Sync to upstream/release/574 (#910)

* Added a limit on how many instructions the Compiler can safely produce
(reported by @TheGreatSageEqualToHeaven)

C++ API Changes:
* With work started on read-only and write-only properties,
`Property::type` member variable has been replaced with `TypeId type()`
and `setType(TypeId)` functions.
* New `LazyType` unwrap callback now has a `void` return type, all
that's required from the callback is to write into `unwrapped` field.

In our work on the new type solver, the following issues were fixed:

* Work has started to support https://github.com/Roblox/luau/pull/77 and
https://github.com/Roblox/luau/pull/79
* Refinements are no longer applied on l-values, removing some
false-positive errors
* Improved overload resolution against expected result type
* `Frontend::prepareModuleScope` now works in the new solver
* Cofinite strings are now comparable

And these are the changes in native code generation (JIT):

* Fixed MIN_NUM and MAX_NUM constant fold when one of the arguments is
NaN
* Added constant folding for number conversions and bit operations
* Value spilling and rematerialization is now supported on arm64
* Improved FASTCALL2K IR generation to support second argument constant
* Added value numbering and load/store propagation optimizations
* Added STORE_VECTOR on arm64, completing the IR lowering on this target
This commit is contained in:
vegorov-rbx 2023-04-28 22:55:13 +03:00 committed by GitHub
parent 8173491d86
commit 4b267aa5c5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
84 changed files with 2232 additions and 1037 deletions

View File

@ -11,6 +11,7 @@
#include "Luau/Refinement.h"
#include "Luau/Symbol.h"
#include "Luau/Type.h"
#include "Luau/TypeUtils.h"
#include "Luau/Variant.h"
#include <memory>
@ -91,10 +92,14 @@ struct ConstraintGraphBuilder
const NotNull<InternalErrorReporter> ice;
ScopePtr globalScope;
std::function<void(const ModuleName&, const ScopePtr&)> prepareModuleScope;
DcrLogger* logger;
ConstraintGraphBuilder(ModulePtr module, TypeArena* arena, NotNull<ModuleResolver> moduleResolver, NotNull<BuiltinTypes> builtinTypes,
NotNull<InternalErrorReporter> ice, const ScopePtr& globalScope, DcrLogger* logger, NotNull<DataFlowGraph> dfg);
NotNull<InternalErrorReporter> ice, const ScopePtr& globalScope, std::function<void(const ModuleName&, const ScopePtr&)> prepareModuleScope,
DcrLogger* logger, NotNull<DataFlowGraph> dfg);
/**
* Fabricates a new free type belonging to a given scope.
@ -174,11 +179,12 @@ struct ConstraintGraphBuilder
* surrounding context. Used to implement bidirectional type checking.
* @return the type of the expression.
*/
Inference check(const ScopePtr& scope, AstExpr* expr, std::optional<TypeId> expectedType = {}, bool forceSingleton = false);
Inference check(const ScopePtr& scope, AstExpr* expr, ValueContext context = ValueContext::RValue, std::optional<TypeId> expectedType = {},
bool forceSingleton = false);
Inference check(const ScopePtr& scope, AstExprConstantString* string, std::optional<TypeId> expectedType, bool forceSingleton);
Inference check(const ScopePtr& scope, AstExprConstantBool* bool_, std::optional<TypeId> expectedType, bool forceSingleton);
Inference check(const ScopePtr& scope, AstExprLocal* local);
Inference check(const ScopePtr& scope, AstExprLocal* local, ValueContext context);
Inference check(const ScopePtr& scope, AstExprGlobal* global);
Inference check(const ScopePtr& scope, AstExprIndexName* indexName);
Inference check(const ScopePtr& scope, AstExprIndexExpr* indexExpr);

View File

@ -53,9 +53,7 @@ std::optional<ModuleName> pathExprToModuleName(const ModuleName& currentModuleNa
* error when we try during typechecking.
*/
std::optional<ModuleName> pathExprToModuleName(const ModuleName& currentModuleName, const AstExpr& expr);
// TODO: Deprecate this code path when we move away from the old solver
LoadDefinitionFileResult loadDefinitionFileNoDCR(TypeChecker& typeChecker, GlobalTypes& globals, ScopePtr targetScope, std::string_view definition,
const std::string& packageName, bool captureComments);
struct SourceNode
{
bool hasDirtySourceModule() const
@ -209,10 +207,6 @@ public:
GlobalTypes globals;
GlobalTypes globalsForAutocomplete;
// TODO: remove with FFlagLuauOnDemandTypecheckers
TypeChecker typeChecker_DEPRECATED;
TypeChecker typeCheckerForAutocomplete_DEPRECATED;
ConfigResolver* configResolver;
FrontendOptions options;
InternalErrorReporter iceHandler;
@ -227,10 +221,11 @@ public:
ModulePtr check(const SourceModule& sourceModule, const std::vector<RequireCycle>& requireCycles, NotNull<BuiltinTypes> builtinTypes,
NotNull<InternalErrorReporter> iceHandler, NotNull<ModuleResolver> moduleResolver, NotNull<FileResolver> fileResolver,
const ScopePtr& globalScope, FrontendOptions options);
const ScopePtr& globalScope, std::function<void(const ModuleName&, const ScopePtr&)> prepareModuleScope, FrontendOptions options);
ModulePtr check(const SourceModule& sourceModule, const std::vector<RequireCycle>& requireCycles, NotNull<BuiltinTypes> builtinTypes,
NotNull<InternalErrorReporter> iceHandler, NotNull<ModuleResolver> moduleResolver, NotNull<FileResolver> fileResolver,
const ScopePtr& globalScope, FrontendOptions options, bool recordJsonLog);
const ScopePtr& globalScope, std::function<void(const ModuleName&, const ScopePtr&)> prepareModuleScope, FrontendOptions options,
bool recordJsonLog);
} // namespace Luau

View File

@ -348,10 +348,13 @@ public:
bool intersectTyvarsWithTy(NormalizedTyvars& here, TypeId there);
bool intersectNormals(NormalizedType& here, const NormalizedType& there, int ignoreSmallerTyvars = -1);
bool intersectNormalWithTy(NormalizedType& here, TypeId there);
bool normalizeIntersections(const std::vector<TypeId>& intersections, NormalizedType& outType);
// Check for inhabitance
bool isInhabited(TypeId ty, std::unordered_set<TypeId> seen = {});
bool isInhabited(const NormalizedType* norm, std::unordered_set<TypeId> seen = {});
// Check for intersections being inhabited
bool isIntersectionInhabited(TypeId left, TypeId right);
// -------- Convert back from a normalized type to a type
TypeId typeFromNormal(const NormalizedType& norm);

View File

@ -301,7 +301,7 @@ struct MagicFunctionCallContext
TypePackId result;
};
using DcrMagicFunction = bool (*)(MagicFunctionCallContext);
using DcrMagicFunction = std::function<bool(MagicFunctionCallContext)>;
struct MagicRefinementContext
{
@ -379,12 +379,39 @@ struct TableIndexer
struct Property
{
TypeId type;
static Property readonly(TypeId ty);
static Property writeonly(TypeId ty);
static Property rw(TypeId ty); // Shared read-write type.
static Property rw(TypeId read, TypeId write); // Separate read-write type.
static std::optional<Property> create(std::optional<TypeId> read, std::optional<TypeId> write);
bool deprecated = false;
std::string deprecatedSuggestion;
std::optional<Location> location = std::nullopt;
Tags tags;
std::optional<std::string> documentationSymbol;
// DEPRECATED
// TODO: Kill all constructors in favor of `Property::rw(TypeId read, TypeId write)` and friends.
Property();
Property(TypeId readTy, bool deprecated = false, const std::string& deprecatedSuggestion = "", std::optional<Location> location = std::nullopt,
const Tags& tags = {}, const std::optional<std::string>& documentationSymbol = std::nullopt);
// DEPRECATED: Should only be called in non-RWP! We assert that the `readTy` is not nullopt.
// TODO: Kill once we don't have non-RWP.
TypeId type() const;
void setType(TypeId ty);
// Should only be called in RWP!
// We do not assert that `readTy` nor `writeTy` are nullopt or not.
// The invariant is that at least one of them mustn't be nullopt, which we do assert here.
// TODO: Kill this in favor of exposing `readTy`/`writeTy` directly? If we do, we'll lose the asserts which will be useful while debugging.
std::optional<TypeId> readType() const;
std::optional<TypeId> writeType() const;
private:
std::optional<TypeId> readTy;
std::optional<TypeId> writeTy;
};
struct TableType
@ -552,7 +579,7 @@ struct IntersectionType
struct LazyType
{
LazyType() = default;
LazyType(std::function<TypeId()> thunk_DEPRECATED, std::function<TypeId(LazyType&)> unwrap)
LazyType(std::function<TypeId()> thunk_DEPRECATED, std::function<void(LazyType&)> unwrap)
: thunk_DEPRECATED(thunk_DEPRECATED)
, unwrap(unwrap)
{
@ -593,7 +620,7 @@ struct LazyType
std::function<TypeId()> thunk_DEPRECATED;
std::function<TypeId(LazyType&)> unwrap;
std::function<void(LazyType&)> unwrap;
std::atomic<TypeId> unwrapped = nullptr;
};

View File

@ -11,6 +11,7 @@
#include "Luau/TxnLog.h"
#include "Luau/Type.h"
#include "Luau/TypePack.h"
#include "Luau/TypeUtils.h"
#include "Luau/Unifier.h"
#include "Luau/UnifierSharedState.h"
@ -58,12 +59,6 @@ public:
}
};
enum class ValueContext
{
LValue,
RValue
};
struct GlobalTypes
{
GlobalTypes(NotNull<BuiltinTypes> builtinTypes);

View File

@ -15,6 +15,12 @@ namespace Luau
struct TxnLog;
struct TypeArena;
enum class ValueContext
{
LValue,
RValue
};
using ScopePtr = std::shared_ptr<struct Scope>;
std::optional<TypeId> findMetatableEntry(

View File

@ -9,7 +9,7 @@
#include "Luau/Type.h"
LUAU_FASTINT(LuauVisitRecursionLimit)
LUAU_FASTFLAG(LuauBoundLazyTypes)
LUAU_FASTFLAG(LuauBoundLazyTypes2)
namespace Luau
{
@ -242,7 +242,7 @@ struct GenericTypeVisitor
else
{
for (auto& [_name, prop] : ttv->props)
traverse(prop.type);
traverse(prop.type());
if (ttv->indexer)
{
@ -265,7 +265,7 @@ struct GenericTypeVisitor
if (visit(ty, *ctv))
{
for (const auto& [name, prop] : ctv->props)
traverse(prop.type);
traverse(prop.type());
if (ctv->parent)
traverse(*ctv->parent);
@ -294,7 +294,7 @@ struct GenericTypeVisitor
}
else if (auto ltv = get<LazyType>(ty))
{
if (FFlag::LuauBoundLazyTypes)
if (FFlag::LuauBoundLazyTypes2)
{
if (TypeId unwrapped = ltv->unwrapped)
traverse(unwrapped);

