luau-src-rs/luau/CodeGen/src/OptimizeConstProp.cpp

1167 lines
39 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/OptimizeConstProp.h"
#include "Luau/DenseHash.h"
#include "Luau/IrAnalysis.h"
#include "Luau/IrBuilder.h"
#include "Luau/IrUtils.h"
#include "lua.h"
#include <array>
#include <vector>
LUAU_FASTINTVARIABLE(LuauCodeGenMinLinearBlockPath, 3)
LUAU_FASTFLAGVARIABLE(DebugLuauAbortingChecks, false)
namespace Luau
{
namespace CodeGen
{
// Data we know about the register value
struct RegisterInfo
{
uint8_t tag = 0xff;
IrOp value;
// Used to quickly invalidate links between SSA values and register memory
// It's a bit imprecise where value and tag both always invalidate together
uint32_t version = 0;
bool knownNotReadonly = false;
bool knownNoMetatable = false;
};
// Load instructions are linked to target register to carry knowledge about the target
// We track a register version at the point of the load so it's easy to break the link when register is updated
struct RegisterLink
{
uint8_t reg = 0;
uint32_t version = 0;
};
// Data we know about the current VM state
struct ConstPropState
{
ConstPropState(IrFunction& function)
: function(function)
, valueMap({})
{
}
uint8_t tryGetTag(IrOp op)
{
if (RegisterInfo* info = tryGetRegisterInfo(op))
return info->tag;
return 0xff;
}
void updateTag(IrOp op, uint8_t tag)
{
if (RegisterInfo* info = tryGetRegisterInfo(op))
info->tag = tag;
}
void saveTag(IrOp op, uint8_t tag)
{
if (RegisterInfo* info = tryGetRegisterInfo(op))
{
if (info->tag != tag)
{
info->tag = tag;
info->version++;
}
}
}
IrOp tryGetValue(IrOp op)
{
if (RegisterInfo* info = tryGetRegisterInfo(op))
return info->value;
return IrOp{IrOpKind::None, 0u};
}
void saveValue(IrOp op, IrOp value)
{
LUAU_ASSERT(value.kind == IrOpKind::Constant);
if (RegisterInfo* info = tryGetRegisterInfo(op))
{
if (info->value != value)
{
info->value = value;
info->knownNotReadonly = false;
info->knownNoMetatable = false;
info->version++;
}
}
}
void invalidate(RegisterInfo& reg, bool invalidateTag, bool invalidateValue)
{
if (invalidateTag)
{
reg.tag = 0xff;
}
if (invalidateValue)
{
reg.value = {};
reg.knownNotReadonly = false;
reg.knownNoMetatable = false;
}
reg.version++;
}
void invalidateTag(IrOp regOp)
{
// TODO: use maxstacksize from Proto
maxReg = vmRegOp(regOp) > maxReg ? vmRegOp(regOp) : maxReg;
invalidate(regs[vmRegOp(regOp)], /* invalidateTag */ true, /* invalidateValue */ false);
}
void invalidateValue(IrOp regOp)
{
// TODO: use maxstacksize from Proto
maxReg = vmRegOp(regOp) > maxReg ? vmRegOp(regOp) : maxReg;
invalidate(regs[vmRegOp(regOp)], /* invalidateTag */ false, /* invalidateValue */ true);
}
void invalidate(IrOp regOp)
{
// TODO: use maxstacksize from Proto
maxReg = vmRegOp(regOp) > maxReg ? vmRegOp(regOp) : maxReg;
invalidate(regs[vmRegOp(regOp)], /* invalidateTag */ true, /* invalidateValue */ true);
}
void invalidateRegistersFrom(int firstReg)
{
for (int i = firstReg; i <= maxReg; ++i)
invalidate(regs[i], /* invalidateTag */ true, /* invalidateValue */ true);
}
void invalidateRegisterRange(int firstReg, int count)
{
if (count == -1)
{
invalidateRegistersFrom(firstReg);
}
else
{
for (int i = firstReg; i < firstReg + count && i <= maxReg; ++i)
invalidate(regs[i], /* invalidateTag */ true, /* invalidateValue */ true);
}
}
void invalidateCapturedRegisters()
{
for (int i = 0; i <= maxReg; ++i)
{
if (function.cfg.captured.regs.test(i))
invalidate(regs[i], /* invalidateTag */ true, /* invalidateValue */ true);
}
}
void invalidateHeap()
{
for (int i = 0; i <= maxReg; ++i)
invalidateHeap(regs[i]);
}
void invalidateHeap(RegisterInfo& reg)
{
reg.knownNotReadonly = false;
reg.knownNoMetatable = false;
}
