Merge pull request #113 from Keats/keys_struct

Add EncodingKey & DecodingKey
This commit is contained in:
Vincent Prouillet 2020-01-17 20:18:30 +01:00 committed by GitHub
commit e46f8f9d58
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
18 changed files with 466 additions and 263 deletions

View File

@ -1,6 +1,6 @@
[package]
name = "jsonwebtoken"
version = "7.0.0-alpha.2"
version = "7.0.0-alpha.3"
authors = ["Vincent Prouillet <hello@vincentprouillet.com>"]
license = "MIT"
readme = "README.md"

View File

@ -38,7 +38,7 @@ Complete examples are available in the examples directory: a basic one and one w
In terms of imports and structs:
```rust
use serde::{Serialize, Deserialize};
use jsonwebtoken::{encode, decode, Header, Algorithm, Validation};
use jsonwebtoken::{encode, decode, Header, Algorithm, Validation, EncodingKey, DecodingKey};
/// Our claims struct, it needs to derive `Serialize` and/or `Deserialize`
#[derive(Debug, Serialize, Deserialize)]
@ -53,7 +53,7 @@ struct Claims {
The default algorithm is HS256, which uses a shared secret.
```rust
let token = encode(&Header::default(), &my_claims, "secret".as_ref())?;
let token = encode(&Header::default(), &my_claims, &EncodingKey::from_secret("secret".as_ref()))?;
```
#### Custom headers & changing algorithm
@ -63,7 +63,7 @@ If you want to set the `kid` parameter or change the algorithm for example:
```rust
let mut header = Header::new(Algorithm::HS512);
header.kid = Some("blabla".to_owned());
let token = encode(&header, &my_claims, "secret".as_ref())?;
let token = encode(&header, &my_claims, &EncodingKey::from_secret("secret".as_ref()))?;
```
Look at `examples/custom_header.rs` for a full working example.
@ -71,9 +71,9 @@ Look at `examples/custom_header.rs` for a full working example.
```rust
// HS256
let token = encode(&Header::default(), &my_claims, "secret".as_ref())?;
let token = encode(&Header::default(), &my_claims, &EncodingKey::from_secret("secret".as_ref()))?;
// RSA
let token = encode(&Header::new(Algorithm::RS256), &my_claims, include_str!("privkey.pem"))?;
let token = encode(&Header::new(Algorithm::RS256), &my_claims, &EncodingKey::from_rsa_pem(include_bytes!("privkey.pem"))?)?;
```
Encoding a JWT takes 3 parameters:
@ -82,13 +82,13 @@ Encoding a JWT takes 3 parameters:
- a key/secret
When using HS256, HS2384 or HS512, the key is always a shared secret like in the example above. When using
RSA/EC, the key should always be the content of the private key in the PEM format.
RSA/EC, the key should always be the content of the private key in the PEM or DER format.
### Decoding
```rust
// `token` is a struct with 2 fields: `header` and `claims` where `claims` is your own struct.
let token = decode::<Claims>(&token, "secret".as_ref(), &Validation::default())?;
let token = decode::<Claims>(&token, &DecodingKey::from_secret("secret".as_ref()), &Validation::default())?;
```
`decode` can error for a variety of reasons:
@ -97,7 +97,7 @@ let token = decode::<Claims>(&token, "secret".as_ref(), &Validation::default())?
- validation of at least one reserved claim failed
As with encoding, when using HS256, HS2384 or HS512, the key is always a shared secret like in the example above. When using
RSA/EC, the key should always be the content of the public key in the PEM format.
RSA/EC, the key should always be the content of the public key in the PEM or DER format.
In some cases, for example if you don't know the algorithm used or need to grab the `kid`, you can choose to decode only the header:
@ -121,15 +121,7 @@ The main use-case is for JWK where your public key is in a JSON format like so:
```rust
// `token` is a struct with 2 fields: `header` and `claims` where `claims` is your own struct.
let token = decode_rsa_components::<Claims>(&token, jwk["n"], jwk["e"], &Validation::new(Algorithm::RS256))?;
```
### Converting .der to .pem
You can use openssl for that:
```bash
openssl rsa -inform DER -outform PEM -in mykey.der -out mykey.pem
let token = decode::<Claims>(&token, &EncodingKey::from_rsa_components(jwk["n"], jwk["e"]), &Validation::new(Algorithm::RS256))?;
```
### Convert SEC1 private key to PKCS8
@ -145,7 +137,7 @@ openssl pkcs8 -topk8 -nocrypt -in sec1.pem -out pkcs8.pem
This library validates automatically the `exp` claim and `nbf` is validated if present. You can also validate the `sub`, `iss` and `aud` but
those require setting the expected value in the `Validation` struct.
Since validating time fields is always a bit tricky due to clock skew,
Since validating time fields is always a bit tricky due to clock skew,
you can add some leeway to the `iat`, `exp` and `nbf` validation by setting the `leeway` field.
Last but not least, you will need to set the algorithm(s) allowed for this token if you are not using `HS256`.

