luau-src-rs/luau/CodeGen/src/UnwindBuilderDwarf2.cpp

300 lines
9.5 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/UnwindBuilderDwarf2.h"
#include "ByteUtils.h"
#include <string.h>
// General information about Dwarf2 format can be found at:
// https://dwarfstd.org/doc/dwarf-2.0.0.pdf [DWARF Debugging Information Format]
// Main part for async exception unwinding is in section '6.4 Call Frame Information'
// Information about System V ABI (AMD64) can be found at:
// https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf [System V Application Binary Interface (AMD64 Architecture Processor Supplement)]
// Interaction between Dwarf2 and System V ABI can be found in sections '3.6.2 DWARF Register Number Mapping' and '4.2.4 EH_FRAME sections'
// Call frame instruction opcodes (Dwarf2, page 78, ch. 7.23 figure 37)
#define DW_CFA_advance_loc 0x40
#define DW_CFA_offset 0x80
#define DW_CFA_restore 0xc0
#define DW_CFA_set_loc 0x01
#define DW_CFA_advance_loc1 0x02
#define DW_CFA_advance_loc2 0x03
#define DW_CFA_advance_loc4 0x04
#define DW_CFA_offset_extended 0x05
#define DW_CFA_restore_extended 0x06
#define DW_CFA_undefined 0x07
#define DW_CFA_same_value 0x08
#define DW_CFA_register 0x09
#define DW_CFA_remember_state 0x0a
#define DW_CFA_restore_state 0x0b
#define DW_CFA_def_cfa 0x0c
#define DW_CFA_def_cfa_register 0x0d
#define DW_CFA_def_cfa_offset 0x0e
#define DW_CFA_def_cfa_expression 0x0f
#define DW_CFA_nop 0x00
#define DW_CFA_lo_user 0x1c
#define DW_CFA_hi_user 0x3f
// Register numbers for X64 (System V ABI, page 57, ch. 3.7, figure 3.36)
#define DW_REG_X64_RAX 0
#define DW_REG_X64_RDX 1
#define DW_REG_X64_RCX 2
#define DW_REG_X64_RBX 3
#define DW_REG_X64_RSI 4
#define DW_REG_X64_RDI 5
#define DW_REG_X64_RBP 6
#define DW_REG_X64_RSP 7
#define DW_REG_X64_RA 16
// Register numbers for A64 (DWARF for the Arm 64-bit Architecture, ch. 4.1)
#define DW_REG_A64_FP 29
#define DW_REG_A64_LR 30
#define DW_REG_A64_SP 31
// X64 register mapping from real register index to DWARF2 (r8..r15 are mapped 1-1, but named registers aren't)
const int regIndexToDwRegX64[16] = {DW_REG_X64_RAX, DW_REG_X64_RCX, DW_REG_X64_RDX, DW_REG_X64_RBX, DW_REG_X64_RSP, DW_REG_X64_RBP, DW_REG_X64_RSI,
DW_REG_X64_RDI, 8, 9, 10, 11, 12, 13, 14, 15};
const int kCodeAlignFactor = 1;
const int kDataAlignFactor = 8;
const int kDwarfAlign = 8;
const int kFdeInitialLocationOffset = 8;
const int kFdeAddressRangeOffset = 16;
// Define canonical frame address expression as [reg + offset]
static uint8_t* defineCfaExpression(uint8_t* pos, int dwReg, uint32_t stackOffset)
{
pos = writeu8(pos, DW_CFA_def_cfa);
pos = writeuleb128(pos, dwReg);
pos = writeuleb128(pos, stackOffset);
return pos;
}
// Update offset value in canonical frame address expression
static uint8_t* defineCfaExpressionOffset(uint8_t* pos, uint32_t stackOffset)
{
pos = writeu8(pos, DW_CFA_def_cfa_offset);
pos = writeuleb128(pos, stackOffset);
return pos;
}