View File

@ -501,12 +501,12 @@ std::optional<DocumentationSymbol> getDocumentationSymbolAtPosition(const Source
if (const TableType* ttv = get<TableType>(parentTy))
{
if (auto propIt = ttv->props.find(indexName->index.value); propIt != ttv->props.end())
return checkOverloadedDocumentationSymbol(module, propIt->second.type, parentExpr, propIt->second.documentationSymbol);
return checkOverloadedDocumentationSymbol(module, propIt->second.type(), parentExpr, propIt->second.documentationSymbol);
}
else if (const ClassType* ctv = get<ClassType>(parentTy))
{
if (auto propIt = ctv->props.find(indexName->index.value); propIt != ctv->props.end())
return checkOverloadedDocumentationSymbol(module, propIt->second.type, parentExpr, propIt->second.documentationSymbol);
return checkOverloadedDocumentationSymbol(module, propIt->second.type(), parentExpr, propIt->second.documentationSymbol);
}
}
}

View File

@ -260,7 +260,7 @@ static void autocompleteProps(const Module& module, TypeArena* typeArena, NotNul
// already populated, it takes precedence over the property we found just now.
if (result.count(name) == 0 && name != kParseNameError)
{
Luau::TypeId type = Luau::follow(prop.type);
Luau::TypeId type = Luau::follow(prop.type());
TypeCorrectKind typeCorrect = indexType == PropIndexType::Key
? TypeCorrectKind::Correct
: checkTypeCorrectKind(module, typeArena, builtinTypes, nodes.back(), {{}, {}}, type);
@ -287,7 +287,7 @@ static void autocompleteProps(const Module& module, TypeArena* typeArena, NotNul
auto indexIt = mtable->props.find("__index");
if (indexIt != mtable->props.end())
{
TypeId followed = follow(indexIt->second.type);
TypeId followed = follow(indexIt->second.type());
if (get<TableType>(followed) || get<MetatableType>(followed))
{
autocompleteProps(module, typeArena, builtinTypes, rootTy, followed, indexType, nodes, result, seen);

View File

@ -52,6 +52,7 @@ TypeId makeIntersection(TypeArena& arena, std::vector<TypeId>&& types)
TypeId makeOption(NotNull<BuiltinTypes> builtinTypes, TypeArena& arena, TypeId t)
{
LUAU_ASSERT(t);
return makeUnion(arena, {builtinTypes->nilType, t});
}
@ -236,7 +237,7 @@ void registerBuiltinGlobals(Frontend& frontend, GlobalTypes& globals, bool typeC
auto it = stringMetatableTable->props.find("__index");
LUAU_ASSERT(it != stringMetatableTable->props.end());
addGlobalBinding(globals, "string", it->second.type, "@luau");
addGlobalBinding(globals, "string", it->second.type(), "@luau");
// next<K, V>(t: Table<K, V>, i: K?) -> (K?, V)
TypePackId nextArgsTypePack = arena.addTypePack(TypePack{{mapOfKtoV, makeOption(builtinTypes, arena, genericK)}});
@ -301,8 +302,8 @@ void registerBuiltinGlobals(Frontend& frontend, GlobalTypes& globals, bool typeC
ttv->props["foreach"].deprecated = true;
ttv->props["foreachi"].deprecated = true;
attachMagicFunction(ttv->props["pack"].type, magicFunctionPack);
attachDcrMagicFunction(ttv->props["pack"].type, dcrMagicFunctionPack);
attachMagicFunction(ttv->props["pack"].type(), magicFunctionPack);
attachDcrMagicFunction(ttv->props["pack"].type(), dcrMagicFunctionPack);
}
attachMagicFunction(getGlobalBinding(globals, "require"), magicFunctionRequire);

View File

@ -8,6 +8,7 @@
LUAU_FASTFLAG(DebugLuauCopyBeforeNormalizing)
LUAU_FASTFLAG(LuauClonePublicInterfaceLess2)
LUAU_FASTFLAG(DebugLuauReadWriteProperties)
LUAU_FASTINTVARIABLE(LuauTypeCloneRecursionLimit, 300)
@ -17,6 +18,40 @@ namespace Luau
namespace
{
Property clone(const Property& prop, TypeArena& dest, CloneState& cloneState)
{
if (FFlag::DebugLuauReadWriteProperties)
{
std::optional<TypeId> cloneReadTy;
if (auto ty = prop.readType())
cloneReadTy = clone(*ty, dest, cloneState);
std::optional<TypeId> cloneWriteTy;
if (auto ty = prop.writeType())
cloneWriteTy = clone(*ty, dest, cloneState);
std::optional<Property> cloned = Property::create(cloneReadTy, cloneWriteTy);
LUAU_ASSERT(cloned);
cloned->deprecated = prop.deprecated;
cloned->deprecatedSuggestion = prop.deprecatedSuggestion;
cloned->location = prop.location;
cloned->tags = prop.tags;
cloned->documentationSymbol = prop.documentationSymbol;
return *cloned;
}
else
{
return Property{
clone(prop.type(), dest, cloneState),
prop.deprecated,
prop.deprecatedSuggestion,
prop.location,
prop.tags,
prop.documentationSymbol,
};
}
}
struct TypePackCloner;
/*
@ -251,7 +286,7 @@ void TypeCloner::operator()(const TableType& t)
ttv->boundTo = clone(*t.boundTo, dest, cloneState);
for (const auto& [name, prop] : t.props)
ttv->props[name] = {clone(prop.type, dest, cloneState), prop.deprecated, {}, prop.location, prop.tags};
ttv->props[name] = clone(prop, dest, cloneState);
if (t.indexer)
ttv->indexer = TableIndexer{clone(t.indexer->indexType, dest, cloneState), clone(t.indexer->indexResultType, dest, cloneState)};
@ -285,7 +320,7 @@ void TypeCloner::operator()(const ClassType& t)
seenTypes[typeId] = result;
for (const auto& [name, prop] : t.props)
ctv->props[name] = {clone(prop.type, dest, cloneState), prop.deprecated, {}, prop.location, prop.tags};
ctv->props[name] = clone(prop, dest, cloneState);
if (t.parent)
ctv->parent = clone(*t.parent, dest, cloneState);