View File

@ -1,7 +1,7 @@
#![feature(test)]
extern crate test;
use jsonwebtoken::{decode, encode, Header, Validation};
use jsonwebtoken::{decode, encode, DecodingKey, EncodingKey, Header, Validation};
use serde::{Deserialize, Serialize};
#[derive(Debug, PartialEq, Clone, Serialize, Deserialize)]
@ -13,12 +13,15 @@ struct Claims {
#[bench]
fn bench_encode(b: &mut test::Bencher) {
let claim = Claims { sub: "b@b.com".to_owned(), company: "ACME".to_owned() };
let key = EncodingKey::from_secret("secret".as_ref());
b.iter(|| encode(&Header::default(), &claim, "secret".as_ref()));
b.iter(|| encode(&Header::default(), &claim, &key));
}
#[bench]
fn bench_decode(b: &mut test::Bencher) {
let token = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4iOnRydWV9.TJVA95OrM7E2cBab30RMHrHDcEfxjoYZgeFONFh7HgQ";
b.iter(|| decode::<Claims>(token, "secret".as_ref(), &Validation::default()));
let key = DecodingKey::from_secret("secret".as_ref());
b.iter(|| decode::<Claims>(token, &key, &Validation::default()));
}

View File

@ -1,5 +1,5 @@
use chrono::prelude::*;
use jsonwebtoken::{Header, Validation};
use jsonwebtoken::{DecodingKey, EncodingKey, Header, Validation};
use serde::{Deserialize, Serialize};
const SECRET: &str = "some-secret";
@ -51,13 +51,18 @@ mod jwt_numeric_date {
let claims = Claims { sub: sub.clone(), iat, exp };
let token = encode(&Header::default(), &claims, SECRET.as_ref())
.expect("Failed to encode claims");
let token =
encode(&Header::default(), &claims, &EncodingKey::from_secret(SECRET.as_ref()))
.expect("Failed to encode claims");
assert_eq!(&token, EXPECTED_TOKEN);
let decoded = decode::<Claims>(&token, SECRET.as_ref(), &Validation::default())
.expect("Failed to decode token");
let decoded = decode::<Claims>(
&token,
&DecodingKey::from_secret(SECRET.as_ref()),
&Validation::default(),
)
.expect("Failed to decode token");
assert_eq!(decoded.claims, claims);
}
@ -82,12 +87,19 @@ fn main() -> Result<(), Box<dyn std::error::Error>> {
let claims = Claims { sub: sub.clone(), iat, exp };
let token = jsonwebtoken::encode(&Header::default(), &claims, SECRET.as_ref())?;
let token = jsonwebtoken::encode(
&Header::default(),
&claims,
&EncodingKey::from_secret(SECRET.as_ref()),
)?;
println!("serialized token: {}", &token);
let token_data =
jsonwebtoken::decode::<Claims>(&token, SECRET.as_ref(), &Validation::default())?;
let token_data = jsonwebtoken::decode::<Claims>(
&token,
&DecodingKey::from_secret(SECRET.as_ref()),
&Validation::default(),
)?;
println!("token data:\n{:#?}", &token_data);
Ok(())

View File

@ -1,7 +1,7 @@
use serde::{Deserialize, Serialize};
use jsonwebtoken::errors::ErrorKind;
use jsonwebtoken::{decode, encode, Algorithm, Header, Validation};
use jsonwebtoken::{decode, encode, Algorithm, DecodingKey, EncodingKey, Header, Validation};
#[derive(Debug, Serialize, Deserialize)]
struct Claims {
@ -19,13 +19,17 @@ fn main() {
header.kid = Some("signing_key".to_owned());
header.alg = Algorithm::HS512;
let token = match encode(&header, &my_claims, key) {
let token = match encode(&header, &my_claims, &EncodingKey::from_secret(key)) {
Ok(t) => t,
Err(_) => panic!(), // in practice you would return the error
};
println!("{:?}", token);
let token_data = match decode::<Claims>(&token, key, &Validation::new(Algorithm::HS512)) {
let token_data = match decode::<Claims>(
&token,
&DecodingKey::from_secret(key),
&Validation::new(Algorithm::HS512),
) {
Ok(c) => c,
Err(err) => match *err.kind() {
ErrorKind::InvalidToken => panic!(), // Example on how to handle a specific error

View File

@ -1,5 +1,5 @@
use jsonwebtoken::errors::ErrorKind;
use jsonwebtoken::{decode, encode, Header, Validation};
use jsonwebtoken::{decode, encode, DecodingKey, EncodingKey, Header, Validation};
use serde::{Deserialize, Serialize};
#[derive(Debug, Serialize, Deserialize)]
@ -10,16 +10,16 @@ struct Claims {
}
fn main() {
let key = b"secret";
let my_claims =
Claims { sub: "b@b.com".to_owned(), company: "ACME".to_owned(), exp: 10000000000 };
let key = b"secret";
let token = match encode(&Header::default(), &my_claims, key) {
let token = match encode(&Header::default(), &my_claims, &EncodingKey::from_secret(key)) {
Ok(t) => t,
Err(_) => panic!(), // in practice you would return the error
};
let validation = Validation { sub: Some("b@b.com".to_string()), ..Validation::default() };
let token_data = match decode::<Claims>(&token, key, &validation) {
let token_data = match decode::<Claims>(&token, &DecodingKey::from_secret(key), &validation) {
Ok(c) => c,
Err(err) => match *err.kind() {
ErrorKind::InvalidToken => panic!("Token is invalid"), // Example on how to handle a specific error

View File

@ -2,6 +2,13 @@ use crate::errors::{Error, ErrorKind, Result};
use serde::{Deserialize, Serialize};
use std::str::FromStr;
#[derive(Debug, Eq, PartialEq, Copy, Clone, Serialize, Deserialize)]
pub(crate) enum AlgorithmFamily {
Hmac,
Rsa,
Ec,
}
/// The algorithms supported for signing/verifying JWTs
#[derive(Debug, PartialEq, Copy, Clone, Serialize, Deserialize)]
pub enum Algorithm {
@ -58,6 +65,21 @@ impl FromStr for Algorithm {
}
}
impl Algorithm {
pub(crate) fn family(self) -> AlgorithmFamily {
match self {
Algorithm::HS256 | Algorithm::HS384 | Algorithm::HS512 => AlgorithmFamily::Hmac,
Algorithm::RS256
| Algorithm::RS384
| Algorithm::RS512
| Algorithm::PS256
| Algorithm::PS384
| Algorithm::PS512 => AlgorithmFamily::Rsa,
Algorithm::ES256 | Algorithm::ES384 => AlgorithmFamily::Ec,
}
}
}
#[cfg(test)]
mod tests {
use super::*;

View File

@ -2,7 +2,6 @@ use ring::{rand, signature};
use crate::algorithms::Algorithm;
use crate::errors::Result;
use crate::pem::decoder::PemEncodedKey;
use crate::serialization::b64_encode;
/// Only used internally when validating EC, to map from our enum to the Ring EcdsaVerificationAlgorithm structs.
@ -26,13 +25,13 @@ pub(crate) fn alg_to_ec_signing(alg: Algorithm) -> &'static signature::EcdsaSign
}
/// The actual ECDSA signing + encoding
/// The key needs to be in PKCS8 format
pub fn sign(
alg: &'static signature::EcdsaSigningAlgorithm,
key: &[u8],
message: &str,
) -> Result<String> {
let pem_key = PemEncodedKey::new(key)?;
let signing_key = signature::EcdsaKeyPair::from_pkcs8(alg, pem_key.as_ec_private_key()?)?;
let signing_key = signature::EcdsaKeyPair::from_pkcs8(alg, key)?;
let rng = rand::SystemRandom::new();
let out = signing_key.sign(&rng, message.as_bytes())?;
Ok(b64_encode(out.as_ref()))

View File

@ -2,8 +2,9 @@ use ring::constant_time::verify_slices_are_equal;
use ring::{hmac, signature};
use crate::algorithms::Algorithm;
use crate::decoding::{DecodingKey, DecodingKeyKind};
use crate::encoding::EncodingKey;
use crate::errors::Result;
use crate::pem::decoder::PemEncodedKey;
use crate::serialization::{b64_decode, b64_encode};
pub(crate) mod ecdsa;
@ -20,16 +21,14 @@ pub(crate) fn sign_hmac(alg: hmac::Algorithm, key: &[u8], message: &str) -> Resu
/// the base64 url safe encoded of the result.
