luau/Analysis/include/Luau/Type.h

879 lines
24 KiB
C
Raw Normal View History

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
#include "Luau/Ast.h"
#include "Luau/Common.h"
Sync to upstream/release/562 (#828) * Fixed rare use-after-free in analysis during table unification A lot of work these past months went into two new Luau components: * A near full rewrite of the typechecker using a new deferred constraint resolution system * Native code generation for AoT/JiT compilation of VM bytecode into x64 (avx)/arm64 instructions Both of these components are far from finished and we don't provide documentation on building and using them at this point. However, curious community members expressed interest in learning about changes that go into these components each week, so we are now listing them here in the 'sync' pull request descriptions. --- New typechecker can be enabled by setting DebugLuauDeferredConstraintResolution flag to 'true'. It is considered unstable right now, so try it at your own risk. Even though it already provides better type inference than the current one in some cases, our main goal right now is to reach feature parity with current typechecker. Features which improve over the capabilities of the current typechecker are marked as '(NEW)'. Changes to new typechecker: * Regular for loop index and parameters are now typechecked * Invalid type annotations on local variables are ignored to improve autocomplete * Fixed missing autocomplete type suggestions for function arguments * Type reduction is now performed to produce simpler types to be presented to the user (error messages, custom LSPs) * Internally, complex types like '((number | string) & ~(false?)) | string' can be produced, which is just 'string | number' when simplified * Fixed spots where support for unknown and never types was missing * (NEW) Length operator '#' is now valid to use on top table type, this type comes up when doing typeof(x) == "table" guards and isn't available in current typechecker --- Changes to native code generation: * Additional math library fast calls are now lowered to x64: math.ldexp, math.round, math.frexp, math.modf, math.sign and math.clamp
2023-02-03 14:26:13 -05:00
#include "Luau/Refinement.h"
#include "Luau/DenseHash.h"
#include "Luau/NotNull.h"
#include "Luau/Predicate.h"
#include "Luau/Unifiable.h"
#include "Luau/Variant.h"
#include <deque>
#include <map>
#include <memory>
#include <optional>
#include <set>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
LUAU_FASTINT(LuauTableTypeMaximumStringifierLength)
LUAU_FASTINT(LuauTypeMaximumStringifierLength)
namespace Luau
{
struct TypeArena;
2022-07-29 00:24:07 -04:00
struct Scope;
using ScopePtr = std::shared_ptr<Scope>;
/**
* There are three kinds of type variables:
* - `Free` variables are metavariables, which stand for unconstrained types.
* - `Bound` variables are metavariables that have an equality constraint.
* - `Generic` variables are type variables that are bound by generic functions.
*
* For example, consider the program:
* ```
* function(x, y) x.f = y end
* ```
* To typecheck this, we first introduce free metavariables for the types of `x` and `y`:
* ```
* function(x: X, y: Y) x.f = y end
* ```
* Type inference for the function body then produces the constraint:
* ```
* X = { f: Y }
* ```
* so `X` is now a bound metavariable. We can then quantify the metavariables,
* which replaces any bound metavariables by their binding, and free metavariables
* by bound generic variables:
* ```
* function<a>(x: { f: a }, y: a) x.f = y end
* ```
*/
// So... why `const T*` here rather than `T*`?
// It's because we've had problems caused by the type graph being mutated
// in ways it shouldn't be, for example mutating types from other modules.
// To try to control this, we make the use of types immutable by default,
// then provide explicit mutable access via getMutable and asMutable.
// This means we can grep for all the places we're mutating the type graph,
// and it makes it possible to provide other APIs (e.g. the txn log)
// which control mutable access to the type graph.
struct TypePackVar;
using TypePackId = const TypePackVar*;
struct Type;
// Should never be null
using TypeId = const Type*;
using Name = std::string;
// A free type var is one whose exact shape has yet to be fully determined.
using FreeType = Unifiable::Free;
// When a free type var is unified with any other, it is then "bound"
// to that type var, indicating that the two types are actually the same type.
using BoundType = Unifiable::Bound<TypeId>;
using GenericType = Unifiable::Generic;
using Tags = std::vector<std::string>;
using ModuleName = std::string;
/** A Type that cannot be computed.