View File

@ -134,8 +134,8 @@ void forEachConstraint(const Checkpoint& start, const Checkpoint& end, const Con
} // namespace
ConstraintGraphBuilder::ConstraintGraphBuilder(ModulePtr module, TypeArena* arena, NotNull<ModuleResolver> moduleResolver,
NotNull<BuiltinTypes> builtinTypes, NotNull<InternalErrorReporter> ice, const ScopePtr& globalScope, DcrLogger* logger,
NotNull<DataFlowGraph> dfg)
NotNull<BuiltinTypes> builtinTypes, NotNull<InternalErrorReporter> ice, const ScopePtr& globalScope,
std::function<void(const ModuleName&, const ScopePtr&)> prepareModuleScope, DcrLogger* logger, NotNull<DataFlowGraph> dfg)
: module(module)
, builtinTypes(builtinTypes)
, arena(arena)
@ -144,6 +144,7 @@ ConstraintGraphBuilder::ConstraintGraphBuilder(ModulePtr module, TypeArena* aren
, moduleResolver(moduleResolver)
, ice(ice)
, globalScope(globalScope)
, prepareModuleScope(std::move(prepareModuleScope))
, logger(logger)
{
LUAU_ASSERT(module);
@ -510,7 +511,7 @@ ControlFlow ConstraintGraphBuilder::visit(const ScopePtr& scope, AstStatLocal* l
if (hasAnnotation)
expectedType = varTypes.at(i);
TypeId exprType = check(scope, value, expectedType).ty;
TypeId exprType = check(scope, value, ValueContext::RValue, expectedType).ty;
if (i < varTypes.size())
{
if (varTypes[i])
@ -898,7 +899,7 @@ ControlFlow ConstraintGraphBuilder::visit(const ScopePtr& scope, AstStatCompound
ControlFlow ConstraintGraphBuilder::visit(const ScopePtr& scope, AstStatIf* ifStatement)
{
RefinementId refinement = check(scope, ifStatement->condition, std::nullopt).refinement;
RefinementId refinement = check(scope, ifStatement->condition, ValueContext::RValue, std::nullopt).refinement;
ScopePtr thenScope = childScope(ifStatement->thenbody, scope);
applyRefinements(thenScope, ifStatement->condition->location, refinement);
@ -1081,7 +1082,7 @@ ControlFlow ConstraintGraphBuilder::visit(const ScopePtr& scope, AstStatDeclareC
}
else
{
TypeId currentTy = assignToMetatable ? metatable->props[propName].type : ctv->props[propName].type;
TypeId currentTy = assignToMetatable ? metatable->props[propName].type() : ctv->props[propName].type();
// We special-case this logic to keep the intersection flat; otherwise we
// would create a ton of nested intersection types.
@ -1182,7 +1183,7 @@ InferencePack ConstraintGraphBuilder::checkPack(
std::optional<TypeId> expectedType;
if (i < expectedTypes.size())
expectedType = expectedTypes[i];
head.push_back(check(scope, expr, expectedType).ty);
head.push_back(check(scope, expr, ValueContext::RValue, expectedType).ty);
}
else
{
@ -1225,7 +1226,7 @@ InferencePack ConstraintGraphBuilder::checkPack(const ScopePtr& scope, AstExpr*
std::optional<TypeId> expectedType;
if (!expectedTypes.empty())
expectedType = expectedTypes[0];
TypeId t = check(scope, expr, expectedType).ty;
TypeId t = check(scope, expr, ValueContext::RValue, expectedType).ty;
result = InferencePack{arena->addTypePack({t})};
}
@ -1332,7 +1333,7 @@ InferencePack ConstraintGraphBuilder::checkPack(const ScopePtr& scope, AstExprCa
}
else if (i < exprArgs.size() - 1 || !(arg->is<AstExprCall>() || arg->is<AstExprVarargs>()))
{
auto [ty, refinement] = check(scope, arg, expectedType);
auto [ty, refinement] = check(scope, arg, ValueContext::RValue, expectedType);
args.push_back(ty);
argumentRefinements.push_back(refinement);
}
@ -1434,7 +1435,8 @@ InferencePack ConstraintGraphBuilder::checkPack(const ScopePtr& scope, AstExprCa
}
}
Inference ConstraintGraphBuilder::check(const ScopePtr& scope, AstExpr* expr, std::optional<TypeId> expectedType, bool forceSingleton)
Inference ConstraintGraphBuilder::check(
const ScopePtr& scope, AstExpr* expr, ValueContext context, std::optional<TypeId> expectedType, bool forceSingleton)
{
RecursionCounter counter{&recursionCount};
@ -1447,7 +1449,7 @@ Inference ConstraintGraphBuilder::check(const ScopePtr& scope, AstExpr* expr, st
Inference result;
if (auto group = expr->as<AstExprGroup>())
result = check(scope, group->expr, expectedType, forceSingleton);
result = check(scope, group->expr, ValueContext::RValue, expectedType, forceSingleton);
else if (auto stringExpr = expr->as<AstExprConstantString>())
result = check(scope, stringExpr, expectedType, forceSingleton);
else if (expr->is<AstExprConstantNumber>())
@ -1457,7 +1459,7 @@ Inference ConstraintGraphBuilder::check(const ScopePtr& scope, AstExpr* expr, st
else if (expr->is<AstExprConstantNil>())
result = Inference{builtinTypes->nilType};
else if (auto local = expr->as<AstExprLocal>())
result = check(scope, local);
result = check(scope, local, context);
else if (auto global = expr->as<AstExprGlobal>())
result = check(scope, global);
else if (expr->is<AstExprVarargs>())
@ -1566,11 +1568,11 @@ Inference ConstraintGraphBuilder::check(const ScopePtr& scope, AstExprConstantBo
return Inference{builtinTypes->booleanType};
}
Inference ConstraintGraphBuilder::check(const ScopePtr& scope, AstExprLocal* local)
Inference ConstraintGraphBuilder::check(const ScopePtr& scope, AstExprLocal* local, ValueContext context)
{
BreadcrumbId bc = dfg->getBreadcrumb(local);
if (auto ty = scope->lookup(bc->def))
if (auto ty = scope->lookup(bc->def); ty && context == ValueContext::RValue)
return Inference{*ty, refinementArena.proposition(bc, builtinTypes->truthyType)};
else if (auto ty = scope->lookup(local->local))
return Inference{*ty, refinementArena.proposition(bc, builtinTypes->truthyType)};
@ -1676,18 +1678,18 @@ Inference ConstraintGraphBuilder::check(const ScopePtr& scope, AstExprIfElse* if
ScopePtr thenScope = childScope(ifElse->trueExpr, scope);
applyRefinements(thenScope, ifElse->trueExpr->location, refinement);
TypeId thenType = check(thenScope, ifElse->trueExpr, expectedType).ty;
TypeId thenType = check(thenScope, ifElse->trueExpr, ValueContext::RValue, expectedType).ty;
ScopePtr elseScope = childScope(ifElse->falseExpr, scope);
applyRefinements(elseScope, ifElse->falseExpr->location, refinementArena.negation(refinement));
TypeId elseType = check(elseScope, ifElse->falseExpr, expectedType).ty;
TypeId elseType = check(elseScope, ifElse->falseExpr, ValueContext::RValue, expectedType).ty;
return Inference{expectedType ? *expectedType : arena->addType(UnionType{{thenType, elseType}})};
}
Inference ConstraintGraphBuilder::check(const ScopePtr& scope, AstExprTypeAssertion* typeAssert)
{
check(scope, typeAssert->expr, std::nullopt);
check(scope, typeAssert->expr, ValueContext::RValue, std::nullopt);
return Inference{resolveType(scope, typeAssert->annotation, /* inTypeArguments */ false)};
}
@ -1704,21 +1706,31 @@ std::tuple<TypeId, TypeId, RefinementId> ConstraintGraphBuilder::checkBinary(
{
if (binary->op == AstExprBinary::And)
{
auto [leftType, leftRefinement] = check(scope, binary->left, expectedType);
std::optional<TypeId> relaxedExpectedLhs;
if (expectedType)
relaxedExpectedLhs = arena->addType(UnionType{{builtinTypes->falsyType, *expectedType}});
auto [leftType, leftRefinement] = check(scope, binary->left, ValueContext::RValue, relaxedExpectedLhs);
ScopePtr rightScope = childScope(binary->right, scope);
applyRefinements(rightScope, binary->right->location, leftRefinement);
auto [rightType, rightRefinement] = check(rightScope, binary->right, expectedType);
auto [rightType, rightRefinement] = check(rightScope, binary->right, ValueContext::RValue, expectedType);
return {leftType, rightType, refinementArena.conjunction(leftRefinement, rightRefinement)};
}
else if (binary->op == AstExprBinary::Or)
{
auto [leftType, leftRefinement] = check(scope, binary->left, expectedType);
std::optional<TypeId> relaxedExpectedLhs;
if (expectedType)
relaxedExpectedLhs = arena->addType(UnionType{{builtinTypes->falsyType, *expectedType}});
auto [leftType, leftRefinement] = check(scope, binary->left, ValueContext::RValue, relaxedExpectedLhs);
ScopePtr rightScope = childScope(binary->right, scope);
applyRefinements(rightScope, binary->right->location, refinementArena.negation(leftRefinement));
auto [rightType, rightRefinement] = check(rightScope, binary->right, expectedType);
auto [rightType, rightRefinement] = check(rightScope, binary->right, ValueContext::RValue, expectedType);
return {leftType, rightType, refinementArena.disjunction(leftRefinement, rightRefinement)};
}
@ -1774,8 +1786,8 @@ std::tuple<TypeId, TypeId, RefinementId> ConstraintGraphBuilder::checkBinary(
}
else if (binary->op == AstExprBinary::CompareEq || binary->op == AstExprBinary::CompareNe)
{
TypeId leftType = check(scope, binary->left, expectedType, true).ty;
TypeId rightType = check(scope, binary->right, expectedType, true).ty;
TypeId leftType = check(scope, binary->left, ValueContext::RValue, expectedType, true).ty;
TypeId rightType = check(scope, binary->right, ValueContext::RValue, expectedType, true).ty;
RefinementId leftRefinement = nullptr;
if (auto bc = dfg->getBreadcrumb(binary->left))
@ -1795,8 +1807,8 @@ std::tuple<TypeId, TypeId, RefinementId> ConstraintGraphBuilder::checkBinary(
}
else
{
TypeId leftType = check(scope, binary->left, expectedType).ty;
TypeId rightType = check(scope, binary->right, expectedType).ty;
TypeId leftType = check(scope, binary->left, ValueContext::RValue).ty;
TypeId rightType = check(scope, binary->right, ValueContext::RValue).ty;
return {leftType, rightType, nullptr};
}
}
@ -1859,7 +1871,7 @@ TypeId ConstraintGraphBuilder::checkLValue(const ScopePtr& scope, AstExpr* expr)
return propType;
}
else if (!isIndexNameEquivalent(expr))
return check(scope, expr).ty;
return check(scope, expr, ValueContext::LValue).ty;
Symbol sym;
std::vector<std::string> segments;
@ -1894,11 +1906,11 @@ TypeId ConstraintGraphBuilder::checkLValue(const ScopePtr& scope, AstExpr* expr)
}
else
{
return check(scope, expr).ty;
return check(scope, expr, ValueContext::LValue).ty;
}
}
else
return check(scope, expr).ty;
return check(scope, expr, ValueContext::LValue).ty;
}
LUAU_ASSERT(!segments.empty());
@ -1908,7 +1920,7 @@ TypeId ConstraintGraphBuilder::checkLValue(const ScopePtr& scope, AstExpr* expr)
auto lookupResult = scope->lookupEx(sym);
if (!lookupResult)
return check(scope, expr).ty;
return check(scope, expr, ValueContext::LValue).ty;
const auto [subjectBinding, symbolScope] = std::move(*lookupResult);
TypeId subjectType = subjectBinding->typeId;
@ -2029,7 +2041,7 @@ Inference ConstraintGraphBuilder::check(const ScopePtr& scope, AstExprTable* exp
checkExpectedIndexResultType = pinnedIndexResultType;
}
TypeId itemTy = check(scope, item.value, checkExpectedIndexResultType).ty;
TypeId itemTy = check(scope, item.value, ValueContext::RValue, checkExpectedIndexResultType).ty;
if (isIndexedResultType && !pinnedIndexResultType)
pinnedIndexResultType = itemTy;
@ -2039,7 +2051,7 @@ Inference ConstraintGraphBuilder::check(const ScopePtr& scope, AstExprTable* exp
// Even though we don't need to use the type of the item's key if
// it's a string constant, we still want to check it to populate
// astTypes.
TypeId keyTy = check(scope, item.key, annotatedKeyType).ty;
TypeId keyTy = check(scope, item.key, ValueContext::RValue, annotatedKeyType).ty;
if (AstExprConstantString* key = item.key->as<AstExprConstantString>())
{
@ -2646,6 +2658,9 @@ void ConstraintGraphBuilder::prepopulateGlobalScope(const ScopePtr& globalScope,
{
GlobalPrepopulator gp{NotNull{globalScope.get()}, arena};
if (prepareModuleScope)
prepareModuleScope(module->name, globalScope);
program->visit(&gp);
}

View File

@ -472,16 +472,20 @@ bool ConstraintSolver::tryDispatch(const PackSubtypeConstraint& c, NotNull<const
bool ConstraintSolver::tryDispatch(const GeneralizationConstraint& c, NotNull<const Constraint> constraint, bool force)
{
TypeId generalizedType = follow(c.generalizedType);
if (isBlocked(c.sourceType))
return block(c.sourceType, constraint);
else if (get<PendingExpansionType>(generalizedType))
return block(generalizedType, constraint);
std::optional<TypeId> generalized = quantify(arena, c.sourceType, constraint->scope);
if (generalized)
{
if (isBlocked(c.generalizedType))
asMutable(c.generalizedType)->ty.emplace<BoundType>(*generalized);
if (get<BlockedType>(generalizedType))
asMutable(generalizedType)->ty.emplace<BoundType>(*generalized);
else
unify(c.generalizedType, *generalized, constraint->scope);
unify(generalizedType, *generalized, constraint->scope);
}
else
{
@ -505,10 +509,8 @@ bool ConstraintSolver::tryDispatch(const InstantiationConstraint& c, NotNull<con
std::optional<TypeId> instantiated = inst.substitute(c.superType);
LUAU_ASSERT(instantiated); // TODO FIXME HANDLE THIS
if (isBlocked(c.subType))
asMutable(c.subType)->ty.emplace<BoundType>(*instantiated);
else
unify(c.subType, *instantiated, constraint->scope);
LUAU_ASSERT(get<BlockedType>(c.subType));
asMutable(c.subType)->ty.emplace<BoundType>(*instantiated);
unblock(c.subType);
@ -586,6 +588,8 @@ bool ConstraintSolver::tryDispatch(const BinaryConstraint& c, NotNull<const Cons
TypeId rightType = follow(c.rightType);
TypeId resultType = follow(c.resultType);
LUAU_ASSERT(get<BlockedType>(resultType));
bool isLogical = c.op == AstExprBinary::Op::And || c.op == AstExprBinary::Op::Or;
/* Compound assignments create constraints of the form
@ -979,6 +983,7 @@ bool ConstraintSolver::tryDispatch(const TypeAliasExpansionConstraint& c, NotNul
}
auto bindResult = [this, &c](TypeId result) {
LUAU_ASSERT(get<PendingExpansionType>(c.target));
asMutable(c.target)->ty.emplace<BoundType>(result);
unblock(c.target);
};
@ -1280,6 +1285,8 @@ bool ConstraintSolver::tryDispatch(const PrimitiveTypeConstraint& c, NotNull<con
if (isBlocked(expectedType) || get<PendingExpansionType>(expectedType))
return block(expectedType, constraint);
LUAU_ASSERT(get<BlockedType>(c.resultType));
TypeId bindTo = maybeSingleton(expectedType) ? c.singletonType : c.multitonType;
asMutable(c.resultType)->ty.emplace<BoundType>(bindTo);
unblock(c.resultType);
@ -1291,6 +1298,8 @@ bool ConstraintSolver::tryDispatch(const HasPropConstraint& c, NotNull<const Con
{
TypeId subjectType = follow(c.subjectType);
LUAU_ASSERT(get<BlockedType>(c.resultType));
if (isBlocked(subjectType) || get<PendingExpansionType>(subjectType))
return block(subjectType, constraint);
@ -1351,7 +1360,7 @@ static void updateTheTableType(
if (it == tbl->props.end())
return;
t = follow(it->second.type);
t = follow(it->second.type());
}
// The last path segment should not be a property of the table at all.
@ -1388,7 +1397,7 @@ static void updateTheTableType(
if (!tt)
return;
tt->props[lastSegment].type = replaceTy;
tt->props[lastSegment].setType(replaceTy);
}
bool ConstraintSolver::tryDispatch(const SetPropConstraint& c, NotNull<const Constraint> constraint, bool force)
@ -1853,7 +1862,7 @@ std::pair<std::vector<TypeId>, std::optional<TypeId>> ConstraintSolver::lookupTa
else if (auto ttv = getMutable<TableType>(subjectType))
{
if (auto prop = ttv->props.find(propName); prop != ttv->props.end())
return {{}, prop->second.type};
return {{}, prop->second.type()};
else if (ttv->indexer && maybeString(ttv->indexer->indexType))
return {{}, ttv->indexer->indexResultType};
else if (ttv->state == TableState::Free)
@ -1881,7 +1890,7 @@ std::pair<std::vector<TypeId>, std::optional<TypeId>> ConstraintSolver::lookupTa
// TODO: __index can be an overloaded function.
TypeId indexType = follow(indexProp->second.type);
TypeId indexType = follow(indexProp->second.type());
if (auto ft = get<FunctionType>(indexType))
{
@ -1902,7 +1911,7 @@ std::pair<std::vector<TypeId>, std::optional<TypeId>> ConstraintSolver::lookupTa
else if (auto ct = get<ClassType>(subjectType))
{
if (auto p = lookupClassProp(ct, propName))
return {{}, p->type};
return {{}, p->type()};
}
else if (auto pt = get<PrimitiveType>(subjectType); pt && pt->metatable)
{
@ -1913,7 +1922,7 @@ std::pair<std::vector<TypeId>, std::optional<TypeId>> ConstraintSolver::lookupTa
if (indexProp == metatable->props.end())
return {{}, std::nullopt};
return lookupTableProp(indexProp->second.type, propName, seen);
return lookupTableProp(indexProp->second.type(), propName, seen);
}
else if (auto ft = get<FreeType>(subjectType))
{