///
/// If you just want to encode a JWT, use `encode` instead.
///
/// `key` is the secret for HMAC and a pem encoded string otherwise
pub fn sign(message: &str, key: &[u8], algorithm: Algorithm) -> Result<String> {
pub fn sign(message: &str, key: &EncodingKey, algorithm: Algorithm) -> Result<String> {
match algorithm {
Algorithm::HS256 => sign_hmac(hmac::HMAC_SHA256, key, message),
Algorithm::HS384 => sign_hmac(hmac::HMAC_SHA384, key, message),
Algorithm::HS512 => sign_hmac(hmac::HMAC_SHA512, key, message),
Algorithm::HS256 => sign_hmac(hmac::HMAC_SHA256, key.inner(), message),
Algorithm::HS384 => sign_hmac(hmac::HMAC_SHA384, key.inner(), message),
Algorithm::HS512 => sign_hmac(hmac::HMAC_SHA512, key.inner(), message),
Algorithm::ES256 | Algorithm::ES384 => {
ecdsa::sign(ecdsa::alg_to_ec_signing(algorithm), key, message)
ecdsa::sign(ecdsa::alg_to_ec_signing(algorithm), key.inner(), message)
}
Algorithm::RS256
@ -37,7 +36,7 @@ pub fn sign(message: &str, key: &[u8], algorithm: Algorithm) -> Result<String> {
| Algorithm::RS512
| Algorithm::PS256
| Algorithm::PS384
| Algorithm::PS512 => rsa::sign(rsa::alg_to_rsa_signing(algorithm), key, message),
| Algorithm::PS512 => rsa::sign(rsa::alg_to_rsa_signing(algorithm), key.inner(), message),
}
}
@ -63,57 +62,37 @@ fn verify_ring(
/// `signature` is the signature part of a jwt (text after the second '.')
///
/// `message` is base64(header) + "." + base64(claims)
/// For ECDSA/RSA, the `key` is the pem public key. If you want to verify using the public key
/// components (modulus/exponent), use `verify_rsa_components` instead.
pub fn verify(signature: &str, message: &str, key: &[u8], algorithm: Algorithm) -> Result<bool> {
pub fn verify(
signature: &str,
message: &str,
key: &DecodingKey,
algorithm: Algorithm,
) -> Result<bool> {
match algorithm {
Algorithm::HS256 | Algorithm::HS384 | Algorithm::HS512 => {
// we just re-sign the message with the key and compare if they are equal
let signed = sign(message, key, algorithm)?;
let signed = sign(message, &EncodingKey::from_secret(key.as_bytes()), algorithm)?;
Ok(verify_slices_are_equal(signature.as_ref(), signed.as_ref()).is_ok())
}
Algorithm::ES256 | Algorithm::ES384 => {
let pem_key = PemEncodedKey::new(key)?;
verify_ring(
ecdsa::alg_to_ec_verification(algorithm),
signature,
message,
pem_key.as_ec_public_key()?,
)
}
Algorithm::ES256 | Algorithm::ES384 => verify_ring(
ecdsa::alg_to_ec_verification(algorithm),
signature,
message,
key.as_bytes(),
),
Algorithm::RS256
| Algorithm::RS384
| Algorithm::RS512
| Algorithm::PS256
| Algorithm::PS384
| Algorithm::PS512 => {
let pem_key = PemEncodedKey::new(key)?;
verify_ring(
rsa::alg_to_rsa_parameters(algorithm),
signature,
message,
pem_key.as_rsa_key()?,
)
let alg = rsa::alg_to_rsa_parameters(algorithm);
match &key.kind {
DecodingKeyKind::SecretOrDer(bytes) => verify_ring(alg, signature, message, bytes),
DecodingKeyKind::RsaModulusExponent { n, e } => {
rsa::verify_from_components(alg, signature, message, (n, e))
}
}
}
}
}
/// Verify the signature given using the (n, e) components of a RSA public key.
///
/// `signature` is the signature part of a jwt (text after the second '.')
///
/// `message` is base64(header) + "." + base64(claims)
pub fn verify_rsa_components(
signature: &str,
message: &str,
components: (&str, &str),
alg: Algorithm,
) -> Result<bool> {
let signature_bytes = b64_decode(signature)?;
rsa::verify_from_components(
rsa::alg_to_rsa_parameters(alg),
&signature_bytes,
message,
components,
)
}

View File

@ -3,7 +3,6 @@ use simple_asn1::BigUint;
use crate::algorithms::Algorithm;
use crate::errors::{ErrorKind, Result};
use crate::pem::decoder::PemEncodedKey;
use crate::serialization::{b64_decode, b64_encode};
/// Only used internally when validating RSA, to map from our enum to the Ring param structs.
@ -33,15 +32,14 @@ pub(crate) fn alg_to_rsa_signing(alg: Algorithm) -> &'static dyn signature::RsaE
}
/// The actual RSA signing + encoding
/// The key needs to be in PKCS8 format
/// Taken from Ring doc https://briansmith.org/rustdoc/ring/signature/index.html
pub(crate) fn sign(
alg: &'static dyn signature::RsaEncoding,
key: &[u8],
message: &str,
) -> Result<String> {
let pem_key = PemEncodedKey::new(key)?;
let key_pair = signature::RsaKeyPair::from_der(pem_key.as_rsa_key()?)