void invalidateUserCall()
{
invalidateHeap();
invalidateCapturedRegisters();
inSafeEnv = false;
}
void createRegLink(uint32_t instIdx, IrOp regOp)
{
LUAU_ASSERT(!instLink.contains(instIdx));
instLink[instIdx] = RegisterLink{uint8_t(vmRegOp(regOp)), regs[vmRegOp(regOp)].version};
}
RegisterInfo* tryGetRegisterInfo(IrOp op)
{
if (op.kind == IrOpKind::VmReg)
{
maxReg = vmRegOp(op) > maxReg ? vmRegOp(op) : maxReg;
return &regs[vmRegOp(op)];
}
if (RegisterLink* link = tryGetRegLink(op))
{
maxReg = int(link->reg) > maxReg ? int(link->reg) : maxReg;
return &regs[link->reg];
}
return nullptr;
}
RegisterLink* tryGetRegLink(IrOp instOp)
{
if (instOp.kind != IrOpKind::Inst)
return nullptr;
if (RegisterLink* link = instLink.find(instOp.index))
{
// Check that the target register hasn't changed the value
if (link->version < regs[link->reg].version)
return nullptr;
return link;
}
return nullptr;
}
// Attach register version number to the register operand in a load instruction
// This is used to allow instructions with register references to be compared for equality
IrInst versionedVmRegLoad(IrCmd loadCmd, IrOp op)
{
LUAU_ASSERT(op.kind == IrOpKind::VmReg);
uint32_t version = regs[vmRegOp(op)].version;
LUAU_ASSERT(version <= 0xffffff);
op.index = vmRegOp(op) | (version << 8);
return IrInst{loadCmd, op};
}
// Find existing value of the instruction that is exactly the same, or record current on for future lookups
void substituteOrRecord(IrInst& inst, uint32_t instIdx)
{
if (!useValueNumbering)
return;
if (uint32_t* prevIdx = valueMap.find(inst))
{
const IrInst& prev = function.instructions[*prevIdx];
// Previous load might have been removed as unused
if (prev.useCount != 0)
{
substitute(function, inst, IrOp{IrOpKind::Inst, *prevIdx});
return;
}
}
valueMap[inst] = instIdx;
}
// Vm register load can be replaced by a previous load of the same version of the register
// If there is no previous load, we record the current one for future lookups
void substituteOrRecordVmRegLoad(IrInst& loadInst)
{
LUAU_ASSERT(loadInst.a.kind == IrOpKind::VmReg);
if (!useValueNumbering)
return;
// To avoid captured register invalidation tracking in lowering later, values from loads from captured registers are not propagated
// This prevents the case where load value location is linked to memory in case of a spill and is then cloberred in a user call
if (function.cfg.captured.regs.test(vmRegOp(loadInst.a)))
return;
IrInst versionedLoad = versionedVmRegLoad(loadInst.cmd, loadInst.a);
// Check if there is a value that already has this version of the register
if (uint32_t* prevIdx = valueMap.find(versionedLoad))
{
const IrInst& prev = function.instructions[*prevIdx];
// Previous load might have been removed as unused
if (prev.useCount != 0)
{
// Previous value might not be linked to a register yet
// For example, it could be a NEW_TABLE stored into a register and we might need to track guards made with this value
if (!instLink.contains(*prevIdx))
createRegLink(*prevIdx, loadInst.a);
// Substitute load instructon with the previous value
substitute(function, loadInst, IrOp{IrOpKind::Inst, *prevIdx});
return;
}
}
uint32_t instIdx = function.getInstIndex(loadInst);
// Record load of this register version for future substitution
valueMap[versionedLoad] = instIdx;
createRegLink(instIdx, loadInst.a);
}
// VM register loads can use the value that was stored in the same Vm register earlier
void forwardVmRegStoreToLoad(const IrInst& storeInst, IrCmd loadCmd)
{
LUAU_ASSERT(storeInst.a.kind == IrOpKind::VmReg);
LUAU_ASSERT(storeInst.b.kind == IrOpKind::Inst);
if (!useValueNumbering)
return;
// To avoid captured register invalidation tracking in lowering later, values from stores into captured registers are not propagated