View File

@ -32,8 +32,8 @@ LUAU_FASTFLAGVARIABLE(LuauKnowsTheDataModel3, false)
LUAU_FASTINTVARIABLE(LuauAutocompleteCheckTimeoutMs, 100)
LUAU_FASTFLAGVARIABLE(DebugLuauDeferredConstraintResolution, false)
LUAU_FASTFLAGVARIABLE(DebugLuauLogSolverToJson, false)
LUAU_FASTFLAGVARIABLE(LuauOnDemandTypecheckers, false)
LUAU_FASTFLAG(LuauRequirePathTrueModuleName)
LUAU_FASTFLAGVARIABLE(DebugLuauReadWriteProperties, false)
namespace Luau
{
@ -133,10 +133,6 @@ static void persistCheckedTypes(ModulePtr checkedModule, GlobalTypes& globals, S
LoadDefinitionFileResult Frontend::loadDefinitionFile(GlobalTypes& globals, ScopePtr targetScope, std::string_view source,
const std::string& packageName, bool captureComments, bool typeCheckForAutocomplete)
{
if (!FFlag::DebugLuauDeferredConstraintResolution && !FFlag::LuauOnDemandTypecheckers)
return Luau::loadDefinitionFileNoDCR(typeCheckForAutocomplete ? typeCheckerForAutocomplete_DEPRECATED : typeChecker_DEPRECATED,
typeCheckForAutocomplete ? globalsForAutocomplete : globals, targetScope, source, packageName, captureComments);
LUAU_TIMETRACE_SCOPE("loadDefinitionFile", "Frontend");
Luau::SourceModule sourceModule;
@ -154,28 +150,6 @@ LoadDefinitionFileResult Frontend::loadDefinitionFile(GlobalTypes& globals, Scop
return LoadDefinitionFileResult{true, parseResult, sourceModule, checkedModule};
}
LoadDefinitionFileResult loadDefinitionFileNoDCR(TypeChecker& typeChecker, GlobalTypes& globals, ScopePtr targetScope, std::string_view source,
const std::string& packageName, bool captureComments)
{
LUAU_ASSERT(!FFlag::LuauOnDemandTypecheckers);
LUAU_TIMETRACE_SCOPE("loadDefinitionFile", "Frontend");
Luau::SourceModule sourceModule;
Luau::ParseResult parseResult = parseSourceForModule(source, sourceModule, captureComments);
if (parseResult.errors.size() > 0)
return LoadDefinitionFileResult{false, parseResult, sourceModule, nullptr};
ModulePtr checkedModule = typeChecker.check(sourceModule, Mode::Definition);
if (checkedModule->errors.size() > 0)
return LoadDefinitionFileResult{false, parseResult, sourceModule, checkedModule};
persistCheckedTypes(checkedModule, globals, targetScope, packageName);
return LoadDefinitionFileResult{true, parseResult, sourceModule, checkedModule};
}
std::vector<std::string_view> parsePathExpr(const AstExpr& pathExpr)
{
const AstExprIndexName* indexName = pathExpr.as<AstExprIndexName>();
@ -409,8 +383,6 @@ Frontend::Frontend(FileResolver* fileResolver, ConfigResolver* configResolver, c
, moduleResolverForAutocomplete(this)
, globals(builtinTypes)
, globalsForAutocomplete(builtinTypes)
, typeChecker_DEPRECATED(globals.globalScope, &moduleResolver, builtinTypes, &iceHandler)
, typeCheckerForAutocomplete_DEPRECATED(globalsForAutocomplete.globalScope, &moduleResolverForAutocomplete, builtinTypes, &iceHandler)
, configResolver(configResolver)
, options(options)
{
@ -479,68 +451,32 @@ CheckResult Frontend::check(const ModuleName& name, std::optional<FrontendOption
if (frontendOptions.forAutocomplete)
{
ModulePtr moduleForAutocomplete;
double autocompleteTimeLimit = FInt::LuauAutocompleteCheckTimeoutMs / 1000.0;
if (!FFlag::LuauOnDemandTypecheckers)
{
// The autocomplete typecheck is always in strict mode with DM awareness
// to provide better type information for IDE features
typeCheckerForAutocomplete_DEPRECATED.requireCycles = requireCycles;
// The autocomplete typecheck is always in strict mode with DM awareness
// to provide better type information for IDE features
TypeCheckLimits typeCheckLimits;
if (autocompleteTimeLimit != 0.0)
typeCheckerForAutocomplete_DEPRECATED.finishTime = TimeTrace::getClock() + autocompleteTimeLimit;
else
typeCheckerForAutocomplete_DEPRECATED.finishTime = std::nullopt;
// TODO: This is a dirty ad hoc solution for autocomplete timeouts
// We are trying to dynamically adjust our existing limits to lower total typechecking time under the limit
// so that we'll have type information for the whole file at lower quality instead of a full abort in the middle
if (FInt::LuauTarjanChildLimit > 0)
typeCheckerForAutocomplete_DEPRECATED.instantiationChildLimit =
std::max(1, int(FInt::LuauTarjanChildLimit * sourceNode.autocompleteLimitsMult));
else
typeCheckerForAutocomplete_DEPRECATED.instantiationChildLimit = std::nullopt;
if (FInt::LuauTypeInferIterationLimit > 0)
typeCheckerForAutocomplete_DEPRECATED.unifierIterationLimit =
std::max(1, int(FInt::LuauTypeInferIterationLimit * sourceNode.autocompleteLimitsMult));
else
typeCheckerForAutocomplete_DEPRECATED.unifierIterationLimit = std::nullopt;
moduleForAutocomplete =
FFlag::DebugLuauDeferredConstraintResolution
? check(sourceModule, Mode::Strict, requireCycles, environmentScope, /*forAutocomplete*/ true, /*recordJsonLog*/ false, {})
: typeCheckerForAutocomplete_DEPRECATED.check(sourceModule, Mode::Strict, environmentScope);
}
if (autocompleteTimeLimit != 0.0)
typeCheckLimits.finishTime = TimeTrace::getClock() + autocompleteTimeLimit;
else
{
// The autocomplete typecheck is always in strict mode with DM awareness
// to provide better type information for IDE features
TypeCheckLimits typeCheckLimits;
typeCheckLimits.finishTime = std::nullopt;
if (autocompleteTimeLimit != 0.0)
typeCheckLimits.finishTime = TimeTrace::getClock() + autocompleteTimeLimit;
else
typeCheckLimits.finishTime = std::nullopt;
// TODO: This is a dirty ad hoc solution for autocomplete timeouts
// We are trying to dynamically adjust our existing limits to lower total typechecking time under the limit
// so that we'll have type information for the whole file at lower quality instead of a full abort in the middle
if (FInt::LuauTarjanChildLimit > 0)
typeCheckLimits.instantiationChildLimit = std::max(1, int(FInt::LuauTarjanChildLimit * sourceNode.autocompleteLimitsMult));
else
typeCheckLimits.instantiationChildLimit = std::nullopt;
// TODO: This is a dirty ad hoc solution for autocomplete timeouts
// We are trying to dynamically adjust our existing limits to lower total typechecking time under the limit
// so that we'll have type information for the whole file at lower quality instead of a full abort in the middle
if (FInt::LuauTarjanChildLimit > 0)
typeCheckLimits.instantiationChildLimit = std::max(1, int(FInt::LuauTarjanChildLimit * sourceNode.autocompleteLimitsMult));
else
typeCheckLimits.instantiationChildLimit = std::nullopt;
if (FInt::LuauTypeInferIterationLimit > 0)
typeCheckLimits.unifierIterationLimit = std::max(1, int(FInt::LuauTypeInferIterationLimit * sourceNode.autocompleteLimitsMult));
else
typeCheckLimits.unifierIterationLimit = std::nullopt;
if (FInt::LuauTypeInferIterationLimit > 0)
typeCheckLimits.unifierIterationLimit = std::max(1, int(FInt::LuauTypeInferIterationLimit * sourceNode.autocompleteLimitsMult));
else
typeCheckLimits.unifierIterationLimit = std::nullopt;
moduleForAutocomplete = check(sourceModule, Mode::Strict, requireCycles, environmentScope, /*forAutocomplete*/ true,
/*recordJsonLog*/ false, typeCheckLimits);
}
ModulePtr moduleForAutocomplete = check(sourceModule, Mode::Strict, requireCycles, environmentScope, /*forAutocomplete*/ true,
/*recordJsonLog*/ false, typeCheckLimits);
resolver.setModule(moduleName, moduleForAutocomplete);
@ -565,21 +501,7 @@ CheckResult Frontend::check(const ModuleName& name, std::optional<FrontendOption
}
const bool recordJsonLog = FFlag::DebugLuauLogSolverToJson && moduleName == name;
ModulePtr module;
if (!FFlag::LuauOnDemandTypecheckers)
{
typeChecker_DEPRECATED.requireCycles = requireCycles;
module = (FFlag::DebugLuauDeferredConstraintResolution && mode == Mode::Strict)
? check(sourceModule, mode, requireCycles, environmentScope, /*forAutocomplete*/ false, recordJsonLog, {})
: typeChecker_DEPRECATED.check(sourceModule, mode, environmentScope);
}
else
{
module = check(sourceModule, mode, requireCycles, environmentScope, /*forAutocomplete*/ false, recordJsonLog, {});
}
ModulePtr module = check(sourceModule, mode, requireCycles, environmentScope, /*forAutocomplete*/ false, recordJsonLog, {});
stats.timeCheck += getTimestamp() - timestamp;
stats.filesStrict += mode == Mode::Strict;
@ -779,7 +701,7 @@ ScopePtr Frontend::getModuleEnvironment(const SourceModule& module, const Config
AstName name = module.names->get(global.c_str());
if (name.value)
result->bindings[name].typeId = FFlag::LuauOnDemandTypecheckers ? builtinTypes->anyType : typeChecker_DEPRECATED.anyType;
result->bindings[name].typeId = builtinTypes->anyType;
}
}
@ -856,15 +778,17 @@ const SourceModule* Frontend::getSourceModule(const ModuleName& moduleName) cons
ModulePtr check(const SourceModule& sourceModule, const std::vector<RequireCycle>& requireCycles, NotNull<BuiltinTypes> builtinTypes,
NotNull<InternalErrorReporter> iceHandler, NotNull<ModuleResolver> moduleResolver, NotNull<FileResolver> fileResolver,
const ScopePtr& parentScope, FrontendOptions options)
const ScopePtr& parentScope, std::function<void(const ModuleName&, const ScopePtr&)> prepareModuleScope, FrontendOptions options)
{
const bool recordJsonLog = FFlag::DebugLuauLogSolverToJson;
return check(sourceModule, requireCycles, builtinTypes, iceHandler, moduleResolver, fileResolver, parentScope, options, recordJsonLog);
return check(sourceModule, requireCycles, builtinTypes, iceHandler, moduleResolver, fileResolver, parentScope, std::move(prepareModuleScope),
options, recordJsonLog);
}
ModulePtr check(const SourceModule& sourceModule, const std::vector<RequireCycle>& requireCycles, NotNull<BuiltinTypes> builtinTypes,
NotNull<InternalErrorReporter> iceHandler, NotNull<ModuleResolver> moduleResolver, NotNull<FileResolver> fileResolver,
const ScopePtr& parentScope, FrontendOptions options, bool recordJsonLog)
const ScopePtr& parentScope, std::function<void(const ModuleName&, const ScopePtr&)> prepareModuleScope, FrontendOptions options,
bool recordJsonLog)
{
ModulePtr result = std::make_shared<Module>();
result->name = sourceModule.name;
@ -897,6 +821,7 @@ ModulePtr check(const SourceModule& sourceModule, const std::vector<RequireCycle
builtinTypes,
iceHandler,
parentScope,
std::move(prepareModuleScope),
logger.get(),
NotNull{&dfg},
};
@ -944,14 +869,17 @@ ModulePtr Frontend::check(const SourceModule& sourceModule, Mode mode, std::vect
{
if (FFlag::DebugLuauDeferredConstraintResolution && mode == Mode::Strict)
{
auto prepareModuleScopeWrap = [this, forAutocomplete](const ModuleName& name, const ScopePtr& scope) {
if (prepareModuleScope)
prepareModuleScope(name, scope, forAutocomplete);
};
return Luau::check(sourceModule, requireCycles, builtinTypes, NotNull{&iceHandler},
NotNull{forAutocomplete ? &moduleResolverForAutocomplete : &moduleResolver}, NotNull{fileResolver},
environmentScope ? *environmentScope : globals.globalScope, options, recordJsonLog);
environmentScope ? *environmentScope : globals.globalScope, prepareModuleScopeWrap, options, recordJsonLog);
}
else
{
LUAU_ASSERT(FFlag::LuauOnDemandTypecheckers);
TypeChecker typeChecker(globals.globalScope, forAutocomplete ? &moduleResolverForAutocomplete : &moduleResolver, builtinTypes, &iceHandler);
if (prepareModuleScope)