static uint8_t* defineSavedRegisterLocation(uint8_t* pos, int dwReg, uint32_t stackOffset)
{
LUAU_ASSERT(stackOffset % kDataAlignFactor == 0 && "stack offsets have to be measured in kDataAlignFactor units");
if (dwReg <= 0x3f)
{
pos = writeu8(pos, DW_CFA_offset + dwReg);
}
else
{
pos = writeu8(pos, DW_CFA_offset_extended);
pos = writeuleb128(pos, dwReg);
}
pos = writeuleb128(pos, stackOffset / kDataAlignFactor);
return pos;
}
static uint8_t* advanceLocation(uint8_t* pos, unsigned int offset)
{
LUAU_ASSERT(offset < 256);
pos = writeu8(pos, DW_CFA_advance_loc1);
pos = writeu8(pos, offset);
return pos;
}
static uint8_t* alignPosition(uint8_t* start, uint8_t* pos)
{
size_t size = pos - start;
size_t pad = ((size + kDwarfAlign - 1) & ~(kDwarfAlign - 1)) - size;
for (size_t i = 0; i < pad; i++)
pos = writeu8(pos, DW_CFA_nop);
return pos;
}
namespace Luau
{
namespace CodeGen
{
void UnwindBuilderDwarf2::setBeginOffset(size_t beginOffset)
{
this->beginOffset = beginOffset;
}
size_t UnwindBuilderDwarf2::getBeginOffset() const
{
return beginOffset;
}
void UnwindBuilderDwarf2::startInfo(Arch arch)
{
LUAU_ASSERT(arch == A64 || arch == X64);
uint8_t* cieLength = pos;
pos = writeu32(pos, 0); // Length (to be filled later)
pos = writeu32(pos, 0); // CIE id. 0 -- .eh_frame
pos = writeu8(pos, 1); // Version
pos = writeu8(pos, 0); // CIE augmentation String ""
int ra = arch == A64 ? DW_REG_A64_LR : DW_REG_X64_RA;
pos = writeuleb128(pos, kCodeAlignFactor); // Code align factor
pos = writeuleb128(pos, -kDataAlignFactor & 0x7f); // Data align factor of (as signed LEB128)
pos = writeu8(pos, ra); // Return address register
// Optional CIE augmentation section (not present)
// Call frame instructions (common for all FDEs)
if (arch == A64)
{
pos = defineCfaExpression(pos, DW_REG_A64_SP, 0); // Define CFA to be the sp
}
else
{
pos = defineCfaExpression(pos, DW_REG_X64_RSP, 8); // Define CFA to be the rsp + 8
pos = defineSavedRegisterLocation(pos, DW_REG_X64_RA, 8); // Define return address register (RA) to be located at CFA - 8
}
pos = alignPosition(cieLength, pos);
writeu32(cieLength, unsigned(pos - cieLength - 4)); // Length field itself is excluded from length
}
void UnwindBuilderDwarf2::startFunction()
{
// End offset is filled in later and everything gets adjusted at the end
UnwindFunctionDwarf2 func;
func.beginOffset = 0;
func.endOffset = 0;
func.fdeEntryStartPos = uint32_t(pos - rawData);
unwindFunctions.push_back(func);
fdeEntryStart = pos; // Will be written at the end
pos = writeu32(pos, 0); // Length (to be filled later)
pos = writeu32(pos, unsigned(pos - rawData)); // CIE pointer
pos = writeu64(pos, 0); // Initial location (to be filled later)
pos = writeu64(pos, 0); // Address range (to be filled later)
// Optional CIE augmentation section (not present)
// Function call frame instructions to follow
}
void UnwindBuilderDwarf2::finishFunction(uint32_t beginOffset, uint32_t endOffset)
{
unwindFunctions.back().beginOffset = beginOffset;