.map_err(|_| ErrorKind::InvalidRsaKey)?;
let key_pair = signature::RsaKeyPair::from_der(key).map_err(|_| ErrorKind::InvalidRsaKey)?;
let mut signature = vec![0; key_pair.public_modulus_len()];
let rng = rand::SystemRandom::new();
@ -52,12 +50,14 @@ pub(crate) fn sign(
Ok(b64_encode(&signature))
}
/// Checks that a signature is valid based on the (n, e) RSA pubkey components
pub(crate) fn verify_from_components(
alg: &'static signature::RsaParameters,
signature_bytes: &[u8],
signature: &str,
message: &str,
components: (&str, &str),
) -> Result<bool> {
let signature_bytes = b64_decode(signature)?;
let n = BigUint::from_bytes_be(&b64_decode(components.0)?).to_bytes_be();
let e = BigUint::from_bytes_be(&b64_decode(components.1)?).to_bytes_be();
let pubkey = signature::RsaPublicKeyComponents { n, e };

View File

@ -1,8 +1,12 @@
use std::borrow::Cow;
use serde::de::DeserializeOwned;
use crate::crypto::{verify, verify_rsa_components};
use crate::algorithms::AlgorithmFamily;
use crate::crypto::verify;
use crate::errors::{new_error, ErrorKind, Result};
use crate::header::Header;
use crate::pem::decoder::PemEncodedKey;
use crate::serialization::from_jwt_part_claims;
use crate::validation::{validate, Validation};
@ -27,17 +31,119 @@ macro_rules! expect_two {
}};
}
/// Internal way to differentiate between public key types
enum DecodingKey<'a> {
SecretOrPem(&'a [u8]),
#[derive(Debug, Clone, PartialEq)]
pub(crate) enum DecodingKeyKind<'a> {
SecretOrDer(Cow<'a, [u8]>),
RsaModulusExponent { n: &'a str, e: &'a str },
}
fn _decode<T: DeserializeOwned>(
/// All the different kind of keys we can use to decode a JWT
/// This key can be re-used so make sure you only initialize it once if you can for better performance
#[derive(Debug, Clone, PartialEq)]
pub struct DecodingKey<'a> {
pub(crate) family: AlgorithmFamily,
pub(crate) kind: DecodingKeyKind<'a>,
}
impl<'a> DecodingKey<'a> {
/// If you're using HMAC, use this.
pub fn from_secret(secret: &'a [u8]) -> Self {
DecodingKey {
family: AlgorithmFamily::Hmac,
kind: DecodingKeyKind::SecretOrDer(Cow::Borrowed(secret)),
}
}
/// If you're using HMAC with a base64 encoded, use this.
pub fn from_base64_secret(secret: &str) -> Result<Self> {
let out = base64::decode(&secret)?;
Ok(DecodingKey {
family: AlgorithmFamily::Hmac,
kind: DecodingKeyKind::SecretOrDer(Cow::Owned(out)),
})
}
/// If you are loading a public RSA key in a PEM format, use this.
pub fn from_rsa_pem(key: &'a [u8]) -> Result<Self> {
let pem_key = PemEncodedKey::new(key)?;
let content = pem_key.as_rsa_key()?;
Ok(DecodingKey {
family: AlgorithmFamily::Rsa,
kind: DecodingKeyKind::SecretOrDer(Cow::Owned(content.to_vec())),
})
}
/// If you have (n, e) RSA public key components, use this.
pub fn from_rsa_components(modulus: &'a str, exponent: &'a str) -> Self {
DecodingKey {
family: AlgorithmFamily::Rsa,
kind: DecodingKeyKind::RsaModulusExponent { n: modulus, e: exponent },
}
}
/// If you have a ECDSA public key in PEM format, use this.
pub fn from_ec_pem(key: &'a [u8]) -> Result<Self> {
let pem_key = PemEncodedKey::new(key)?;
let content = pem_key.as_ec_public_key()?;
Ok(DecodingKey {
family: AlgorithmFamily::Ec,
kind: DecodingKeyKind::SecretOrDer(Cow::Owned(content.to_vec())),
})
}
/// If you know what you're doing and have a RSA DER encoded public key, use this.
pub fn from_rsa_der(der: &'a [u8]) -> Self {
DecodingKey {
family: AlgorithmFamily::Rsa,
kind: DecodingKeyKind::SecretOrDer(Cow::Borrowed(der)),
}
}
/// If you know what you're doing and have a RSA EC encoded public key, use this.
pub fn from_ec_der(der: &'a [u8]) -> Self {
DecodingKey {
family: AlgorithmFamily::Ec,
kind: DecodingKeyKind::SecretOrDer(Cow::Borrowed(der)),
}
}
pub(crate) fn as_bytes(&self) -> &[u8] {
match &self.kind {
DecodingKeyKind::SecretOrDer(b) => &b,
DecodingKeyKind::RsaModulusExponent { .. } => unreachable!(),
}
}
}
/// Decode and validate a JWT
///
/// If the token or its signature is invalid or the claims fail validation, it will return an error.
///
/// ```rust
/// use serde::{Deserialize, Serialize};
/// use jsonwebtoken::{decode, DecodingKey, Validation, Algorithm};
///
/// #[derive(Debug, Serialize, Deserialize)]
/// struct Claims {
/// sub: String,
/// company: String
/// }
///
/// let token = "a.jwt.token".to_string();
/// // Claims is a struct that implements Deserialize
/// let token_message = decode::<Claims>(&token, &DecodingKey::from_secret("secret".as_ref()), &Validation::new(Algorithm::HS256));
/// ```
pub fn decode<T: DeserializeOwned>(
token: &str,
key: DecodingKey,
key: &DecodingKey,
validation: &Validation,
) -> Result<TokenData<T>> {
for alg in &validation.algorithms {
if key.family != alg.family() {
return Err(new_error(ErrorKind::InvalidAlgorithm));
}
}
let (signature, message) = expect_two!(token.rsplitn(2, '.'));
let (claims, header) = expect_two!(message.rsplitn(2, '.'));
let header = Header::from_encoded(header)?;
@ -46,14 +152,7 @@ fn _decode<T: DeserializeOwned>(
return Err(new_error(ErrorKind::InvalidAlgorithm));
}
let is_valid = match key {
DecodingKey::SecretOrPem(k) => verify(signature, message, k, header.alg),
DecodingKey::RsaModulusExponent { n, e } => {
verify_rsa_components(signature, message, (n, e), header.alg)
}
}?;
if !is_valid {
if !verify(signature, message, key, header.alg)? {
return Err(new_error(ErrorKind::InvalidSignature));
}
@ -63,61 +162,6 @@ fn _decode<T: DeserializeOwned>(
Ok(TokenData { header, claims: decoded_claims })
}
/// Decode and validate a JWT using a secret for HS and a public PEM format for RSA/EC
///
/// If the token or its signature is invalid or the claims fail validation, it will return an error.
