot calculate square root of negative number")
}
/// Find the integer square root, returning `None` if the number is negative (this can never
/// happen for unsigned types).
fn integer_sqrt_checked(&self) -> Option<Self> where Self: Sized;
}
// This could be more optimized
macro_rules! impl_isqrt {
() => ();
($t:ty) => {impl_isqrt!($t,);};
($t:ty, $($e:tt)*) => {
impl IntegerSquareRoot for $t {
#[allow(unused_comparisons)]
fn integer_sqrt_checked(&self) -> Option<Self> {
// Hopefully this will be stripped for unsigned numbers (impossible condition)
if *self < 0 {
return None
}
// Find greatest shift
let mut shift = 2;
let mut n_shifted = *self >> shift;
// We check for n_shifted being self, since some implementations of logical
// right shifting shift modulo the word size.
while n_shifted != 0 && n_shifted != *self {
shift = shift + 2;
n_shifted = self.wrapping_shr(shift);
}
shift = shift - 2;
// Find digits of result.
let mut result = 0;
loop {
result = result << 1;
let candidate_result = result + 1;
if candidate_result * candidate_result <= *self >> shift {
result = candidate_result;
}
if shift == 0 {
break;
}
shift = shift.saturating_sub(2);
}
Some(result)
}
}
impl_isqrt!($($e)*);
};
}
impl_isqrt!(usize, u64, u32, u16, u8, isize, i64, i32, i16, i8);
#[cfg(test)]
mod tests {
use super::IntegerSquareRoot;
use std::{u8, u16, u64, i8};
#[test]
fn u8_sqrt() {
let tests = [
(0u8, 0u8),
(4, 2),
(7, 2),
(81, 9),
(80, 8),
(u8::MAX, (u8::MAX as f64).sqrt() as u8),
];
for &(in_, out) in tests.iter() {
assert_eq!(in_.integer_sqrt(), out, "in {}", in_);
}
}
#[test]
fn i8_sqrt() {
let tests = [
(0i8, 0i8),
(4, 2),
(7, 2),
(81, 9),
(80, 8),
(i8::MAX, (i8::MAX as f64).sqrt() as i8),
];
for &(in_, out) in tests.iter() {
assert_eq!(in_.integer_sqrt(), out, "in {}", in_);
}
}
#[test]
#[should_panic]
fn i8_sqrt_negative() {
(-12i8).integer_sqrt();
}
#[test]
fn u16_sqrt() {
let tests = [
(0u16, 0u16),
(4, 2),
(7, 2),
(81, 9),
(80, 8),
(u16::MAX, (u16::MAX as f64).sqrt() as u16),
];
for &(in_, out) in tests.iter() {
assert_eq!(in_.integer_sqrt(), out, "in {}", in_);
}
}
#[test]
fn u64_sqrt() {
let sqrt_max = 4_294_967_295;
let tests = [
(0u64, 0u64),
(4, 2),
(7, 2),
(81, 9),
(80, 8),
(u64::MAX, sqrt_max),
];
for &(in_, out) in tests.iter() {
assert_eq!(in_.integer_sqrt(), out, "in {}", in_);
}
// checks to make sure we have the right number for u64::MAX.integer_sqrt()
// we can't use the same strategy as in previous tests as f64 is now not returning the
// correct floored integer
assert!(sqrt_max * sqrt_max <= u64::MAX);
// check that the next number's square overflows
assert!((sqrt_max + 1).checked_mul(sqrt_max + 1).is_none());
}
}