2022-06-16 21:05:14 -04:00
*
* BlockedTypes essentially serve as a way to encode partial ordering on the
* constraint graph. Until a BlockedType is unblocked by its owning
2022-06-16 21:05:14 -04:00
* constraint, nothing at all can be said about it. Constraints that need to
* process a BlockedType cannot be dispatched.
2022-06-16 21:05:14 -04:00
*
* Whenever a BlockedType is added to the graph, we also record a constraint
2022-06-16 21:05:14 -04:00
* that will eventually unblock it.
*/
struct BlockedType
2022-06-16 21:05:14 -04:00
{
BlockedType();
2022-06-16 21:05:14 -04:00
int index;
static int nextIndex;
};
struct PrimitiveType
{
enum Type
{
NilType, // ObjC #defines Nil :(
Boolean,
Number,
String,
Thread,
Function,
Table,
};
Type type;
std::optional<TypeId> metatable; // string has a metatable
explicit PrimitiveType(Type type)
: type(type)
{
}
explicit PrimitiveType(Type type, TypeId metatable)
: type(type)
, metatable(metatable)
{
}
};
// Singleton types https://github.com/Roblox/luau/blob/master/rfcs/syntax-singleton-types.md
// Types for true and false
struct BooleanSingleton
{
bool value;
bool operator==(const BooleanSingleton& rhs) const
{
return value == rhs.value;
}
bool operator!=(const BooleanSingleton& rhs) const
{
return !(*this == rhs);
}
};
// Types for "foo", "bar" etc.
struct StringSingleton
{
std::string value;
bool operator==(const StringSingleton& rhs) const
{
return value == rhs.value;
}
bool operator!=(const StringSingleton& rhs) const
{
return !(*this == rhs);
}
};
// No type for float singletons, partly because === isn't any equalivalence on floats
// (NaN != NaN).
using SingletonVariant = Luau::Variant<BooleanSingleton, StringSingleton>;
struct SingletonType
{
explicit SingletonType(const SingletonVariant& variant)
: variant(variant)
{
}
explicit SingletonType(SingletonVariant&& variant)
: variant(std::move(variant))
{
}
// Default operator== is C++20.
bool operator==(const SingletonType& rhs) const
{
return variant == rhs.variant;
}
bool operator!=(const SingletonType& rhs) const
{
return !(*this == rhs);
}
SingletonVariant variant;
};
template<typename T>
const T* get(const SingletonType* stv)
{
if (stv)
return get_if<T>(&stv->variant);
else
return nullptr;
}
2022-01-14 11:20:09 -05:00
struct GenericTypeDefinition
{
TypeId ty;
std::optional<TypeId> defaultValue;
2022-08-04 18:35:33 -04:00
bool operator==(const GenericTypeDefinition& rhs) const;
2022-01-14 11:20:09 -05:00
};
struct GenericTypePackDefinition
{
TypePackId tp;
std::optional<TypePackId> defaultValue;
2022-08-04 18:35:33 -04:00
bool operator==(const GenericTypePackDefinition& rhs) const;
2022-01-14 11:20:09 -05:00
};
struct FunctionArgument
{
Name name;
Location location;
};
struct FunctionDefinition
{
std::optional<ModuleName> definitionModuleName;
Location definitionLocation;
std::optional<Location> varargLocation;
Location originalNameLocation;
};
// TODO: Come up with a better name.
// TODO: Do we actually need this? We'll find out later if we can delete this.
// Does not exactly belong in Type.h, but this is the only way to appease the compiler.