///
/// ```rust
/// use serde::{Deserialize, Serialize};
/// use jsonwebtoken::{decode, Validation, Algorithm};
///
/// #[derive(Debug, Serialize, Deserialize)]
/// struct Claims {
/// sub: String,
/// company: String
/// }
///
/// let token = "a.jwt.token".to_string();
/// // Claims is a struct that implements Deserialize
/// let token_message = decode::<Claims>(&token, "secret".as_ref(), &Validation::new(Algorithm::HS256));
/// ```
pub fn decode<T: DeserializeOwned>(
token: &str,
key: &[u8],
validation: &Validation,
) -> Result<TokenData<T>> {
_decode(token, DecodingKey::SecretOrPem(key), validation)
}
/// Decode and validate a JWT using (n, e) base64 encoded public key components for RSA
///
/// If the token or its signature is invalid or the claims fail validation, it will return an error.
///
/// ```rust
/// use serde::{Deserialize, Serialize};
/// use jsonwebtoken::{decode_rsa_components, Validation, Algorithm};
///
/// #[derive(Debug, Serialize, Deserialize)]
/// struct Claims {
/// sub: String,
/// company: String
/// }
///
/// let modulus = "some-base64-data";
/// let exponent = "some-base64-data";
/// let token = "a.jwt.token".to_string();
/// // Claims is a struct that implements Deserialize
/// let token_message = decode_rsa_components::<Claims>(&token, &modulus, &exponent, &Validation::new(Algorithm::HS256));
/// ```
pub fn decode_rsa_components<T: DeserializeOwned>(
token: &str,
modulus: &str,
exponent: &str,
validation: &Validation,
) -> Result<TokenData<T>> {
_decode(token, DecodingKey::RsaModulusExponent { n: modulus, e: exponent }, validation)
}
/// Decode a JWT without any signature verification/validations.
///
/// NOTE: Do not use this unless you know what you are doing! If the token's signature is invalid, it will *not* return an error.

93
src/encoding.rs Normal file
View File

@ -0,0 +1,93 @@
use serde::ser::Serialize;
use crate::algorithms::AlgorithmFamily;
use crate::crypto;
use crate::errors::{new_error, ErrorKind, Result};
use crate::header::Header;
use crate::pem::decoder::PemEncodedKey;
use crate::serialization::b64_encode_part;
/// A key to encode a JWT with. Can be a secret, a PEM-encoded key or a DER-encoded key.
/// This key can be re-used so make sure you only initialize it once if you can for better performance
#[derive(Debug, Clone, PartialEq)]
pub struct EncodingKey {
pub(crate) family: AlgorithmFamily,
content: Vec<u8>,
}
impl EncodingKey {
/// If you're using a HMAC secret that is not base64, use that.
pub fn from_secret(secret: &[u8]) -> Self {
EncodingKey { family: AlgorithmFamily::Hmac, content: secret.to_vec() }
}
/// If you have a base64 HMAC secret, use that.
pub fn from_base64_secret(secret: &str) -> Result<Self> {
let out = base64::decode(&secret)?;
Ok(EncodingKey { family: AlgorithmFamily::Hmac, content: out })
}
/// If you are loading a RSA key from a .pem file.
/// This errors if the key is not a valid RSA key.
pub fn from_rsa_pem(key: &[u8]) -> Result<Self> {
let pem_key = PemEncodedKey::new(key)?;
let content = pem_key.as_rsa_key()?;
Ok(EncodingKey { family: AlgorithmFamily::Rsa, content: content.to_vec() })
}
/// If you are loading a ECDSA key from a .pem file
/// This errors if the key is not a valid private EC key
pub fn from_ec_pem(key: &[u8]) -> Result<Self> {
let pem_key = PemEncodedKey::new(key)?;
let content = pem_key.as_ec_private_key()?;
Ok(EncodingKey { family: AlgorithmFamily::Ec, content: content.to_vec() })
}
/// If you know what you're doing and have the DER-encoded key, for RSA only
pub fn from_rsa_der(der: &[u8]) -> Self {
EncodingKey { family: AlgorithmFamily::Rsa, content: der.to_vec() }
}
/// If you know what you're doing and have the DER-encoded key, for ECDSA
pub fn from_ec_der(der: &[u8]) -> Self {
EncodingKey { family: AlgorithmFamily::Ec, content: der.to_vec() }
}
pub(crate) fn inner(&self) -> &[u8] {
&self.content
}
}
/// Encode the header and claims given and sign the payload using the algorithm from the header and the key.
/// If the algorithm given is RSA or EC, the key needs to be in the PEM format.
///
/// ```rust
/// use serde::{Deserialize, Serialize};
/// use jsonwebtoken::{encode, Algorithm, Header, EncodingKey};
///
/// #[derive(Debug, Serialize, Deserialize)]
/// struct Claims {
/// sub: String,
/// company: String
/// }
///
/// let my_claims = Claims {
/// sub: "b@b.com".to_owned(),
/// company: "ACME".to_owned()
/// };
///
/// // my_claims is a struct that implements Serialize
/// // This will create a JWT using HS256 as algorithm
/// let token = encode(&Header::default(), &my_claims, &EncodingKey::from_secret("secret".as_ref())).unwrap();
/// ```
pub fn encode<T: Serialize>(header: &Header, claims: &T, key: &EncodingKey) -> Result<String> {
if key.family != header.alg.family() {
return Err(new_error(ErrorKind::InvalidAlgorithm));
}
let encoded_header = b64_encode_part(&header)?;
let encoded_claims = b64_encode_part(&claims)?;
let message = [encoded_header.as_ref(), encoded_claims.as_ref()].join(".");
let signature = crypto::sign(&*message, key, header.alg)?;
Ok([message, signature].join("."))