// This prevents the case where store creates an alternative value location in case of a spill and is then cloberred in a user call
if (function.cfg.captured.regs.test(vmRegOp(storeInst.a)))
return;
// Future loads of this register version can use the value we stored
valueMap[versionedVmRegLoad(loadCmd, storeInst.a)] = storeInst.b.index;
}
void clear()
{
for (int i = 0; i <= maxReg; ++i)
regs[i] = RegisterInfo();
maxReg = 0;
inSafeEnv = false;
checkedGc = false;
instLink.clear();
valueMap.clear();
}
IrFunction& function;
bool useValueNumbering = false;
std::array<RegisterInfo, 256> regs;
// For range/full invalidations, we only want to visit a limited number of data that we have recorded
int maxReg = 0;
bool inSafeEnv = false;
bool checkedGc = false;
DenseHashMap<uint32_t, RegisterLink> instLink{~0u};
DenseHashMap<IrInst, uint32_t, IrInstHash, IrInstEq> valueMap;
};
static void handleBuiltinEffects(ConstPropState& state, LuauBuiltinFunction bfid, uint32_t firstReturnReg, int nresults)
{
// Switch over all values is used to force new items to be handled
switch (bfid)
{
case LBF_NONE:
case LBF_ASSERT:
case LBF_MATH_ABS:
case LBF_MATH_ACOS:
case LBF_MATH_ASIN:
case LBF_MATH_ATAN2:
case LBF_MATH_ATAN:
case LBF_MATH_CEIL:
case LBF_MATH_COSH:
case LBF_MATH_COS:
case LBF_MATH_DEG:
case LBF_MATH_EXP:
case LBF_MATH_FLOOR:
case LBF_MATH_FMOD:
case LBF_MATH_FREXP:
case LBF_MATH_LDEXP:
case LBF_MATH_LOG10:
case LBF_MATH_LOG:
case LBF_MATH_MAX:
case LBF_MATH_MIN:
case LBF_MATH_MODF:
case LBF_MATH_POW:
case LBF_MATH_RAD:
case LBF_MATH_SINH:
case LBF_MATH_SIN:
case LBF_MATH_SQRT:
case LBF_MATH_TANH:
case LBF_MATH_TAN:
case LBF_BIT32_ARSHIFT:
case LBF_BIT32_BAND:
case LBF_BIT32_BNOT:
case LBF_BIT32_BOR:
case LBF_BIT32_BXOR:
case LBF_BIT32_BTEST:
case LBF_BIT32_EXTRACT:
case LBF_BIT32_LROTATE:
case LBF_BIT32_LSHIFT:
case LBF_BIT32_REPLACE:
case LBF_BIT32_RROTATE:
case LBF_BIT32_RSHIFT:
case LBF_TYPE:
case LBF_STRING_BYTE:
case LBF_STRING_CHAR:
case LBF_STRING_LEN:
case LBF_TYPEOF:
case LBF_STRING_SUB:
case LBF_MATH_CLAMP:
case LBF_MATH_SIGN:
case LBF_MATH_ROUND:
case LBF_RAWSET:
case LBF_RAWGET:
case LBF_RAWEQUAL:
case LBF_TABLE_INSERT:
case LBF_TABLE_UNPACK:
case LBF_VECTOR:
case LBF_BIT32_COUNTLZ:
case LBF_BIT32_COUNTRZ:
case LBF_SELECT_VARARG:
case LBF_RAWLEN:
case LBF_BIT32_EXTRACTK:
case LBF_GETMETATABLE:
break;
case LBF_SETMETATABLE:
state.invalidateHeap(); // TODO: only knownNoMetatable is affected and we might know which one
break;
}
// TODO: classify further using switch above, some fastcalls only modify the value, not the tag
// TODO: fastcalls are different from calls and it might be possible to not invalidate all register starting from return
state.invalidateRegistersFrom(firstReturnReg);
}
static void constPropInInst(ConstPropState& state, IrBuilder& build, IrFunction& function, IrBlock& block, IrInst& inst, uint32_t index)
{
switch (inst.cmd)
{
case IrCmd::LOAD_TAG:
if (uint8_t tag = state.tryGetTag(inst.a); tag != 0xff)
substitute(function, inst, build.constTag(tag));
else if (inst.a.kind == IrOpKind::VmReg)
state.createRegLink(index, inst.a);
break;
case IrCmd::LOAD_POINTER:
if (inst.a.kind == IrOpKind::VmReg)
state.substituteOrRecordVmRegLoad(inst);
break;
case IrCmd::LOAD_DOUBLE:
if (IrOp value = state.tryGetValue(inst.a); value.kind == IrOpKind::Constant)
substitute(function, inst, value);
else if (inst.a.kind == IrOpKind::VmReg)
state.substituteOrRecordVmRegLoad(inst);
break;
case IrCmd::LOAD_INT:
if (IrOp value = state.tryGetValue(inst.a); value.kind == IrOpKind::Constant)
substitute(function, inst, value);
else if (inst.a.kind == IrOpKind::VmReg)