template<typename T>
2022-06-16 21:05:14 -04:00
struct WithPredicate
{
T type;
PredicateVec predicates;
WithPredicate() = default;
explicit WithPredicate(T type)
: type(type)
{
}
WithPredicate(T type, PredicateVec predicates)
: type(type)
, predicates(std::move(predicates))
{
}
};
2022-06-16 21:05:14 -04:00
using MagicFunction = std::function<std::optional<WithPredicate<TypePackId>>(
struct TypeChecker&, const std::shared_ptr<struct Scope>&, const class AstExprCall&, WithPredicate<TypePackId>)>;
struct MagicFunctionCallContext
{
NotNull<struct ConstraintSolver> solver;
const class AstExprCall* callSite;
TypePackId arguments;
TypePackId result;
};
using DcrMagicFunction = bool (*)(MagicFunctionCallContext);
struct MagicRefinementContext
{
NotNull<Scope> scope;
const class AstExprCall* callSite;
std::vector<std::optional<TypeId>> discriminantTypes;
};
using DcrMagicRefinement = void (*)(const MagicRefinementContext&);
struct FunctionType
{
// Global monomorphic function
FunctionType(TypePackId argTypes, TypePackId retTypes, std::optional<FunctionDefinition> defn = {}, bool hasSelf = false);
// Global polymorphic function
FunctionType(std::vector<TypeId> generics, std::vector<TypePackId> genericPacks, TypePackId argTypes, TypePackId retTypes,
std::optional<FunctionDefinition> defn = {}, bool hasSelf = false);
// Local monomorphic function
FunctionType(TypeLevel level, TypePackId argTypes, TypePackId retTypes, std::optional<FunctionDefinition> defn = {}, bool hasSelf = false);
FunctionType(
TypeLevel level, Scope* scope, TypePackId argTypes, TypePackId retTypes, std::optional<FunctionDefinition> defn = {}, bool hasSelf = false);
// Local polymorphic function
FunctionType(TypeLevel level, std::vector<TypeId> generics, std::vector<TypePackId> genericPacks, TypePackId argTypes, TypePackId retTypes,
std::optional<FunctionDefinition> defn = {}, bool hasSelf = false);
FunctionType(TypeLevel level, Scope* scope, std::vector<TypeId> generics, std::vector<TypePackId> genericPacks, TypePackId argTypes,
TypePackId retTypes, std::optional<FunctionDefinition> defn = {}, bool hasSelf = false);
std::optional<FunctionDefinition> definition;
/// These should all be generic
std::vector<TypeId> generics;
std::vector<TypePackId> genericPacks;
std::vector<std::optional<FunctionArgument>> argNames;
Tags tags;
TypeLevel level;
Scope* scope = nullptr;
TypePackId argTypes;
2022-06-16 21:05:14 -04:00
TypePackId retTypes;
MagicFunction magicFunction = nullptr;
DcrMagicFunction dcrMagicFunction = nullptr;
DcrMagicRefinement dcrMagicRefinement = nullptr;
bool hasSelf;
2022-04-14 19:57:43 -04:00
bool hasNoGenerics = false;
};
enum class TableState
{
// Sealed tables have an exact, known shape
Sealed,
// An unsealed table can have extra properties added to it
Unsealed,
// Tables which are not yet fully understood. We are still in the process of learning its shape.
Free,
// A table which is a generic parameter to a function. We know that certain properties are required,
// but we don't care about the full shape.
Generic,
};
struct TableIndexer
{
TableIndexer(TypeId indexType, TypeId indexResultType)
: indexType(indexType)
, indexResultType(indexResultType)
{
}
TypeId indexType;
TypeId indexResultType;
};
struct Property
{
TypeId type;
bool deprecated = false;
std::string deprecatedSuggestion;
std::optional<Location> location = std::nullopt;
Tags tags;
std::optional<std::string> documentationSymbol;
};
struct TableType
{
// We choose std::map over unordered_map here just because we have unit tests that compare
// textual outputs. I don't want to spend the effort making them resilient in the case where
// random events cause the iteration order of the map elements to change.
// If this shows up in a profile, we can revisit it.
using Props = std::map<Name, Property>;
TableType() = default;
explicit TableType(TableState state, TypeLevel level, Scope* scope = nullptr);
TableType(const Props& props, const std::optional<TableIndexer>& indexer, TypeLevel level, TableState state);
TableType(const Props& props, const std::optional<TableIndexer>& indexer, TypeLevel level, Scope* scope, TableState state);
Props props;
std::optional<TableIndexer> indexer;
TableState state = TableState::Unsealed;
TypeLevel level;
2022-07-29 00:24:07 -04:00
Scope* scope = nullptr;
std::optional<std::string> name;
// Sometimes we throw a type on a name to make for nicer error messages, but without creating any entry in the type namespace
// We need to know which is which when we stringify types.
std::optional<std::string> syntheticName;
std::vector<TypeId> instantiatedTypeParams;
std::vector<TypePackId> instantiatedTypePackParams;
ModuleName definitionModuleName;
Location definitionLocation;
std::optional<TypeId> boundTo;
Tags tags;
2022-06-30 19:52:43 -04:00
// Methods of this table that have an untyped self will use the same shared self type.
std::optional<TypeId> selfTy;
};
// Represents a metatable attached to a table type. Somewhat analogous to a bound type.
struct MetatableType
{
// Always points to a TableType.