View File

@ -303,7 +303,7 @@ bool Normalizer::isInhabited(TypeId ty, std::unordered_set<TypeId> seen)
{
for (const auto& [_, prop] : ttv->props)
{
if (!isInhabited(prop.type, seen))
if (!isInhabited(prop.type(), seen))
return false;
}
return true;
@ -316,6 +316,20 @@ bool Normalizer::isInhabited(TypeId ty, std::unordered_set<TypeId> seen)
return isInhabited(norm, seen);
}
bool Normalizer::isIntersectionInhabited(TypeId left, TypeId right)
{
left = follow(left);
right = follow(right);
std::unordered_set<TypeId> seen = {};
seen.insert(left);
seen.insert(right);
NormalizedType norm{builtinTypes};
if (!normalizeIntersections({left, right}, norm))
return false;
return isInhabited(&norm, seen);
}
static int tyvarIndex(TypeId ty)
{
if (const GenericType* gtv = get<GenericType>(ty))
@ -593,6 +607,23 @@ const NormalizedType* Normalizer::normalize(TypeId ty)
return result;
}
bool Normalizer::normalizeIntersections(const std::vector<TypeId>& intersections, NormalizedType& outType)
{
if (!arena)
sharedState->iceHandler->ice("Normalizing types outside a module");
NormalizedType norm{builtinTypes};
norm.tops = builtinTypes->anyType;
// Now we need to intersect the two types
for (auto ty : intersections)
if (!intersectNormalWithTy(norm, ty))
return false;
if (!unionNormals(outType, norm))
return false;
return true;
}
void Normalizer::clearNormal(NormalizedType& norm)
{
norm.tops = builtinTypes->neverType;
@ -2134,9 +2165,9 @@ std::optional<TypeId> Normalizer::intersectionOfTables(TypeId here, TypeId there
{
const auto& [_name, tprop] = *tfound;
// TODO: variance issues here, which can't be fixed until we have read/write property types
prop.type = intersectionType(hprop.type, tprop.type);
hereSubThere &= (prop.type == hprop.type);
thereSubHere &= (prop.type == tprop.type);
prop.setType(intersectionType(hprop.type(), tprop.type()));
hereSubThere &= (prop.type() == hprop.type());
thereSubHere &= (prop.type() == tprop.type());
}
// TODO: string indexers
result.props[name] = prop;

View File

@ -116,7 +116,7 @@ void quantify(TypeId ty, TypeLevel level)
for (const auto& [_, prop] : ttv->props)
{
auto ftv = getMutable<FunctionType>(follow(prop.type));
auto ftv = getMutable<FunctionType>(follow(prop.type()));
if (!ftv || !ftv->hasSelf)
continue;

View File

@ -219,7 +219,7 @@ void Tarjan::visitChildren(TypeId ty, int index)
{
LUAU_ASSERT(!ttv->boundTo);
for (const auto& [name, prop] : ttv->props)
visitChild(prop.type);
visitChild(prop.type());
if (ttv->indexer)
{
visitChild(ttv->indexer->indexType);
@ -258,7 +258,7 @@ void Tarjan::visitChildren(TypeId ty, int index)
else if (const ClassType* ctv = get<ClassType>(ty); FFlag::LuauClassTypeVarsInSubstitution && ctv)
{
for (const auto& [name, prop] : ctv->props)
visitChild(prop.type);
visitChild(prop.type());
if (ctv->parent)
visitChild(*ctv->parent);
@ -750,7 +750,7 @@ void Substitution::replaceChildren(TypeId ty)
{
LUAU_ASSERT(!ttv->boundTo);
for (auto& [name, prop] : ttv->props)
prop.type = replace(prop.type);
prop.setType(replace(prop.type()));
if (ttv->indexer)
{
ttv->indexer->indexType = replace(ttv->indexer->indexType);
@ -789,7 +789,7 @@ void Substitution::replaceChildren(TypeId ty)
else if (ClassType* ctv = getMutable<ClassType>(ty); FFlag::LuauClassTypeVarsInSubstitution && ctv)
{
for (auto& [name, prop] : ctv->props)
prop.type = replace(prop.type);
prop.setType(replace(prop.type()));
if (ctv->parent)
ctv->parent = replace(*ctv->parent);

View File

@ -171,7 +171,7 @@ void StateDot::visitChildren(TypeId ty, int index)
return visitChild(*ttv->boundTo, index, "boundTo");
for (const auto& [name, prop] : ttv->props)
visitChild(prop.type, index, name.c_str());
visitChild(prop.type(), index, name.c_str());
if (ttv->indexer)
{
visitChild(ttv->indexer->indexType, index, "[index]");
@ -250,7 +250,7 @@ void StateDot::visitChildren(TypeId ty, int index)
finishNode();
for (const auto& [name, prop] : ctv->props)
visitChild(prop.type, index, name.c_str());
visitChild(prop.type(), index, name.c_str());
if (ctv->parent)
visitChild(*ctv->parent, index, "[parent]");

View File

@ -660,7 +660,7 @@ struct TypeStringifier
state.emit("\"]");
}
state.emit(": ");
stringify(prop.type);
stringify(prop.type());
comma = true;
++index;
}