state.substituteOrRecordVmRegLoad(inst);
break;
case IrCmd::LOAD_TVALUE:
if (inst.a.kind == IrOpKind::VmReg)
state.substituteOrRecordVmRegLoad(inst);
break;
case IrCmd::STORE_TAG:
if (inst.a.kind == IrOpKind::VmReg)
{
const IrOp source = inst.a;
uint32_t activeLoadDoubleValue = kInvalidInstIdx;
if (inst.b.kind == IrOpKind::Constant)
{
uint8_t value = function.tagOp(inst.b);
// STORE_TAG usually follows a store of the value, but it also bumps the version of the whole register
// To be able to propagate STORE_DOUBLE into LOAD_DOUBLE, we find active LOAD_DOUBLE value and recreate it with updated version
// Register in this optimization cannot be captured to avoid complications in lowering (IrValueLocationTracking doesn't model it)
// If stored tag is not a number, we can skip the lookup as there won't be future loads of this register as a number
if (value == LUA_TNUMBER && !function.cfg.captured.regs.test(vmRegOp(source)))
{
if (uint32_t* prevIdx = state.valueMap.find(state.versionedVmRegLoad(IrCmd::LOAD_DOUBLE, source)))
activeLoadDoubleValue = *prevIdx;
}
if (state.tryGetTag(source) == value)
{
if (FFlag::DebugLuauAbortingChecks)
replace(function, block, index, {IrCmd::CHECK_TAG, inst.a, inst.b, build.undef()});
else
kill(function, inst);
}
else
{
state.saveTag(source, value);
}
}
else
{
state.invalidateTag(source);
}
// Future LOAD_DOUBLE instructions can re-use previous register version load
if (activeLoadDoubleValue != kInvalidInstIdx)
state.valueMap[state.versionedVmRegLoad(IrCmd::LOAD_DOUBLE, source)] = activeLoadDoubleValue;
}
break;
case IrCmd::STORE_POINTER:
if (inst.a.kind == IrOpKind::VmReg)
{
state.invalidateValue(inst.a);
state.forwardVmRegStoreToLoad(inst, IrCmd::LOAD_POINTER);
}
break;
case IrCmd::STORE_DOUBLE:
if (inst.a.kind == IrOpKind::VmReg)
{
if (inst.b.kind == IrOpKind::Constant)
{
if (state.tryGetValue(inst.a) == inst.b)
kill(function, inst);
else
state.saveValue(inst.a, inst.b);
}
else
{
state.invalidateValue(inst.a);
state.forwardVmRegStoreToLoad(inst, IrCmd::LOAD_DOUBLE);
}
}
break;
case IrCmd::STORE_INT:
if (inst.a.kind == IrOpKind::VmReg)
{
if (inst.b.kind == IrOpKind::Constant)
{
if (state.tryGetValue(inst.a) == inst.b)
kill(function, inst);
else
state.saveValue(inst.a, inst.b);
}
else
{
state.invalidateValue(inst.a);
state.forwardVmRegStoreToLoad(inst, IrCmd::LOAD_INT);
}
}
break;
case IrCmd::STORE_VECTOR:
state.invalidateValue(inst.a);
break;
case IrCmd::STORE_TVALUE:
if (inst.a.kind == IrOpKind::VmReg)
{
state.invalidate(inst.a);
if (uint8_t tag = state.tryGetTag(inst.b); tag != 0xff)
state.saveTag(inst.a, tag);
if (IrOp value = state.tryGetValue(inst.b); value.kind != IrOpKind::None)
state.saveValue(inst.a, value);
state.forwardVmRegStoreToLoad(inst, IrCmd::LOAD_TVALUE);
}
break;
case IrCmd::JUMP_IF_TRUTHY:
if (uint8_t tag = state.tryGetTag(inst.a); tag != 0xff)
{
if (tag == LUA_TNIL)
replace(function, block, index, {IrCmd::JUMP, inst.c});
else if (tag != LUA_TBOOLEAN)
replace(function, block, index, {IrCmd::JUMP, inst.b});
}
break;
case IrCmd::JUMP_IF_FALSY:
if (uint8_t tag = state.tryGetTag(inst.a); tag != 0xff)
{
if (tag == LUA_TNIL)
replace(function, block, index, {IrCmd::JUMP, inst.b});
else if (tag != LUA_TBOOLEAN)
replace(function, block, index, {IrCmd::JUMP, inst.c});
}
break;
case IrCmd::JUMP_EQ_TAG:
{
uint8_t tagA = inst.a.kind == IrOpKind::Constant ? function.tagOp(inst.a) : state.tryGetTag(inst.a);
uint8_t tagB = inst.b.kind == IrOpKind::Constant ? function.tagOp(inst.b) : state.tryGetTag(inst.b);
if (tagA != 0xff && tagB != 0xff)
{
if (tagA == tagB)
replace(function, block, index, {IrCmd::JUMP, inst.c});
else
replace(function, block, index, {IrCmd::JUMP, inst.d});