TypeId table;
// Always points to either a TableType or a MetatableType.
TypeId metatable;
std::optional<std::string> syntheticName;
};
// Custom userdata of a class type
struct ClassUserData
{
virtual ~ClassUserData() {}
};
/** The type of a class.
*
* Classes behave like tables in many ways, but there are some important differences:
*
* The properties of a class are always exactly known.
* Classes optionally have a parent class.
* Two different classes that share the same properties are nevertheless distinct and mutually incompatible.
*/
struct ClassType
{
using Props = TableType::Props;
Name name;
Props props;
std::optional<TypeId> parent;
std::optional<TypeId> metatable; // metaclass?
Tags tags;
std::shared_ptr<ClassUserData> userData;
2022-04-21 17:44:27 -04:00
ModuleName definitionModuleName;
ClassType(Name name, Props props, std::optional<TypeId> parent, std::optional<TypeId> metatable, Tags tags,
2022-04-21 17:44:27 -04:00
std::shared_ptr<ClassUserData> userData, ModuleName definitionModuleName)
: name(name)
, props(props)
, parent(parent)
, metatable(metatable)
, tags(tags)
, userData(userData)
2022-04-21 17:44:27 -04:00
, definitionModuleName(definitionModuleName)
{
}
};
struct TypeFun
{
// These should all be generic
2022-01-14 11:20:09 -05:00
std::vector<GenericTypeDefinition> typeParams;
std::vector<GenericTypePackDefinition> typePackParams;
/** The underlying type.
*
* WARNING! This is not safe to use as a type if typeParams is not empty!!
* You must first use TypeChecker::instantiateTypeFun to turn it into a real type.
*/
TypeId type;
TypeFun() = default;
2022-08-04 18:35:33 -04:00
explicit TypeFun(TypeId ty)
: type(ty)
{
}
2022-01-14 11:20:09 -05:00
TypeFun(std::vector<GenericTypeDefinition> typeParams, TypeId type)
: typeParams(std::move(typeParams))
, type(type)
{
}
2022-01-14 11:20:09 -05:00
TypeFun(std::vector<GenericTypeDefinition> typeParams, std::vector<GenericTypePackDefinition> typePackParams, TypeId type)
: typeParams(std::move(typeParams))
, typePackParams(std::move(typePackParams))
, type(type)
{
}
2022-08-04 18:35:33 -04:00
bool operator==(const TypeFun& rhs) const;
};
/** Represents a pending type alias instantiation.
*
* In order to afford (co)recursive type aliases, we need to reason about a
* partially-complete instantiation. This requires encoding more information in
* a type variable than a BlockedType affords, hence this. Each
* PendingExpansionType has a corresponding TypeAliasExpansionConstraint
2022-08-04 18:35:33 -04:00
* enqueued in the solver to convert it to an actual instantiated type
*/
struct PendingExpansionType
2022-08-04 18:35:33 -04:00
{
PendingExpansionType(std::optional<AstName> prefix, AstName name, std::vector<TypeId> typeArguments, std::vector<TypePackId> packArguments);
std::optional<AstName> prefix;
AstName name;
2022-08-04 18:35:33 -04:00
std::vector<TypeId> typeArguments;
std::vector<TypePackId> packArguments;
size_t index;
static size_t nextIndex;
};
// Anything! All static checking is off.