View File

@ -26,7 +26,8 @@ LUAU_FASTINTVARIABLE(LuauTableTypeMaximumStringifierLength, 0)
LUAU_FASTINT(LuauTypeInferRecursionLimit)
LUAU_FASTFLAG(LuauInstantiateInSubtyping)
LUAU_FASTFLAG(LuauNormalizeBlockedTypes)
LUAU_FASTFLAGVARIABLE(LuauBoundLazyTypes, false)
LUAU_FASTFLAG(DebugLuauReadWriteProperties)
LUAU_FASTFLAGVARIABLE(LuauBoundLazyTypes2, false)
namespace Luau
{
@ -57,7 +58,7 @@ TypeId follow(TypeId t)
TypeId follow(TypeId t, std::function<TypeId(TypeId)> mapper)
{
auto advance = [&mapper](TypeId ty) -> std::optional<TypeId> {
if (FFlag::LuauBoundLazyTypes)
if (FFlag::LuauBoundLazyTypes2)
{
TypeId mapped = mapper(ty);
@ -74,7 +75,8 @@ TypeId follow(TypeId t, std::function<TypeId(TypeId)> mapper)
if (unwrapped)
return unwrapped;
unwrapped = ltv->unwrap(*ltv);
ltv->unwrap(*ltv);
unwrapped = ltv->unwrapped.load();
if (!unwrapped)
throw InternalCompilerError("Lazy Type didn't fill in unwrapped type field");
@ -109,7 +111,7 @@ TypeId follow(TypeId t, std::function<TypeId(TypeId)> mapper)
}
};
if (!FFlag::LuauBoundLazyTypes)
if (!FFlag::LuauBoundLazyTypes2)
force(t);
TypeId cycleTester = t; // Null once we've determined that there is no cycle
@ -120,7 +122,7 @@ TypeId follow(TypeId t, std::function<TypeId(TypeId)> mapper)
while (true)
{
if (!FFlag::LuauBoundLazyTypes)
if (!FFlag::LuauBoundLazyTypes2)
force(t);
auto a1 = advance(t);
@ -622,6 +624,92 @@ FunctionType::FunctionType(TypeLevel level, Scope* scope, std::vector<TypeId> ge
{
}
Property::Property() {}
Property::Property(TypeId readTy, bool deprecated, const std::string& deprecatedSuggestion, std::optional<Location> location, const Tags& tags,
const std::optional<std::string>& documentationSymbol)
: deprecated(deprecated)
, deprecatedSuggestion(deprecatedSuggestion)
, location(location)
, tags(tags)
, documentationSymbol(documentationSymbol)
, readTy(readTy)
, writeTy(readTy)
{
LUAU_ASSERT(!FFlag::DebugLuauReadWriteProperties);
}
Property Property::readonly(TypeId ty)
{
LUAU_ASSERT(FFlag::DebugLuauReadWriteProperties);
Property p;
p.readTy = ty;
return p;
}
Property Property::writeonly(TypeId ty)
{
LUAU_ASSERT(FFlag::DebugLuauReadWriteProperties);
Property p;
p.writeTy = ty;
return p;
}
Property Property::rw(TypeId ty)
{
return Property::rw(ty, ty);
}
Property Property::rw(TypeId read, TypeId write)
{
LUAU_ASSERT(FFlag::DebugLuauReadWriteProperties);
Property p;
p.readTy = read;
p.writeTy = write;
return p;
}
std::optional<Property> Property::create(std::optional<TypeId> read, std::optional<TypeId> write)
{
if (read && !write)
return Property::readonly(*read);
else if (!read && write)
return Property::writeonly(*write);
else if (read && write)
return Property::rw(*read, *write);
else
return std::nullopt;
}
TypeId Property::type() const
{
LUAU_ASSERT(!FFlag::DebugLuauReadWriteProperties);
LUAU_ASSERT(readTy);
return *readTy;
}
void Property::setType(TypeId ty)
{
readTy = ty;
}
std::optional<TypeId> Property::readType() const
{
LUAU_ASSERT(FFlag::DebugLuauReadWriteProperties);
LUAU_ASSERT(!(bool(readTy) && bool(writeTy)));
return readTy;
}
std::optional<TypeId> Property::writeType() const
{
LUAU_ASSERT(FFlag::DebugLuauReadWriteProperties);
LUAU_ASSERT(!(bool(readTy) && bool(writeTy)));
return writeTy;
}
TableType::TableType(TableState state, TypeLevel level, Scope* scope)
: state(state)
, level(level)
@ -709,7 +797,7 @@ bool areEqual(SeenSet& seen, const TableType& lhs, const TableType& rhs)
if (l->first != r->first)
return false;
if (!areEqual(seen, *l->second.type, *r->second.type))
if (!areEqual(seen, *l->second.type(), *r->second.type()))
return false;
++l;
++r;
@ -1011,7 +1099,7 @@ void persist(TypeId ty)
LUAU_ASSERT(ttv->state != TableState::Free && ttv->state != TableState::Unsealed);
for (const auto& [_name, prop] : ttv->props)
queue.push_back(prop.type);
queue.push_back(prop.type());
if (ttv->indexer)
{
@ -1022,7 +1110,7 @@ void persist(TypeId ty)
else if (auto ctv = get<ClassType>(t))
{
for (const auto& [_name, prop] : ctv->props)
queue.push_back(prop.type);
queue.push_back(prop.type());
}
else if (auto utv = get<UnionType>(t))
{

View File

@ -180,7 +180,7 @@ public:
char* name = allocateString(*allocator, propName);
props.data[idx].name = AstName(name);
props.data[idx].type = Luau::visit(*this, prop.type->ty);
props.data[idx].type = Luau::visit(*this, prop.type()->ty);
props.data[idx].location = Location();
idx++;
}
@ -221,7 +221,7 @@ public:
char* name = allocateString(*allocator, propName);
props.data[idx].name = AstName{name};
props.data[idx].type = Luau::visit(*this, prop.type->ty);
props.data[idx].type = Luau::visit(*this, prop.type()->ty);
props.data[idx].location = Location();
idx++;
}

View File

@ -171,6 +171,22 @@ struct TypeChecker2
return follow(*tp);
}
TypeId lookupExpectedType(AstExpr* expr)
{
if (TypeId* ty = module->astExpectedTypes.find(expr))
return follow(*ty);
return builtinTypes->anyType;
}
TypePackId lookupExpectedPack(AstExpr* expr, TypeArena& arena)
{
if (TypeId* ty = module->astExpectedTypes.find(expr))
return arena.addTypePack(TypePack{{follow(*ty)}, std::nullopt});
return builtinTypes->anyTypePack;
}
TypePackId reconstructPack(AstArray<AstExpr*> exprs, TypeArena& arena)
{
if (exprs.size == 0)
@ -208,12 +224,6 @@ struct TypeChecker2
return bestScope;
}
enum ValueContext
{
LValue,
RValue
};
void visit(AstStat* stat)
{
auto pusher = pushStack(stat);
@ -272,7 +282,7 @@ struct TypeChecker2
void visit(AstStatIf* ifStatement)
{
visit(ifStatement->condition, RValue);
visit(ifStatement->condition, ValueContext::RValue);
visit(ifStatement->thenbody);
if (ifStatement->elsebody)
visit(ifStatement->elsebody);
@ -280,14 +290,14 @@ struct TypeChecker2
void visit(AstStatWhile* whileStatement)
{
visit(whileStatement->condition, RValue);
visit(whileStatement->condition, ValueContext::RValue);
visit(whileStatement->body);
}
void visit(AstStatRepeat* repeatStatement)
{
visit(repeatStatement->body);
visit(repeatStatement->condition, RValue);
visit(repeatStatement->condition, ValueContext::RValue);
}
void visit(AstStatBreak*) {}
@ -314,12 +324,12 @@ struct TypeChecker2
}
for (AstExpr* expr : ret->list)
visit(expr, RValue);
visit(expr, ValueContext::RValue);
}
void visit(AstStatExpr* expr)
{
visit(expr->expr, RValue);
visit(expr->expr, ValueContext::RValue);
}
void visit(AstStatLocal* local)
@ -331,7 +341,7 @@ struct TypeChecker2
const bool isPack = value && (value->is<AstExprCall>() || value->is<AstExprVarargs>());
if (value)
visit(value, RValue);
visit(value, ValueContext::RValue);
if (i != local->values.size - 1 || !isPack)
{
@ -412,7 +422,7 @@ struct TypeChecker2
if (!expr)
return;
visit(expr, RValue);
visit(expr, ValueContext::RValue);
reportErrors(tryUnify(scope, expr->location, lookupType(expr), builtinTypes->numberType));
};
@ -432,7 +442,7 @@ struct TypeChecker2
}
for (AstExpr* expr : forInStatement->values)
visit(expr, RValue);
visit(expr, ValueContext::RValue);
visit(forInStatement->body);
@ -643,11 +653,11 @@ struct TypeChecker2
for (size_t i = 0; i < count; ++i)
{
AstExpr* lhs = assign->vars.data[i];
visit(lhs, LValue);
visit(lhs, ValueContext::LValue);
TypeId lhsType = lookupType(lhs);
AstExpr* rhs = assign->values.data[i];
visit(rhs, RValue);
visit(rhs, ValueContext::RValue);
TypeId rhsType = lookupType(rhs);
if (get<NeverType>(lhsType))
@ -671,7 +681,7 @@ struct TypeChecker2
void visit(AstStatFunction* stat)
{
visit(stat->name, LValue);
visit(stat->name, ValueContext::LValue);
visit(stat->func);
}
@ -724,7 +734,7 @@ struct TypeChecker2
void visit(AstStatError* stat)
{
for (AstExpr* expr : stat->expressions)
visit(expr, RValue);
visit(expr, ValueContext::RValue);
for (AstStat* s : stat->statements)
visit(s);
@ -926,7 +936,7 @@ struct TypeChecker2
TypeArena* arena = &testArena;
Instantiation instantiation{TxnLog::empty(), arena, TypeLevel{}, stack.back()};
TypePackId expectedRetType = lookupPack(call);
TypePackId expectedRetType = lookupExpectedPack(call, *arena);
TypeId functionType = lookupType(call->func);
TypeId testFunctionType = functionType;
TypePack args;
@ -1105,10 +1115,10 @@ struct TypeChecker2
void visit(AstExprCall* call)
{
visit(call->func, RValue);
visit(call->func, ValueContext::RValue);
for (AstExpr* arg : call->args)
visit(arg, RValue);
visit(arg, ValueContext::RValue);
visitCall(call);
}
@ -1158,7 +1168,7 @@ struct TypeChecker2
void visitExprName(AstExpr* expr, Location location, const std::string& propName, ValueContext context)
{
visit(expr, RValue);
visit(expr, ValueContext::RValue);
TypeId leftType = stripFromNilAndReport(lookupType(expr), location);
checkIndexTypeFromType(leftType, propName, location, context);
@ -1179,8 +1189,8 @@ struct TypeChecker2
}
// TODO!
visit(indexExpr->expr, LValue);
visit(indexExpr->index, RValue);
visit(indexExpr->expr, ValueContext::LValue);
visit(indexExpr->index, ValueContext::RValue);
NotNull<Scope> scope = stack.back();
@ -1242,14 +1252,14 @@ struct TypeChecker2
for (const AstExprTable::Item& item : expr->items)
{
if (item.key)
visit(item.key, LValue);
visit(item.value, RValue);
visit(item.key, ValueContext::LValue);
visit(item.value, ValueContext::RValue);
}
}
void visit(AstExprUnary* expr)
{
visit(expr->expr, RValue);
visit(expr->expr, ValueContext::RValue);
NotNull<Scope> scope = stack.back();
TypeId operandType = lookupType(expr->expr);
@ -1330,8 +1340,8 @@ struct TypeChecker2
TypeId visit(AstExprBinary* expr, AstNode* overrideKey = nullptr)
{
visit(expr->left, LValue);
visit(expr->right, LValue);
visit(expr->left, ValueContext::LValue);
visit(expr->right, ValueContext::LValue);
NotNull<Scope> scope = stack.back();
@ -1363,11 +1373,14 @@ struct TypeChecker2
return leftType;
}
bool typesHaveIntersection = normalizer.isIntersectionInhabited(leftType, rightType);
if (auto it = kBinaryOpMetamethods.find(expr->op); it != kBinaryOpMetamethods.end())
{
std::optional<TypeId> leftMt = getMetatable(leftType, builtinTypes);
std::optional<TypeId> rightMt = getMetatable(rightType, builtinTypes);
bool matches = leftMt == rightMt;
if (isEquality && !matches)
{
auto testUnion = [&matches, builtinTypes = this->builtinTypes](const UnionType* utv, std::optional<TypeId> otherMt) {
@ -1390,6 +1403,13 @@ struct TypeChecker2
{
testUnion(utv, leftMt);
}
// If either left or right has no metatable (or both), we need to consider if
// there are values in common that could possibly inhabit the type (and thus equality could be considered)
if (!leftMt.has_value() || !rightMt.has_value())
{
matches = matches || typesHaveIntersection;
}
}
if (!matches && isComparison)
@ -1584,7 +1604,7 @@ struct TypeChecker2
void visit(AstExprTypeAssertion* expr)
{
visit(expr->expr, RValue);
visit(expr->expr, ValueContext::RValue);
visit(expr->annotation);
TypeId annotationType = lookupAnnotation(expr->annotation);
@ -1603,22 +1623,22 @@ struct TypeChecker2
void visit(AstExprIfElse* expr)
{
// TODO!
visit(expr->condition, RValue);
visit(expr->trueExpr, RValue);
visit(expr->falseExpr, RValue);
visit(expr->condition, ValueContext::RValue);
visit(expr->trueExpr, ValueContext::RValue);
visit(expr->falseExpr, ValueContext::RValue);
}
void visit(AstExprInterpString* interpString)
{
for (AstExpr* expr : interpString->expressions)
visit(expr, RValue);
visit(expr, ValueContext::RValue);
}
void visit(AstExprError* expr)
{
// TODO!
for (AstExpr* e : expr->expressions)
visit(e, RValue);
visit(e, ValueContext::RValue);
}
/** Extract a TypeId for the first type of the provided pack.
@ -1858,7 +1878,7 @@ struct TypeChecker2
void visit(AstTypeTypeof* ty)
{
visit(ty->expr, RValue);
visit(ty->expr, ValueContext::RValue);
}
void visit(AstTypeUnion* ty)
@ -2109,7 +2129,7 @@ struct TypeChecker2
// because classes come into being with full knowledge of their
// shape. We instead want to report the unknown property error of
// the `else` branch.
else if (context == LValue && !get<ClassType>(tableTy))
else if (context == ValueContext::LValue && !get<ClassType>(tableTy))
reportError(CannotExtendTable{tableTy, CannotExtendTable::Property, prop}, location);
else
reportError(UnknownProperty{tableTy, prop}, location);