}

View File

@ -56,7 +56,8 @@ pub enum ErrorKind {
InvalidSubject,
/// When a tokens nbf claim represents a time in the future
ImmatureSignature,
/// When the algorithm in the header doesn't match the one passed to `decode`
/// When the algorithm in the header doesn't match the one passed to `decode` or the encoding/decoding key
/// used doesn't match the alg requested
InvalidAlgorithm,
// 3rd party errors

View File

@ -7,6 +7,7 @@ mod algorithms;
/// Lower level functions, if you want to do something other than JWTs
pub mod crypto;
mod decoding;
mod encoding;
/// All the errors that can be encountered while encoding/decoding JWTs
pub mod errors;
mod header;
@ -15,44 +16,7 @@ mod serialization;
mod validation;
pub use algorithms::Algorithm;
pub use decoding::{
dangerous_unsafe_decode, decode, decode_header, decode_rsa_components, TokenData,
};
pub use decoding::{dangerous_unsafe_decode, decode, decode_header, DecodingKey, TokenData};
pub use encoding::{encode, EncodingKey};
pub use header::Header;
pub use validation::Validation;
use serde::ser::Serialize;
use crate::errors::Result;
use crate::serialization::b64_encode_part;
/// Encode the header and claims given and sign the payload using the algorithm from the header and the key.
/// If the algorithm given is RSA or EC, the key needs to be in the PEM format.
///
/// ```rust
/// use serde::{Deserialize, Serialize};
/// use jsonwebtoken::{encode, Algorithm, Header};
///
/// #[derive(Debug, Serialize, Deserialize)]
/// struct Claims {
/// sub: String,
/// company: String
/// }
///
/// let my_claims = Claims {
/// sub: "b@b.com".to_owned(),
/// company: "ACME".to_owned()
/// };
///
/// // my_claims is a struct that implements Serialize
/// // This will create a JWT using HS256 as algorithm
/// let token = encode(&Header::default(), &my_claims, "secret".as_ref()).unwrap();
/// ```
pub fn encode<T: Serialize>(header: &Header, claims: &T, key: &[u8]) -> Result<String> {
let encoded_header = b64_encode_part(&header)?;
let encoded_claims = b64_encode_part(&claims)?;
let message = [encoded_header.as_ref(), encoded_claims.as_ref()].join(".");
let signature = crypto::sign(&*message, key, header.alg)?;
Ok([message, signature].join("."))
}

View File

@ -159,7 +159,7 @@ pub fn validate(claims: &Map<String, Value>, options: &Validation) -> Result<()>
return Err(new_error(ErrorKind::InvalidAudience));
}
}
_ => return Err(new_error(ErrorKind::InvalidAudience))
_ => return Err(new_error(ErrorKind::InvalidAudience)),
};
} else {
return Err(new_error(ErrorKind::InvalidAudience));
@ -447,17 +447,17 @@ mod tests {
#[test]
fn aud_use_validation_struct() {
let mut claims = Map::new();
claims.insert("aud".to_string(), to_value("my-googleclientid1234.apps.googleusercontent.com").unwrap());
claims.insert(
"aud".to_string(),
to_value("my-googleclientid1234.apps.googleusercontent.com").unwrap(),
);
let aud = "my-googleclientid1234.apps.googleusercontent.com".to_string();
let mut aud_hashset = std::collections::HashSet::new();
aud_hashset.insert(aud);
let validation = Validation {
aud: Some(aud_hashset),
validate_exp: false,
..Validation::default()
};
let validation =
Validation { aud: Some(aud_hashset), validate_exp: false, ..Validation::default() };
let res = validate(&claims, &validation);
println!("{:?}", res);
assert!(res.is_ok());

View File

@ -1,7 +1,7 @@
use chrono::Utc;
use jsonwebtoken::{
crypto::{sign, verify},
decode, encode, Algorithm, Header, Validation,
decode, encode, Algorithm, DecodingKey, EncodingKey, Header, Validation,
};
use serde::{Deserialize, Serialize};
@ -12,36 +12,57 @@ pub struct Claims {
exp: i64,
}
// TODO: remove completely?
//#[test]
//fn round_trip_sign_verification_pk8() {
// let privkey = include_bytes!("private_ecdsa_key.pk8");
// let encrypted = sign("hello world", privkey, Algorithm::ES256).unwrap();
// let pubkey = include_bytes!("public_ecdsa_key.pk8");
// let is_valid = verify(&encrypted, "hello world", pubkey, Algorithm::ES256).unwrap();
// assert!(is_valid);
//}
#[test]
fn round_trip_sign_verification_pk8() {
let privkey = include_bytes!("private_ecdsa_key.pk8");
let pubkey = include_bytes!("public_ecdsa_key.pk8");
let encrypted =
sign("hello world", &EncodingKey::from_ec_der(privkey), Algorithm::ES256).unwrap();
let is_valid =
verify(&encrypted, "hello world", &DecodingKey::from_ec_der(pubkey), Algorithm::ES256)
.unwrap();
assert!(is_valid);
}
#[test]
fn round_trip_sign_verification_pem() {
let privkey = include_bytes!("private_ecdsa_key.pem");
let pubkey = include_bytes!("public_ecdsa_key.pem");
let encrypted = sign("hello world", privkey, Algorithm::ES256).unwrap();
let is_valid = verify(&encrypted, "hello world", pubkey, Algorithm::ES256).unwrap();
let privkey_pem = include_bytes!("private_ecdsa_key.pem");
let pubkey_pem = include_bytes!("public_ecdsa_key.pem");
let encrypted =
sign("hello world", &EncodingKey::from_ec_pem(privkey_pem).unwrap(), Algorithm::ES256)
.unwrap();
let is_valid = verify(
&encrypted,
"hello world",
&DecodingKey::from_ec_pem(pubkey_pem).unwrap(),
Algorithm::ES256,
)
.unwrap();
assert!(is_valid);
}
#[test]
fn round_trip_claim() {
let privkey = include_bytes!("private_ecdsa_key.pem");
let pubkey = include_bytes!("public_ecdsa_key.pem");