unwindFunctions.back().endOffset = endOffset;
LUAU_ASSERT(fdeEntryStart != nullptr);
pos = alignPosition(fdeEntryStart, pos);
writeu32(fdeEntryStart, unsigned(pos - fdeEntryStart - 4)); // Length field itself is excluded from length
}
void UnwindBuilderDwarf2::finishInfo()
{
// Terminate section
pos = writeu32(pos, 0);
LUAU_ASSERT(getSize() <= kRawDataLimit);
}
void UnwindBuilderDwarf2::prologueA64(uint32_t prologueSize, uint32_t stackSize, std::initializer_list<A64::RegisterA64> regs)
{
LUAU_ASSERT(stackSize % 16 == 0);
LUAU_ASSERT(regs.size() >= 2 && regs.begin()[0] == A64::x29 && regs.begin()[1] == A64::x30);
LUAU_ASSERT(regs.size() * 8 <= stackSize);
// sub sp, sp, stackSize
pos = advanceLocation(pos, 4);
pos = defineCfaExpressionOffset(pos, stackSize);
// stp/str to store each register to stack in order
pos = advanceLocation(pos, prologueSize - 4);
for (size_t i = 0; i < regs.size(); ++i)
{
LUAU_ASSERT(regs.begin()[i].kind == A64::KindA64::x);
pos = defineSavedRegisterLocation(pos, regs.begin()[i].index, stackSize - unsigned(i * 8));
}
}
void UnwindBuilderDwarf2::prologueX64(uint32_t prologueSize, uint32_t stackSize, bool setupFrame, std::initializer_list<X64::RegisterX64> regs)
{
LUAU_ASSERT(stackSize > 0 && stackSize <= 128 && stackSize % 8 == 0);
unsigned int stackOffset = 8; // Return address was pushed by calling the function
unsigned int prologueOffset = 0;
if (setupFrame)
{
// push rbp
stackOffset += 8;
prologueOffset += 2;
pos = advanceLocation(pos, 2);
pos = defineCfaExpressionOffset(pos, stackOffset);
pos = defineSavedRegisterLocation(pos, DW_REG_X64_RBP, stackOffset);
// mov rbp, rsp
prologueOffset += 3;
pos = advanceLocation(pos, 3);
}
// push reg
for (X64::RegisterX64 reg : regs)
{
LUAU_ASSERT(reg.size == X64::SizeX64::qword);
stackOffset += 8;
prologueOffset += 2;
pos = advanceLocation(pos, 2);
pos = defineCfaExpressionOffset(pos, stackOffset);
pos = defineSavedRegisterLocation(pos, regIndexToDwRegX64[reg.index], stackOffset);
}
// sub rsp, stackSize
stackOffset += stackSize;
prologueOffset += 4;
pos = advanceLocation(pos, 4);
pos = defineCfaExpressionOffset(pos, stackOffset);
LUAU_ASSERT(stackOffset % 16 == 0);
LUAU_ASSERT(prologueOffset == prologueSize);
}
size_t UnwindBuilderDwarf2::getSize() const
{
return size_t(pos - rawData);
}
size_t UnwindBuilderDwarf2::getFunctionCount() const
{
return unwindFunctions.size();
}
void UnwindBuilderDwarf2::finalize(char* target, size_t offset, void* funcAddress, size_t funcSize) const
{
memcpy(target, rawData, getSize());
for (const UnwindFunctionDwarf2& func : unwindFunctions)
{
uint8_t* fdeEntry = (uint8_t*)target + func.fdeEntryStartPos;
writeu64(fdeEntry + kFdeInitialLocationOffset, uintptr_t(funcAddress) + offset + func.beginOffset);
if (func.endOffset == kFullBlockFuncton)
writeu64(fdeEntry + kFdeAddressRangeOffset, funcSize - offset);
else
writeu64(fdeEntry + kFdeAddressRangeOffset, func.endOffset - func.beginOffset);
}
}
} // namespace CodeGen
} // namespace Luau