}
break;
}
case IrCmd::JUMP_EQ_INT:
{
std::optional<int> valueA = function.asIntOp(inst.a.kind == IrOpKind::Constant ? inst.a : state.tryGetValue(inst.a));
std::optional<int> valueB = function.asIntOp(inst.b.kind == IrOpKind::Constant ? inst.b : state.tryGetValue(inst.b));
if (valueA && valueB)
{
if (*valueA == *valueB)
replace(function, block, index, {IrCmd::JUMP, inst.c});
else
replace(function, block, index, {IrCmd::JUMP, inst.d});
}
break;
}
case IrCmd::JUMP_LT_INT:
{
std::optional<int> valueA = function.asIntOp(inst.a.kind == IrOpKind::Constant ? inst.a : state.tryGetValue(inst.a));
std::optional<int> valueB = function.asIntOp(inst.b.kind == IrOpKind::Constant ? inst.b : state.tryGetValue(inst.b));
if (valueA && valueB)
{
if (*valueA < *valueB)
replace(function, block, index, {IrCmd::JUMP, inst.c});
else
replace(function, block, index, {IrCmd::JUMP, inst.d});
}
break;
}
case IrCmd::JUMP_GE_UINT:
{
std::optional<unsigned> valueA = function.asUintOp(inst.a.kind == IrOpKind::Constant ? inst.a : state.tryGetValue(inst.a));
std::optional<unsigned> valueB = function.asUintOp(inst.b.kind == IrOpKind::Constant ? inst.b : state.tryGetValue(inst.b));
if (valueA && valueB)
{
if (*valueA >= *valueB)
replace(function, block, index, {IrCmd::JUMP, inst.c});
else
replace(function, block, index, {IrCmd::JUMP, inst.d});
}
break;
}
case IrCmd::JUMP_CMP_NUM:
{
std::optional<double> valueA = function.asDoubleOp(inst.a.kind == IrOpKind::Constant ? inst.a : state.tryGetValue(inst.a));
std::optional<double> valueB = function.asDoubleOp(inst.b.kind == IrOpKind::Constant ? inst.b : state.tryGetValue(inst.b));
if (valueA && valueB)
{
if (compare(*valueA, *valueB, conditionOp(inst.c)))
replace(function, block, index, {IrCmd::JUMP, inst.d});
else
replace(function, block, index, {IrCmd::JUMP, inst.e});
}
break;
}
case IrCmd::GET_UPVALUE:
state.invalidate(inst.a);
break;
case IrCmd::CHECK_TAG:
{
uint8_t b = function.tagOp(inst.b);
if (uint8_t tag = state.tryGetTag(inst.a); tag != 0xff)
{
if (tag == b)
{
if (FFlag::DebugLuauAbortingChecks)
replace(function, inst.c, build.undef());
else
kill(function, inst);
}
else
{
replace(function, block, index, {IrCmd::JUMP, inst.c}); // Shows a conflict in assumptions on this path
}
}
else
{
state.updateTag(inst.a, b); // We can assume the tag value going forward
}
break;
}
case IrCmd::CHECK_READONLY:
if (RegisterInfo* info = state.tryGetRegisterInfo(inst.a))
{
if (info->knownNotReadonly)
{
if (FFlag::DebugLuauAbortingChecks)
replace(function, inst.b, build.undef());
else
kill(function, inst);
}
else
{
info->knownNotReadonly = true;
}
}
break;
case IrCmd::CHECK_NO_METATABLE:
if (RegisterInfo* info = state.tryGetRegisterInfo(inst.a))
{
if (info->knownNoMetatable)
{
if (FFlag::DebugLuauAbortingChecks)
replace(function, inst.b, build.undef());
else
kill(function, inst);
}
else
{
info->knownNoMetatable = true;
}
}
break;
case IrCmd::CHECK_SAFE_ENV:
if (state.inSafeEnv)
{
if (FFlag::DebugLuauAbortingChecks)
replace(function, inst.a, build.undef());
else
kill(function, inst);
}
else
{
state.inSafeEnv = true;
}
break;
case IrCmd::CHECK_GC:
// It is enough to perform a GC check once in a block
if (state.checkedGc)
kill(function, inst);
else
state.checkedGc = true;
break;
case IrCmd::BARRIER_OBJ:
case IrCmd::BARRIER_TABLE_FORWARD:
if (inst.b.kind == IrOpKind::VmReg)
{
if (uint8_t tag = state.tryGetTag(inst.b); tag != 0xff)
{
// If the written object is not collectable, barrier is not required
if (!isGCO(tag))
kill(function, inst);
}
}
break;
// TODO: FASTCALL is more restrictive than INVOKE_FASTCALL; we should either determine the exact semantics, or rework it
case IrCmd::FASTCALL:
case IrCmd::INVOKE_FASTCALL:
handleBuiltinEffects(state, LuauBuiltinFunction(function.uintOp(inst.a)), vmRegOp(inst.b), function.intOp(inst.f));
break;
// These instructions don't have an effect on register/memory state we are tracking
case IrCmd::NOP:
case IrCmd::LOAD_NODE_VALUE_TV:
case IrCmd::STORE_NODE_VALUE_TV:
case IrCmd::LOAD_ENV:
case IrCmd::GET_ARR_ADDR:
case IrCmd::GET_SLOT_NODE_ADDR:
case IrCmd::GET_HASH_NODE_ADDR:
break;
case IrCmd::ADD_INT:
case IrCmd::SUB_INT:
case IrCmd::ADD_NUM:
case IrCmd::SUB_NUM:
case IrCmd::MUL_NUM:
case IrCmd::DIV_NUM:
case IrCmd::MOD_NUM:
case IrCmd::MIN_NUM:
case IrCmd::MAX_NUM:
case IrCmd::UNM_NUM:
case IrCmd::FLOOR_NUM:
case IrCmd::CEIL_NUM:
case IrCmd::ROUND_NUM:
case IrCmd::SQRT_NUM:
case IrCmd::ABS_NUM:
case IrCmd::NOT_ANY:
state.substituteOrRecord(inst, index);
break;
case IrCmd::JUMP:
case IrCmd::JUMP_EQ_POINTER:
case IrCmd::JUMP_SLOT_MATCH:
case IrCmd::TABLE_LEN:
case IrCmd::NEW_TABLE:
case IrCmd::DUP_TABLE:
case IrCmd::TRY_NUM_TO_INDEX:
case IrCmd::TRY_CALL_FASTGETTM:
break;
case IrCmd::INT_TO_NUM:
case IrCmd::UINT_TO_NUM:
state.substituteOrRecord(inst, index);
break;
case IrCmd::NUM_TO_INT:
if (IrInst* src = function.asInstOp(inst.a); src && src->cmd == IrCmd::INT_TO_NUM)
substitute(function, inst, src->a);
else
state.substituteOrRecord(inst, index);
break;
case IrCmd::NUM_TO_UINT:
if (IrInst* src = function.asInstOp(inst.a); src && src->cmd == IrCmd::UINT_TO_NUM)
substitute(function, inst, src->a);
else
state.substituteOrRecord(inst, index);
break;
case IrCmd::CHECK_ARRAY_SIZE:
case IrCmd::CHECK_SLOT_MATCH:
case IrCmd::CHECK_NODE_NO_NEXT:
case IrCmd::BARRIER_TABLE_BACK:
case IrCmd::RETURN:
case IrCmd::COVERAGE:
case IrCmd::SET_UPVALUE:
case IrCmd::SET_SAVEDPC: // TODO: we may be able to remove some updates to PC
case IrCmd::CLOSE_UPVALS: // Doesn't change memory that we track
case IrCmd::CAPTURE:
case IrCmd::SUBSTITUTE:
case IrCmd::ADJUST_STACK_TO_REG: // Changes stack top, but not the values
case IrCmd::ADJUST_STACK_TO_TOP: // Changes stack top, but not the values
case IrCmd::CHECK_FASTCALL_RES: // Changes stack top, but not the values
case IrCmd::BITAND_UINT:
case IrCmd::BITXOR_UINT:
case IrCmd::BITOR_UINT:
case IrCmd::BITNOT_UINT:
case IrCmd::BITLSHIFT_UINT:
case IrCmd::BITRSHIFT_UINT:
case IrCmd::BITARSHIFT_UINT:
case IrCmd::BITRROTATE_UINT:
case IrCmd::BITLROTATE_UINT:
case IrCmd::BITCOUNTLZ_UINT:
case IrCmd::BITCOUNTRZ_UINT:
case IrCmd::INVOKE_LIBM:
break;
case IrCmd::JUMP_CMP_ANY:
state.invalidateUserCall(); // TODO: if arguments are strings, there will be no user calls
break;
case IrCmd::DO_ARITH:
state.invalidate(inst.a);
state.invalidateUserCall();
break;
case IrCmd::DO_LEN:
state.invalidate(inst.a);
state.invalidateUserCall(); // TODO: if argument is a string, there will be no user call
state.saveTag(inst.a, LUA_TNUMBER);
break;
case IrCmd::GET_TABLE:
state.invalidate(inst.a);
state.invalidateUserCall();
break;
case IrCmd::SET_TABLE:
state.invalidateUserCall();
break;
case IrCmd::GET_IMPORT:
state.invalidate(inst.a);
state.invalidateUserCall();
break;
case IrCmd::CONCAT:
state.invalidateRegisterRange(vmRegOp(inst.a), function.uintOp(inst.b));
state.invalidateUserCall(); // TODO: if only strings and numbers are concatenated, there will be no user calls
break;
case IrCmd::PREPARE_FORN:
state.invalidateValue(inst.a);
state.saveTag(inst.a, LUA_TNUMBER);
state.invalidateValue(inst.b);
state.saveTag(inst.b, LUA_TNUMBER);
state.invalidateValue(inst.c);
state.saveTag(inst.c, LUA_TNUMBER);
break;
case IrCmd::INTERRUPT:
state.invalidateUserCall();
break;
case IrCmd::SETLIST:
state.valueMap.clear(); // TODO: this can be relaxed when x64 emitInstSetList becomes aware of register allocator