struct AnyType
{
};
// `T | U`
struct UnionType
{
std::vector<TypeId> options;
};
// `T & U`
struct IntersectionType
{
std::vector<TypeId> parts;
};
struct LazyType
{
std::function<TypeId()> thunk;
};
struct UnknownType
2022-07-07 21:22:39 -04:00
{
};
struct NeverType
2022-07-07 21:22:39 -04:00
{
};
// `~T`
struct NegationType
{
TypeId ty;
};
2022-08-04 18:35:33 -04:00
using ErrorType = Unifiable::Error;
using TypeVariant = Unifiable::Variant<TypeId, PrimitiveType, BlockedType, PendingExpansionType, SingletonType, FunctionType, TableType,
MetatableType, ClassType, AnyType, UnionType, IntersectionType, LazyType, UnknownType, NeverType, NegationType>;
struct Type final
{
explicit Type(const TypeVariant& ty)
: ty(ty)
{
}
explicit Type(TypeVariant&& ty)
: ty(std::move(ty))
{
}
Type(const TypeVariant& ty, bool persistent)
: ty(ty)
, persistent(persistent)
{
}
// Re-assignes the content of the type, but doesn't change the owning arena and can't make type persistent.
void reassign(const Type& rhs)
{
ty = rhs.ty;
documentationSymbol = rhs.documentationSymbol;
}
TypeVariant ty;
// Kludge: A persistent Type is one that belongs to the global scope.
// Global type bindings are immutable but are reused many times.
// Persistent Types do not get cloned.
bool persistent = false;
std::optional<std::string> documentationSymbol;
// Pointer to the type arena that allocated this type.
TypeArena* owningArena = nullptr;
bool operator==(const Type& rhs) const;
bool operator!=(const Type& rhs) const;
Type& operator=(const TypeVariant& rhs);
Type& operator=(TypeVariant&& rhs);
Type& operator=(const Type& rhs);
};
2022-04-14 19:57:43 -04:00
using SeenSet = std::set<std::pair<const void*, const void*>>;
bool areEqual(SeenSet& seen, const Type& lhs, const Type& rhs);
// Follow BoundTypes until we get to something real
TypeId follow(TypeId t);
TypeId follow(TypeId t, std::function<TypeId(TypeId)> mapper);
std::vector<TypeId> flattenIntersection(TypeId ty);
bool isPrim(TypeId ty, PrimitiveType::Type primType);
bool isNil(TypeId ty);
bool isBoolean(TypeId ty);
bool isNumber(TypeId ty);
bool isString(TypeId ty);
bool isThread(TypeId ty);
bool isOptional(TypeId ty);
bool isTableIntersection(TypeId ty);
bool isOverloadedFunction(TypeId ty);
2022-03-04 11:36:33 -05:00
// True when string is a subtype of ty
bool maybeString(TypeId ty);
std::optional<TypeId> getMetatable(TypeId type, NotNull<struct BuiltinTypes> builtinTypes);
TableType* getMutableTableType(TypeId type);
const TableType* getTableType(TypeId type);
// If the type has a name, return that. Else if it has a synthetic name, return that.
// Returns nullptr if the type has no name.
const std::string* getName(TypeId type);
2022-03-24 18:04:14 -04:00
// Returns name of the module where type was defined if type has that information
std::optional<ModuleName> getDefinitionModuleName(TypeId type);
// Checks whether a union contains all types of another union.