let privkey_pem = include_bytes!("private_ecdsa_key.pem");
let pubkey_pem = include_bytes!("public_ecdsa_key.pem");
let my_claims = Claims {
sub: "b@b.com".to_string(),
company: "ACME".to_string(),
exp: Utc::now().timestamp() + 10000,
};
let token = encode(&Header::new(Algorithm::ES256), &my_claims, privkey).unwrap();
let token_data = decode::<Claims>(&token, pubkey, &Validation::new(Algorithm::ES256)).unwrap();
let token = encode(
&Header::new(Algorithm::ES256),
&my_claims,
&EncodingKey::from_ec_pem(privkey_pem).unwrap(),
)
.unwrap();
let token_data = decode::<Claims>(
&token,
&DecodingKey::from_ec_pem(pubkey_pem).unwrap(),
&Validation::new(Algorithm::ES256),
)
.unwrap();
assert_eq!(my_claims, token_data.claims);
}
@ -49,14 +70,24 @@ fn round_trip_claim() {
#[test]
fn roundtrip_with_jwtio_example() {
// We currently do not support SEC1 so we use the converted PKCS8 formatted
let privkey = include_bytes!("private_jwtio_pkcs8.pem");
let pubkey = include_bytes!("public_jwtio.pem");
let privkey_pem = include_bytes!("private_jwtio_pkcs8.pem");
let pubkey_pem = include_bytes!("public_jwtio.pem");
let my_claims = Claims {
sub: "b@b.com".to_string(),
company: "ACME".to_string(),
exp: Utc::now().timestamp() + 10000,
};
let token = encode(&Header::new(Algorithm::ES384), &my_claims, privkey).unwrap();
let token_data = decode::<Claims>(&token, pubkey, &Validation::new(Algorithm::ES384)).unwrap();
let token = encode(
&Header::new(Algorithm::ES384),
&my_claims,
&EncodingKey::from_ec_pem(privkey_pem).unwrap(),
)
.unwrap();
let token_data = decode::<Claims>(
&token,
&DecodingKey::from_ec_pem(pubkey_pem).unwrap(),
&Validation::new(Algorithm::ES384),
)
.unwrap();
assert_eq!(my_claims, token_data.claims);
}

View File

@ -1,7 +1,8 @@
use chrono::Utc;
use jsonwebtoken::{
crypto::{sign, verify},
dangerous_unsafe_decode, decode, decode_header, encode, Algorithm, Header, Validation,
dangerous_unsafe_decode, decode, decode_header, encode, Algorithm, DecodingKey, EncodingKey,
Header, Validation,
};
use serde::{Deserialize, Serialize};
@ -14,7 +15,8 @@ pub struct Claims {
#[test]
fn sign_hs256() {
let result = sign("hello world", b"secret", Algorithm::HS256).unwrap();
let result =
sign("hello world", &EncodingKey::from_secret(b"secret"), Algorithm::HS256).unwrap();
let expected = "c0zGLzKEFWj0VxWuufTXiRMk5tlI5MbGDAYhzaxIYjo";
assert_eq!(result, expected);
}
@ -22,7 +24,8 @@ fn sign_hs256() {
#[test]
fn verify_hs256() {
let sig = "c0zGLzKEFWj0VxWuufTXiRMk5tlI5MbGDAYhzaxIYjo";
let valid = verify(sig, "hello world", b"secret", Algorithm::HS256).unwrap();
let valid =
verify(sig, "hello world", &DecodingKey::from_secret(b"secret"), Algorithm::HS256).unwrap();
assert!(valid);
}
@ -35,8 +38,10 @@ fn encode_with_custom_header() {
};
let mut header = Header::default();
header.kid = Some("kid".to_string());
let token = encode(&header, &my_claims, b"secret").unwrap();
let token_data = decode::<Claims>(&token, b"secret", &Validation::default()).unwrap();
let token = encode(&header, &my_claims, &EncodingKey::from_secret(b"secret")).unwrap();
let token_data =
decode::<Claims>(&token, &DecodingKey::from_secret(b"secret"), &Validation::default())
.unwrap();
assert_eq!(my_claims, token_data.claims);
assert_eq!("kid", token_data.header.kid.unwrap());
}
@ -48,8 +53,11 @@ fn round_trip_claim() {
company: "ACME".to_string(),
exp: Utc::now().timestamp() + 10000,
};
let token = encode(&Header::default(), &my_claims, b"secret").unwrap();
let token_data = decode::<Claims>(&token, b"secret", &Validation::default()).unwrap();
let token =
encode(&Header::default(), &my_claims, &EncodingKey::from_secret(b"secret")).unwrap();
let token_data =
decode::<Claims>(&token, &DecodingKey::from_secret(b"secret"), &Validation::default())
.unwrap();
assert_eq!(my_claims, token_data.claims);
assert!(token_data.header.kid.is_none());
}
@ -57,7 +65,8 @@ fn round_trip_claim() {
#[test]
fn decode_token() {
let token = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiJiQGIuY29tIiwiY29tcGFueSI6IkFDTUUiLCJleHAiOjI1MzI1MjQ4OTF9.9r56oF7ZliOBlOAyiOFperTGxBtPykRQiWNFxhDCW98";
let claims = decode::<Claims>(token, b"secret", &Validation::default());
let claims =
decode::<Claims>(token, &DecodingKey::from_secret(b"secret"), &Validation::default());
println!("{:?}", claims);
claims.unwrap();
}
@ -66,7 +75,8 @@ fn decode_token() {
#[should_panic(expected = "InvalidToken")]
fn decode_token_missing_parts() {
let token = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9";
let claims = decode::<Claims>(token, b"secret", &Validation::default());
let claims =
decode::<Claims>(token, &DecodingKey::from_secret(b"secret"), &Validation::default());
claims.unwrap();
}
@ -75,7 +85,8 @@ fn decode_token_missing_parts() {
fn decode_token_invalid_signature() {
let token =
"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiJiQGIuY29tIiwiY29tcGFueSI6IkFDTUUifQ.wrong";
let claims = decode::<Claims>(token, b"secret", &Validation::default());
let claims =
decode::<Claims>(token, &DecodingKey::from_secret(b"secret"), &Validation::default());
claims.unwrap();
}
@ -83,14 +94,31 @@ fn decode_token_invalid_signature() {
#[should_panic(expected = "InvalidAlgorithm")]
fn decode_token_wrong_algorithm() {