break;
case IrCmd::CALL:
state.invalidateRegistersFrom(vmRegOp(inst.a));
state.invalidateUserCall();
// We cannot guarantee right now that all live values can be remeterialized from non-stack memory locations
// To prevent earlier values from being propagated to after the call, we have to clear the map
// TODO: remove only the values that don't have a guaranteed restore location
state.valueMap.clear();
break;
case IrCmd::FORGLOOP:
state.invalidateRegistersFrom(vmRegOp(inst.a) + 2); // Rn and Rn+1 are not modified
state.valueMap.clear(); // TODO: this can be relaxed when x64 emitInstForGLoop becomes aware of register allocator
break;
case IrCmd::FORGLOOP_FALLBACK:
state.invalidateRegistersFrom(vmRegOp(inst.a) + 2); // Rn and Rn+1 are not modified
state.invalidateUserCall();
break;
case IrCmd::FORGPREP_XNEXT_FALLBACK:
// This fallback only conditionally throws an exception
break;
// Full fallback instructions
case IrCmd::FALLBACK_GETGLOBAL:
state.invalidate(inst.b);
state.invalidateUserCall();
break;
case IrCmd::FALLBACK_SETGLOBAL:
state.invalidateUserCall();
break;
case IrCmd::FALLBACK_GETTABLEKS:
state.invalidate(inst.b);
state.invalidateUserCall();
break;
case IrCmd::FALLBACK_SETTABLEKS:
state.invalidateUserCall();
break;
case IrCmd::FALLBACK_NAMECALL:
state.invalidate(IrOp{inst.b.kind, vmRegOp(inst.b) + 0u});
state.invalidate(IrOp{inst.b.kind, vmRegOp(inst.b) + 1u});
state.invalidateUserCall();
break;
case IrCmd::FALLBACK_PREPVARARGS:
break;
case IrCmd::FALLBACK_GETVARARGS:
state.invalidateRegisterRange(vmRegOp(inst.b), function.intOp(inst.c));
break;
case IrCmd::FALLBACK_NEWCLOSURE:
state.invalidate(inst.b);
break;
case IrCmd::FALLBACK_DUPCLOSURE:
state.invalidate(inst.b);
break;
case IrCmd::FALLBACK_FORGPREP:
state.invalidate(IrOp{inst.b.kind, vmRegOp(inst.b) + 0u});
state.invalidate(IrOp{inst.b.kind, vmRegOp(inst.b) + 1u});
state.invalidate(IrOp{inst.b.kind, vmRegOp(inst.b) + 2u});
break;
}
}
static void constPropInBlock(IrBuilder& build, IrBlock& block, ConstPropState& state)
{
IrFunction& function = build.function;
for (uint32_t index = block.start; index <= block.finish; index++)
{
LUAU_ASSERT(index < function.instructions.size());
IrInst& inst = function.instructions[index];
applySubstitutions(function, inst);
foldConstants(build, function, block, index);
constPropInInst(state, build, function, block, inst, index);
}
// Value numbering and load/store propagation is not performed between blocks
state.valueMap.clear();
}
static void constPropInBlockChain(IrBuilder& build, std::vector<uint8_t>& visited, IrBlock* block, ConstPropState& state)
{
IrFunction& function = build.function;
state.clear();
while (block)
{
uint32_t blockIdx = function.getBlockIndex(*block);
LUAU_ASSERT(!visited[blockIdx]);
visited[blockIdx] = true;
constPropInBlock(build, *block, state);
IrInst& termInst = function.instructions[block->finish];
IrBlock* nextBlock = nullptr;
// Unconditional jump into a block with a single user (current block) allows us to continue optimization
// with the information we have gathered so far (unless we have already visited that block earlier)
if (termInst.cmd == IrCmd::JUMP)
{
IrBlock& target = function.blockOp(termInst.a);
uint32_t targetIdx = function.getBlockIndex(target);
if (target.useCount == 1 && !visited[targetIdx] && target.kind != IrBlockKind::Fallback)
nextBlock = &target;
}
block = nextBlock;
}
}
// Note that blocks in the collected path are marked as visited
static std::vector<uint32_t> collectDirectBlockJumpPath(IrFunction& function, std::vector<uint8_t>& visited, IrBlock* block)
{
// Path shouldn't be built starting with a block that has 'live out' values.