View File

@ -1786,7 +1786,7 @@ ControlFlow TypeChecker::check(const ScopePtr& scope, const AstStatDeclareClass&
}
else
{
TypeId currentTy = assignTo[propName].type;
TypeId currentTy = assignTo[propName].type();
// We special-case this logic to keep the intersection flat; otherwise we
// would create a ton of nested intersection types.
@ -2076,7 +2076,7 @@ std::optional<TypeId> TypeChecker::getIndexTypeFromTypeImpl(
if (TableType* tableType = getMutableTableType(type))
{
if (auto it = tableType->props.find(name); it != tableType->props.end())
return it->second.type;
return it->second.type();
else if (auto indexer = tableType->indexer)
{
// TODO: Property lookup should work with string singletons or unions thereof as the indexer key type.
@ -2104,7 +2104,7 @@ std::optional<TypeId> TypeChecker::getIndexTypeFromTypeImpl(
{
const Property* prop = lookupClassProp(cls, name);
if (prop)
return prop->type;
return prop->type();
}
else if (const UnionType* utv = get<UnionType>(type))
{
@ -2294,9 +2294,9 @@ TypeId TypeChecker::checkExprTable(
if (it != expectedTable->props.end())
{
Property expectedProp = it->second;
ErrorVec errors = tryUnify(exprType, expectedProp.type, scope, k->location);
ErrorVec errors = tryUnify(exprType, expectedProp.type(), scope, k->location);
if (errors.empty())
exprType = expectedProp.type;
exprType = expectedProp.type();
}
else if (expectedTable->indexer && maybeString(expectedTable->indexer->indexType))
{
@ -2390,7 +2390,7 @@ WithPredicate<TypeId> TypeChecker::checkExpr(const ScopePtr& scope, const AstExp
if (expectedTable)
{
if (auto prop = expectedTable->props.find(key->value.data); prop != expectedTable->props.end())
expectedResultType = prop->second.type;
expectedResultType = prop->second.type();
else if (expectedIndexType && maybeString(*expectedIndexType))
expectedResultType = expectedIndexResultType;
}
@ -2402,7 +2402,7 @@ WithPredicate<TypeId> TypeChecker::checkExpr(const ScopePtr& scope, const AstExp
if (const TableType* ttv = get<TableType>(follow(expectedOption)))
{
if (auto prop = ttv->props.find(key->value.data); prop != ttv->props.end())
expectedResultTypes.push_back(prop->second.type);
expectedResultTypes.push_back(prop->second.type());
else if (ttv->indexer && maybeString(ttv->indexer->indexType))
expectedResultTypes.push_back(ttv->indexer->indexResultType);
}
@ -3257,13 +3257,13 @@ TypeId TypeChecker::checkLValueBinding(const ScopePtr& scope, const AstExprIndex
const auto& it = lhsTable->props.find(name);
if (it != lhsTable->props.end())
{
return it->second.type;
return it->second.type();
}
else if ((ctx == ValueContext::LValue && lhsTable->state == TableState::Unsealed) || lhsTable->state == TableState::Free)
{
TypeId theType = freshType(scope);
Property& property = lhsTable->props[name];
property.type = theType;
property.setType(theType);
property.location = expr.indexLocation;
return theType;
}
@ -3303,7 +3303,7 @@ TypeId TypeChecker::checkLValueBinding(const ScopePtr& scope, const AstExprIndex
return errorRecoveryType(scope);
}
return prop->type;
return prop->type();
}
else if (get<IntersectionType>(lhs))
{
@ -3351,7 +3351,7 @@ TypeId TypeChecker::checkLValueBinding(const ScopePtr& scope, const AstExprIndex
reportError(TypeError{expr.location, UnknownProperty{exprType, value->value.data}});
return errorRecoveryType(scope);
}
return prop->type;
return prop->type();
}
}
else if (FFlag::LuauAllowIndexClassParameters)
@ -3378,13 +3378,13 @@ TypeId TypeChecker::checkLValueBinding(const ScopePtr& scope, const AstExprIndex
const auto& it = exprTable->props.find(value->value.data);
if (it != exprTable->props.end())
{
return it->second.type;
return it->second.type();
}
else if ((ctx == ValueContext::LValue && exprTable->state == TableState::Unsealed) || exprTable->state == TableState::Free)
{
TypeId resultType = freshType(scope);
Property& property = exprTable->props[value->value.data];
property.type = resultType;
property.setType(resultType);
property.location = expr.index->location;
return resultType;
}
@ -3467,13 +3467,12 @@ TypeId TypeChecker::checkFunctionName(const ScopePtr& scope, AstExpr& funName, T
Name name = indexName->index.value;
if (ttv->props.count(name))
return ttv->props[name].type;
return ttv->props[name].type();
Property& property = ttv->props[name];
property.type = freshTy();
property.setType(freshTy());
property.location = indexName->indexLocation;
return property.type;
return property.type();
}
else if (funName.is<AstExprError>())
return errorRecoveryType(scope);

View File

@ -70,7 +70,7 @@ TypeId TypeReductionMemoization::memoize(TypeId ty, TypeId reducedTy)
else if (auto tt = get<TableType>(reducedTy))
{
for (auto& [k, p] : tt->props)
irreducible &= isIrreducible(p.type);
irreducible &= isIrreducible(p.type());
if (tt->indexer)
{
@ -539,7 +539,7 @@ std::optional<TypeId> TypeReducer::intersectionType(TypeId left, TypeId right)
// even if we have the corresponding property in the other one.
if (auto other = t2->props.find(name); other != t2->props.end())
{
TypeId propTy = apply<IntersectionType>(&TypeReducer::intersectionType, prop.type, other->second.type);
TypeId propTy = apply<IntersectionType>(&TypeReducer::intersectionType, prop.type(), other->second.type());
if (get<NeverType>(propTy))
return builtinTypes->neverType; // { p : string } & { p : number } ~ { p : string & number } ~ { p : never } ~ never
else
@ -554,7 +554,7 @@ std::optional<TypeId> TypeReducer::intersectionType(TypeId left, TypeId right)
// TODO: And vice versa, t2 properties against t1 indexer if it exists,
// even if we have the corresponding property in the other one.
if (!t1->props.count(name))
table->props[name] = {reduce(prop.type)}; // {} & { p : string & string } ~ { p : string }
table->props[name] = {reduce(prop.type())}; // {} & { p : string & string } ~ { p : string }
}
if (t1->indexer && t2->indexer)
@ -966,11 +966,11 @@ TypeId TypeReducer::tableType(TypeId ty)
for (auto& [name, prop] : copied->props)
{
TypeId propTy = reduce(prop.type);
TypeId propTy = reduce(prop.type());
if (get<NeverType>(propTy))
return builtinTypes->neverType;
else
prop.type = propTy;
prop.setType(propTy);
}
if (copied->indexer)

View File

@ -34,7 +34,7 @@ std::optional<TypeId> findMetatableEntry(
auto it = mtt->props.find(entry);
if (it != mtt->props.end())
return it->second.type;
return it->second.type();
else
return std::nullopt;
}
@ -49,7 +49,7 @@ std::optional<TypeId> findTablePropertyRespectingMeta(
{
const auto& it = tableType->props.find(name);
if (it != tableType->props.end())
return it->second.type;
return it->second.type();
}
std::optional<TypeId> mtIndex = findMetatableEntry(builtinTypes, errors, ty, "__index", location);
@ -67,7 +67,7 @@ std::optional<TypeId> findTablePropertyRespectingMeta(
{
const auto& fit = itt->props.find(name);
if (fit != itt->props.end())
return fit->second.type;
return fit->second.type();
}
else if (const auto& itf = get<FunctionType>(index))
{