let token = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiJiQGIuY29tIiwiY29tcGFueSI6IkFDTUUifQ.I1BvFoHe94AFf09O6tDbcSB8-jp8w6xZqmyHIwPeSdY";
let claims = decode::<Claims>(token, b"secret", &Validation::new(Algorithm::RS512));
let claims = decode::<Claims>(
token,
&DecodingKey::from_secret(b"secret"),
&Validation::new(Algorithm::RS512),
);
claims.unwrap();
}
#[test]
#[should_panic(expected = "InvalidAlgorithm")]
fn encode_wrong_alg_family() {
let my_claims = Claims {
sub: "b@b.com".to_string(),
company: "ACME".to_string(),
exp: Utc::now().timestamp() + 10000,
};
let claims = encode(&Header::default(), &my_claims, &EncodingKey::from_rsa_der(b"secret"));
claims.unwrap();
}
#[test]
fn decode_token_with_bytes_secret() {
let token = "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJiQGIuY29tIiwiY29tcGFueSI6IkFDTUUiLCJleHAiOjI1MzI1MjQ4OTF9.Hm0yvKH25TavFPz7J_coST9lZFYH1hQo0tvhvImmaks";
let claims = decode::<Claims>(token, b"\x01\x02\x03", &Validation::default());
let claims =
decode::<Claims>(token, &DecodingKey::from_secret(b"\x01\x02\x03"), &Validation::default());
assert!(claims.is_ok());
}

View File

@ -1,7 +1,7 @@
use chrono::Utc;
use jsonwebtoken::{
crypto::{sign, verify},
decode, decode_rsa_components, encode, Algorithm, Header, Validation,
decode, encode, Algorithm, DecodingKey, EncodingKey, Header, Validation,
};
use serde::{Deserialize, Serialize};
@ -27,8 +27,11 @@ fn round_trip_sign_verification_pem_pkcs1() {
let pubkey_pem = include_bytes!("public_rsa_key_pkcs1.pem");
for &alg in RSA_ALGORITHMS {
let encrypted = sign("hello world", privkey_pem, alg).unwrap();
let is_valid = verify(&encrypted, "hello world", pubkey_pem, alg).unwrap();
let encrypted =
sign("hello world", &EncodingKey::from_rsa_pem(privkey_pem).unwrap(), alg).unwrap();
let is_valid =
verify(&encrypted, "hello world", &DecodingKey::from_rsa_pem(pubkey_pem).unwrap(), alg)
.unwrap();
assert!(is_valid);
}
}
@ -39,8 +42,24 @@ fn round_trip_sign_verification_pem_pkcs8() {
let pubkey_pem = include_bytes!("public_rsa_key_pkcs8.pem");
for &alg in RSA_ALGORITHMS {
let encrypted = sign("hello world", privkey_pem, alg).unwrap();
let is_valid = verify(&encrypted, "hello world", pubkey_pem, alg).unwrap();
let encrypted =
sign("hello world", &EncodingKey::from_rsa_pem(privkey_pem).unwrap(), alg).unwrap();
let is_valid =
verify(&encrypted, "hello world", &DecodingKey::from_rsa_pem(pubkey_pem).unwrap(), alg)
.unwrap();
assert!(is_valid);
}
}
#[test]
fn round_trip_sign_verification_der() {
let privkey_der = include_bytes!("private_rsa_key.der");
let pubkey_der = include_bytes!("public_rsa_key.der");
for &alg in RSA_ALGORITHMS {
let encrypted = sign("hello world", &EncodingKey::from_rsa_der(privkey_der), alg).unwrap();
let is_valid =
verify(&encrypted, "hello world", &DecodingKey::from_rsa_der(pubkey_der), alg).unwrap();
assert!(is_valid);
}
}
@ -52,13 +71,16 @@ fn round_trip_claim() {
company: "ACME".to_string(),
exp: Utc::now().timestamp() + 10000,
};
let privkey = include_bytes!("private_rsa_key_pkcs1.pem");
let privkey_pem = include_bytes!("private_rsa_key_pkcs1.pem");
let pubkey_pem = include_bytes!("public_rsa_key_pkcs1.pem");
for &alg in RSA_ALGORITHMS {
let token = encode(&Header::new(alg), &my_claims, privkey).unwrap();
let token =
encode(&Header::new(alg), &my_claims, &EncodingKey::from_rsa_pem(privkey_pem).unwrap())
.unwrap();
let token_data = decode::<Claims>(
&token,
include_bytes!("public_rsa_key_pkcs1.pem"),
&DecodingKey::from_rsa_pem(pubkey_pem).unwrap(),
&Validation::new(alg),
)
.unwrap();
@ -78,18 +100,20 @@ fn rsa_modulus_exponent() {
let n = "yRE6rHuNR0QbHO3H3Kt2pOKGVhQqGZXInOduQNxXzuKlvQTLUTv4l4sggh5_CYYi_cvI-SXVT9kPWSKXxJXBXd_4LkvcPuUakBoAkfh-eiFVMh2VrUyWyj3MFl0HTVF9KwRXLAcwkREiS3npThHRyIxuy0ZMeZfxVL5arMhw1SRELB8HoGfG_AtH89BIE9jDBHZ9dLelK9a184zAf8LwoPLxvJb3Il5nncqPcSfKDDodMFBIMc4lQzDKL5gvmiXLXB1AGLm8KBjfE8s3L5xqi-yUod-j8MtvIj812dkS4QMiRVN_by2h3ZY8LYVGrqZXZTcgn2ujn8uKjXLZVD5TdQ";
let e = "AQAB";
let encrypted = encode(&Header::new(Algorithm::RS256), &my_claims, privkey.as_ref()).unwrap();
let res = decode_rsa_components::<Claims>(&encrypted, n, e, &Validation::new(Algorithm::RS256));
let encrypted = encode(
&Header::new(Algorithm::RS256),
&my_claims,
&EncodingKey::from_rsa_pem(privkey.as_ref()).unwrap(),
)
.unwrap();
let res = decode::<Claims>(
&encrypted,
&DecodingKey::from_rsa_components(n, e),
&Validation::new(Algorithm::RS256),
);
assert!(res.is_ok());
}
#[test]
#[should_panic(expected = "InvalidKeyFormat")]
fn fails_with_non_pkcs8_key_format() {
let _encrypted =
sign("hello world", include_bytes!("private_rsa_key_pkcs1.pem"), Algorithm::ES256).unwrap();
}
// https://jwt.io/ is often used for examples so ensure their example works with jsonwebtoken
#[test]
fn roundtrip_with_jwtio_example_jey() {
@ -103,8 +127,15 @@ fn roundtrip_with_jwtio_example_jey() {
};
for &alg in RSA_ALGORITHMS {
let token = encode(&Header::new(alg), &my_claims, privkey_pem).unwrap();
let token_data = decode::<Claims>(&token, pubkey_pem, &Validation::new(alg)).unwrap();
let token =
encode(&Header::new(alg), &my_claims, &EncodingKey::from_rsa_pem(privkey_pem).unwrap())
.unwrap();
let token_data = decode::<Claims>(
&token,
&DecodingKey::from_rsa_pem(pubkey_pem).unwrap(),
&Validation::new(alg),
)
.unwrap();
assert_eq!(my_claims, token_data.claims);
}
}