// One theoretical way to get it is if we had 'block' jumping unconditionally into a successor that uses values from 'block'
// * if the successor has only one use, the starting conditions of 'tryCreateLinearBlock' would prevent this
// * if the successor has multiple uses, it can't have such 'live in' values without phi nodes that we don't have yet
// Another possibility is to have two paths from 'block' into the target through two intermediate blocks
// Usually that would mean that we would have a conditional jump at the end of 'block'
// But using check guards and fallback blocks it becomes a possible setup
// We avoid this by making sure fallbacks rejoin the other immediate successor of 'block'
LUAU_ASSERT(getLiveOutValueCount(function, *block) == 0);
std::vector<uint32_t> path;
while (block)
{
IrInst& termInst = function.instructions[block->finish];
IrBlock* nextBlock = nullptr;
// A chain is made from internal blocks that were not a part of bytecode CFG
if (termInst.cmd == IrCmd::JUMP)
{
IrBlock& target = function.blockOp(termInst.a);
uint32_t targetIdx = function.getBlockIndex(target);
if (!visited[targetIdx] && target.kind == IrBlockKind::Internal)
{
// Additional restriction is that to join a block, it cannot produce values that are used in other blocks
// And it also can't use values produced in other blocks
auto [liveIns, liveOuts] = getLiveInOutValueCount(function, target);
if (liveIns == 0 && liveOuts == 0)
{
visited[targetIdx] = true;
path.push_back(targetIdx);
nextBlock = &target;
}
}
}
block = nextBlock;
}
return path;
}
static void tryCreateLinearBlock(IrBuilder& build, std::vector<uint8_t>& visited, IrBlock& startingBlock, ConstPropState& state)
{
IrFunction& function = build.function;
uint32_t blockIdx = function.getBlockIndex(startingBlock);
LUAU_ASSERT(!visited[blockIdx]);
visited[blockIdx] = true;
IrInst& termInst = function.instructions[startingBlock.finish];
// Block has to end with an unconditional jump
if (termInst.cmd != IrCmd::JUMP)
return;
// And it has to jump to a block with more than one user
// If there's only one use, it should already be optimized by constPropInBlockChain
if (function.blockOp(termInst.a).useCount == 1)
return;
uint32_t targetBlockIdx = termInst.a.index;
// Check if this path is worth it (and it will also mark path blocks as visited)
std::vector<uint32_t> path = collectDirectBlockJumpPath(function, visited, &startingBlock);
// If path is too small, we are not going to linearize it
if (int(path.size()) < FInt::LuauCodeGenMinLinearBlockPath)
return;
// Initialize state with the knowledge of our current block
state.clear();
// TODO: using values from the first block can cause 'live out' of the linear block predecessor to not have all required registers
constPropInBlock(build, startingBlock, state);
// Veryfy that target hasn't changed
LUAU_ASSERT(function.instructions[startingBlock.finish].a.index == targetBlockIdx);
// Create new linearized block into which we are going to redirect starting block jump
IrOp newBlock = build.block(IrBlockKind::Linearized);
visited.push_back(false);
// TODO: placement of linear blocks in final lowering is sub-optimal, it should follow our predecessor
build.beginBlock(newBlock);
replace(function, termInst.a, newBlock);
// Clone the collected path into our fresh block
for (uint32_t pathBlockIdx : path)
build.clone(function.blocks[pathBlockIdx], /* removeCurrentTerminator */ true);
// If all live in/out data is defined aside from the new block, generate it
// Note that liveness information is not strictly correct after optimization passes and may need to be recomputed before next passes
// The information generated here is consistent with current state that could be outdated, but still useful in IR inspection
if (function.cfg.in.size() == newBlock.index)
{
LUAU_ASSERT(function.cfg.in.size() == function.cfg.out.size());
LUAU_ASSERT(function.cfg.in.size() == function.cfg.def.size());
// Live in is the same as the input of the original first block
function.cfg.in.push_back(function.cfg.in[path.front()]);
// Live out is the same as the result of the original last block
function.cfg.out.push_back(function.cfg.out[path.back()]);
// Defs are tricky, registers are joined together, but variadic sequences can be consumed inside the block
function.cfg.def.push_back({});
RegisterSet& def = function.cfg.def.back();
for (uint32_t pathBlockIdx : path)
{
const RegisterSet& pathDef = function.cfg.def[pathBlockIdx];
def.regs |= pathDef.regs;
// Taking only the last defined variadic sequence if it's not consumed before before the end
if (pathDef.varargSeq && function.cfg.out.back().varargSeq)
{
def.varargSeq = true;
def.varargStart = pathDef.varargStart;
}
}
}
// Optimize our linear block
IrBlock& linearBlock = function.blockOp(newBlock);
constPropInBlock(build, linearBlock, state);
}
void constPropInBlockChains(IrBuilder& build, bool useValueNumbering)
{
IrFunction& function = build.function;
ConstPropState state{function};
state.useValueNumbering = useValueNumbering;
std::vector<uint8_t> visited(function.blocks.size(), false);
for (IrBlock& block : function.blocks)
{
if (block.kind == IrBlockKind::Fallback || block.kind == IrBlockKind::Dead)
continue;
if (visited[function.getBlockIndex(block)])
continue;
constPropInBlockChain(build, visited, &block, state);
}
}
void createLinearBlocks(IrBuilder& build, bool useValueNumbering)
{
// Go through internal block chains and outline them into a single new block.
// Outlining will be able to linearize the execution, even if there was a jump to a block with multiple users,
// new 'block' will only be reachable from a single one and all gathered information can be preserved.
IrFunction& function = build.function;
ConstPropState state{function};
state.useValueNumbering = useValueNumbering;
std::vector<uint8_t> visited(function.blocks.size(), false);
// This loop can create new 'linear' blocks, so index-based loop has to be used (and it intentionally won't reach those new blocks)
size_t originalBlockCount = function.blocks.size();
for (size_t i = 0; i < originalBlockCount; i++)
{
IrBlock& block = function.blocks[i];
if (block.kind == IrBlockKind::Fallback || block.kind == IrBlockKind::Dead)
continue;
if (visited[function.getBlockIndex(block)])
continue;
tryCreateLinearBlock(build, visited, block, state);
}
}
} // namespace CodeGen
} // namespace Luau