bool isSubset(const UnionType& super, const UnionType& sub);
// Checks if a type contains generic type binders
bool isGeneric(const TypeId ty);
// Checks if a type may be instantiated to one containing generic type binders
bool maybeGeneric(const TypeId ty);
// Checks if a type is of the form T1|...|Tn where one of the Ti is a singleton
bool maybeSingleton(TypeId ty);
// Checks if the length operator can be applied on the value of type
bool hasLength(TypeId ty, DenseHashSet<TypeId>& seen, int* recursionCount);
struct BuiltinTypes
{
BuiltinTypes();
~BuiltinTypes();
BuiltinTypes(const BuiltinTypes&) = delete;
void operator=(const BuiltinTypes&) = delete;
TypeId errorRecoveryType(TypeId guess);
TypePackId errorRecoveryTypePack(TypePackId guess);
TypeId errorRecoveryType();
TypePackId errorRecoveryTypePack();
private:
std::unique_ptr<struct TypeArena> arena;
bool debugFreezeArena = false;
TypeId makeStringMetatable();
public:
const TypeId nilType;
const TypeId numberType;
const TypeId stringType;
const TypeId booleanType;
const TypeId threadType;
const TypeId functionType;
const TypeId classType;
const TypeId tableType;
Sync to upstream/release/566 (#853) * Fixed incorrect lexeme generated for string parts in the middle of an interpolated string (Fixes https://github.com/Roblox/luau/issues/744) * DeprecatedApi lint can report some issues without type inference information * Fixed performance of autocomplete requests when suggestions have large intersection types (Solves https://github.com/Roblox/luau/discussions/847) * Marked `table.getn`/`foreach`/`foreachi` as deprecated ([RFC: Deprecate table.getn/foreach/foreachi](https://github.com/Roblox/luau/blob/master/rfcs/deprecate-table-getn-foreach.md)) * With -O2 optimization level, we now optimize builtin calls based on known argument/return count. Note that this change can be observable if `getfenv/setfenv` is used to substitute a builtin, especially if arity is different. Fastcall heavy tests show a 1-2% improvement. * Luau can now be built with clang-cl (Fixes https://github.com/Roblox/luau/issues/736) We also made many improvements to our experimental components. For our new type solver: * Overhauled data flow analysis system, fixed issues with 'repeat' loops, global variables and type annotations * Type refinements now work on generic table indexing with a string literal * Type refinements will properly track potentially 'nil' values (like t[x] for a missing key) and their further refinements * Internal top table type is now isomorphic to `{}` which fixes issues when `typeof(v) == 'table'` type refinement is handled * References to non-existent types in type annotations no longer resolve to 'error' type like in old solver * Improved handling of class unions in property access expressions * Fixed default type packs * Unsealed tables can now have metatables * Restored expected types for function arguments And for native code generation: * Added min and max IR instructions mapping to vminsd/vmaxsd on x64 * We now speculatively extract direct execution fast-paths based on expected types of expressions which provides better optimization opportunities inside a single basic block * Translated existing math fastcalls to IR form to improve tag guard removal and constant propagation
2023-03-03 15:21:14 -05:00
const TypeId emptyTableType;
const TypeId trueType;
const TypeId falseType;
const TypeId anyType;
const TypeId unknownType;
const TypeId neverType;
const TypeId errorType;
const TypeId falsyType;
const TypeId truthyType;
const TypeId optionalNumberType;
const TypeId optionalStringType;
const TypePackId anyTypePack;
const TypePackId neverTypePack;
const TypePackId uninhabitableTypePack;
const TypePackId errorTypePack;
};
void persist(TypeId ty);
void persist(TypePackId tp);
const TypeLevel* getLevel(TypeId ty);
TypeLevel* getMutableLevel(TypeId ty);
2022-04-14 19:57:43 -04:00
std::optional<TypeLevel> getLevel(TypePackId tp);
const Property* lookupClassProp(const ClassType* cls, const Name& name);
// Whether `cls` is a subclass of `parent`
bool isSubclass(const ClassType* cls, const ClassType* parent);
Type* asMutable(TypeId ty);
template<typename T>
const T* get(TypeId tv)
{
LUAU_ASSERT(tv);
if constexpr (!std::is_same_v<T, BoundType>)
LUAU_ASSERT(get_if<BoundType>(&tv->ty) == nullptr);
return get_if<T>(&tv->ty);
}
template<typename T>
T* getMutable(TypeId tv)
{
LUAU_ASSERT(tv);
if constexpr (!std::is_same_v<T, BoundType>)
LUAU_ASSERT(get_if<BoundType>(&tv->ty) == nullptr);
return get_if<T>(&asMutable(tv)->ty);
}
const std::vector<TypeId>& getTypes(const UnionType* utv);
const std::vector<TypeId>& getTypes(const IntersectionType* itv);
2022-07-07 21:22:39 -04:00
template<typename T>
struct TypeIterator;
using UnionTypeIterator = TypeIterator<UnionType>;
UnionTypeIterator begin(const UnionType* utv);
UnionTypeIterator end(const UnionType* utv);
2022-07-07 21:22:39 -04:00
using IntersectionTypeIterator = TypeIterator<IntersectionType>;
IntersectionTypeIterator begin(const IntersectionType* itv);
IntersectionTypeIterator end(const IntersectionType* itv);
2022-07-07 21:22:39 -04:00
/* Traverses the type T yielding each TypeId.
* If the iterator encounters a nested type T, it will instead yield each TypeId within.
*/
2022-07-07 21:22:39 -04:00
template<typename T>
struct TypeIterator
{
using value_type = Luau::TypeId;
using pointer = value_type*;
using reference = value_type&;
using difference_type = size_t;
using iterator_category = std::input_iterator_tag;
2022-07-07 21:22:39 -04:00
explicit TypeIterator(const T* t)
{
LUAU_ASSERT(t);
const std::vector<TypeId>& types = getTypes(t);
if (!types.empty())
stack.push_front({t, 0});
seen.insert(t);
descend();
2022-07-07 21:22:39 -04:00
}
TypeIterator<T>& operator++()
{
advance();
descend();
return *this;
}
TypeIterator<T> operator++(int)
{
TypeIterator<T> copy = *this;
++copy;
return copy;
}
bool operator==(const TypeIterator<T>& rhs) const
{
if (!stack.empty() && !rhs.stack.empty())
return stack.front() == rhs.stack.front();
return stack.empty() && rhs.stack.empty();
}
bool operator!=(const TypeIterator<T>& rhs) const
{
return !(*this == rhs);
}
TypeId operator*()
2022-07-07 21:22:39 -04:00
{
descend();
LUAU_ASSERT(!stack.empty());
2022-07-07 21:22:39 -04:00
auto [t, currentIndex] = stack.front();
LUAU_ASSERT(t);
2022-07-07 21:22:39 -04:00
const std::vector<TypeId>& types = getTypes(t);
LUAU_ASSERT(currentIndex < types.size());
TypeId ty = follow(types[currentIndex]);
LUAU_ASSERT(!get<T>(ty));
2022-07-07 21:22:39 -04:00
return ty;
}
// Normally, we'd have `begin` and `end` be a template but there's too much trouble
// with templates portability in this area, so not worth it. Thanks MSVC.
friend UnionTypeIterator end(const UnionType*);
friend IntersectionTypeIterator end(const IntersectionType*);
private:
2022-07-07 21:22:39 -04:00
TypeIterator() = default;
2022-07-07 21:22:39 -04:00
// (T* t, size_t currentIndex)
using SavedIterInfo = std::pair<const T*, size_t>;
std::deque<SavedIterInfo> stack;
2022-07-07 21:22:39 -04:00
std::unordered_set<const T*> seen; // Only needed to protect the iterator from hanging the thread.
2022-07-07 21:22:39 -04:00
void advance()
{
while (!stack.empty())
{
auto& [t, currentIndex] = stack.front();
++currentIndex;
const std::vector<TypeId>& types = getTypes(t);
if (currentIndex >= types.size())
stack.pop_front();
else
break;
}
}
2022-07-07 21:22:39 -04:00
void descend()
{
while (!stack.empty())
{
auto [current, currentIndex] = stack.front();
const std::vector<TypeId>& types = getTypes(current);
if (auto inner = get<T>(follow(types[currentIndex])))
{
// If we're about to descend into a cyclic type, we should skip over this.
// Ideally this should never happen, but alas it does from time to time. :(
if (seen.find(inner) != seen.end())
advance();
else
{
seen.insert(inner);
stack.push_front({inner, 0});
}
continue;
}
break;
}
}
};
using TypeIdPredicate = std::function<std::optional<TypeId>(TypeId)>;
std::vector<TypeId> filterMap(TypeId type, TypeIdPredicate predicate);
void attachTag(TypeId ty, const std::string& tagName);
void attachTag(Property& prop, const std::string& tagName);
bool hasTag(TypeId ty, const std::string& tagName);
bool hasTag(const Property& prop, const std::string& tagName);
bool hasTag(const Tags& tags, const std::string& tagName); // Do not use in new work.
/*
* Use this to change the kind of a particular type.
*
* LUAU_NOINLINE so that the calling frame doesn't have to pay the stack storage for the new variant.
*/
template<typename T, typename... Args>
LUAU_NOINLINE T* emplaceType(Type* ty, Args&&... args)
{
return &ty->ty.emplace<T>(std::forward<Args>(args)...);
}
} // namespace Luau