View File

@ -351,7 +351,7 @@ static std::optional<std::pair<Luau::Name, const SingletonType*>> getTableMatchT
{
for (auto&& [name, prop] : ttv->props)
{
if (auto sing = get<SingletonType>(follow(prop.type)))
if (auto sing = get<SingletonType>(follow(prop.type())))
return {{name, sing}};
}
}
@ -2003,7 +2003,7 @@ void Unifier::tryUnifyTables(TypeId subTy, TypeId superTy, bool isIntersection)
{
auto subIter = subTable->props.find(propName);
if (subIter == subTable->props.end() && subTable->state == TableState::Unsealed && !isOptional(superProp.type))
if (subIter == subTable->props.end() && subTable->state == TableState::Unsealed && !isOptional(superProp.type()))
missingProperties.push_back(propName);
}
@ -2044,7 +2044,7 @@ void Unifier::tryUnifyTables(TypeId subTy, TypeId superTy, bool isIntersection)
variance = Invariant;
Unifier innerState = makeChildUnifier();
innerState.tryUnify_(r->second.type, prop.type);
innerState.tryUnify_(r->second.type(), prop.type());
checkChildUnifierTypeMismatch(innerState.errors, name, superTy, subTy);
@ -2060,7 +2060,7 @@ void Unifier::tryUnifyTables(TypeId subTy, TypeId superTy, bool isIntersection)
variance = Invariant;
Unifier innerState = makeChildUnifier();
innerState.tryUnify_(subTable->indexer->indexResultType, prop.type);
innerState.tryUnify_(subTable->indexer->indexResultType, prop.type());
checkChildUnifierTypeMismatch(innerState.errors, name, superTy, subTy);
@ -2068,7 +2068,7 @@ void Unifier::tryUnifyTables(TypeId subTy, TypeId superTy, bool isIntersection)
log.concat(std::move(innerState.log));
failure |= innerState.failure;
}
else if (subTable->state == TableState::Unsealed && isOptional(prop.type))
else if (subTable->state == TableState::Unsealed && isOptional(prop.type()))
// This is sound because unsealed table types are precise, so `{ p : T } <: { p : T, q : U? }`
// since if `t : { p : T }` then we are guaranteed that `t.q` is `nil`.
// TODO: if the supertype is written to, the subtype may no longer be precise (alias analysis?)
@ -2123,7 +2123,7 @@ void Unifier::tryUnifyTables(TypeId subTy, TypeId superTy, bool isIntersection)
variance = Invariant;
Unifier innerState = makeChildUnifier();
innerState.tryUnify_(superTable->indexer->indexResultType, prop.type);
innerState.tryUnify_(superTable->indexer->indexResultType, prop.type());
checkChildUnifierTypeMismatch(innerState.errors, name, superTy, subTy);
@ -2137,7 +2137,7 @@ void Unifier::tryUnifyTables(TypeId subTy, TypeId superTy, bool isIntersection)
// TODO: file a JIRA
// TODO: hopefully readonly/writeonly properties will fix this.
Property clone = prop;
clone.type = deeplyOptional(clone.type);
clone.setType(deeplyOptional(clone.type()));
PendingType* pendingSuper = log.queue(superTy);
TableType* pendingSuperTtv = getMutable<TableType>(pendingSuper);
@ -2297,7 +2297,7 @@ void Unifier::tryUnifyScalarShape(TypeId subTy, TypeId superTy, bool reversed)
if (auto it = mttv->props.find("__index"); it != mttv->props.end())
{
TypeId ty = it->second.type;
TypeId ty = it->second.type();
Unifier child = makeChildUnifier();
child.tryUnify_(ty, superTy);
@ -2349,7 +2349,7 @@ TypeId Unifier::deeplyOptional(TypeId ty, std::unordered_map<TypeId, TypeId> see
result = types->addType(*ttv);
TableType* resultTtv = getMutable<TableType>(result);
for (auto& [name, prop] : resultTtv->props)
prop.type = deeplyOptional(prop.type, seen);
prop.setType(deeplyOptional(prop.type(), seen));
return types->addType(UnionType{{builtinTypes->nilType, result}});
}
else
@ -2394,7 +2394,7 @@ void Unifier::tryUnifyWithMetatable(TypeId subTy, TypeId superTy, bool reversed)
{
if (std::optional<TypeId> mtPropTy = findTablePropertyRespectingMeta(superTy, propName))
{
innerState.tryUnify(prop.type, *mtPropTy);
innerState.tryUnify(prop.type(), *mtPropTy);
}
else
{
@ -2505,7 +2505,7 @@ void Unifier::tryUnifyWithClass(TypeId subTy, TypeId superTy, bool reversed)
else
{
Unifier innerState = makeChildUnifier();
innerState.tryUnify_(classProp->type, prop.type);
innerState.tryUnify_(classProp->type(), prop.type());
checkChildUnifierTypeMismatch(innerState.errors, propName, reversed ? subTy : superTy, reversed ? superTy : subTy);
@ -2674,7 +2674,7 @@ static void tryUnifyWithAny(std::vector<TypeId>& queue, Unifier& state, DenseHas
else if (auto table = state.log.getMutable<TableType>(ty))
{
for (const auto& [_name, prop] : table->props)
queue.push_back(prop.type);
queue.push_back(prop.type());
if (table->indexer)
{

View File

@ -703,10 +703,26 @@ struct CompileStats
size_t lines;
size_t bytecode;
size_t codegen;
double readTime;
double miscTime;
double parseTime;
double compileTime;
double codegenTime;
};
static double recordDeltaTime(double& timer)
{
double now = Luau::TimeTrace::getClock();
double delta = now - timer;
timer = now;
return delta;
}
static bool compileFile(const char* name, CompileFormat format, CompileStats& stats)
{
double currts = Luau::TimeTrace::getClock();
std::optional<std::string> source = readFile(name);
if (!source)
{
@ -714,6 +730,8 @@ static bool compileFile(const char* name, CompileFormat format, CompileStats& st
return false;
}
stats.readTime += recordDeltaTime(currts);
// NOTE: Normally, you should use Luau::compile or luau_compile (see lua_require as an example)
// This function is much more complicated because it supports many output human-readable formats through internal interfaces
@ -753,6 +771,8 @@ static bool compileFile(const char* name, CompileFormat format, CompileStats& st
bcb.setDumpSource(*source);
}
stats.miscTime += recordDeltaTime(currts);
Luau::Allocator allocator;
Luau::AstNameTable names(allocator);
Luau::ParseResult result = Luau::Parser::parse(source->c_str(), source->size(), names, allocator);
@ -761,9 +781,11 @@ static bool compileFile(const char* name, CompileFormat format, CompileStats& st
throw Luau::ParseErrors(result.errors);
stats.lines += result.lines;
stats.parseTime += recordDeltaTime(currts);
Luau::compileOrThrow(bcb, result, names, copts());
stats.bytecode += bcb.getBytecode().size();
stats.compileTime += recordDeltaTime(currts);
switch (format)
{
@ -784,6 +806,7 @@ static bool compileFile(const char* name, CompileFormat format, CompileStats& st
break;
case CompileFormat::CodegenNull:
stats.codegen += getCodegenAssembly(name, bcb.getBytecode(), options).size();
stats.codegenTime += recordDeltaTime(currts);
break;
case CompileFormat::Null:
break;
@ -998,18 +1021,18 @@ int replMain(int argc, char** argv)
CompileStats stats = {};
int failed = 0;
double startTime = Luau::TimeTrace::getClock();
for (const std::string& path : files)
failed += !compileFile(path.c_str(), compileFormat, stats);
double duration = Luau::TimeTrace::getClock() - startTime;
if (compileFormat == CompileFormat::Null)
printf("Compiled %d KLOC into %d KB bytecode in %.2fs\n", int(stats.lines / 1000), int(stats.bytecode / 1024), duration);
printf("Compiled %d KLOC into %d KB bytecode (read %.2fs, parse %.2fs, compile %.2fs)\n", int(stats.lines / 1000),
int(stats.bytecode / 1024), stats.readTime, stats.parseTime, stats.compileTime);
else if (compileFormat == CompileFormat::CodegenNull)
printf("Compiled %d KLOC into %d KB bytecode => %d KB native code (%.2fx) in %.2fs\n", int(stats.lines / 1000), int(stats.bytecode / 1024),
int(stats.codegen / 1024), stats.bytecode == 0 ? 0.0 : double(stats.codegen) / double(stats.bytecode), duration);
printf("Compiled %d KLOC into %d KB bytecode => %d KB native code (%.2fx) (read %.2fs, parse %.2fs, compile %.2fs, codegen %.2fs)\n",
int(stats.lines / 1000), int(stats.bytecode / 1024), int(stats.codegen / 1024),
stats.bytecode == 0 ? 0.0 : double(stats.codegen) / double(stats.bytecode), stats.readTime, stats.parseTime, stats.compileTime,
stats.codegenTime);
return failed ? 1 : 0;
}

View File

@ -136,6 +136,7 @@ public:
void frinta(RegisterA64 dst, RegisterA64 src);
void frintm(RegisterA64 dst, RegisterA64 src);
void frintp(RegisterA64 dst, RegisterA64 src);
void fcvt(RegisterA64 dst, RegisterA64 src);
void fcvtzs(RegisterA64 dst, RegisterA64 src);
void fcvtzu(RegisterA64 dst, RegisterA64 src);
void scvtf(RegisterA64 dst, RegisterA64 src);

View File

@ -154,7 +154,7 @@ public:
// Run final checks
void finalize();
bool finalize();
// Places a label at current location and returns it
Label setLabel();

View File

@ -36,6 +36,8 @@ struct IrBuilder
// Source block that is cloned cannot use values coming in from a predecessor
void clone(const IrBlock& source, bool removeCurrentTerminator);
IrOp undef();
IrOp constBool(bool value);
IrOp constInt(int value);
IrOp constUint(unsigned value);

View File

@ -10,6 +10,7 @@
#include <vector>
#include <stdint.h>
#include <string.h>
struct Proto;
@ -18,6 +19,12 @@ namespace Luau
namespace CodeGen
{
// IR extensions to LuauBuiltinFunction enum (these only exist inside IR, and start from 256 to avoid collisions)
enum
{
LBF_IR_MATH_LOG2 = 256,
};
// IR instruction command.
// In the command description, following abbreviations are used:
// * Rn - VM stack register slot, n in 0..254
@ -112,7 +119,7 @@ enum class IrCmd : uint8_t
ADD_INT,
SUB_INT,
// Add/Sub/Mul/Div/Mod/Pow two double numbers
// Add/Sub/Mul/Div/Mod two double numbers
// A, B: double
// In final x64 lowering, B can also be Rn or Kn
ADD_NUM,
@ -120,7 +127,6 @@ enum class IrCmd : uint8_t
MUL_NUM,
DIV_NUM,
MOD_NUM,
POW_NUM,
// Get the minimum/maximum of two numbers
// If one of the values is NaN, 'B' is returned as the result
@ -192,8 +198,8 @@ enum class IrCmd : uint8_t
// D: block (if false)
JUMP_LT_INT,
// Jump if A >= B
// A, B: uint
// Jump if unsigned(A) >= unsigned(B)
// A, B: int
// C: condition
// D: block (if true)
// E: block (if false)
@ -543,17 +549,17 @@ enum class IrCmd : uint8_t
// A: operand of any type
// Performs bitwise and/xor/or on two unsigned integers
// A, B: uint
// A, B: int
BITAND_UINT,
BITXOR_UINT,
BITOR_UINT,
// Performs bitwise not on an unsigned integer
// A: uint
// A: int
BITNOT_UINT,
// Performs bitwise shift/rotate on an unsigned integer
// A: uint (source)
// A: int (source)
// B: int (shift amount)
BITLSHIFT_UINT,
BITRSHIFT_UINT,
@ -562,7 +568,7 @@ enum class IrCmd : uint8_t
BITRROTATE_UINT,
// Returns the number of consecutive zero bits in A starting from the left-most (most significant) bit.
// A: uint
// A: int
BITCOUNTLZ_UINT,
BITCOUNTRZ_UINT,
@ -621,6 +627,8 @@ enum class IrOpKind : uint32_t
{
None,
Undef,
// To reference a constant value
Constant,
@ -710,6 +718,63 @@ struct IrInst
// When IrInst operands are used, current instruction index is often required to track lifetime
constexpr uint32_t kInvalidInstIdx = ~0u;
struct IrInstHash
{
static const uint32_t m = 0x5bd1e995;
static const int r = 24;
static uint32_t mix(uint32_t h, uint32_t k)
{
// MurmurHash2 step
k *= m;
k ^= k >> r;
k *= m;
h *= m;
h ^= k;
return h;
}
static uint32_t mix(uint32_t h, IrOp op)
{
static_assert(sizeof(op) == sizeof(uint32_t));
uint32_t k;
memcpy(&k, &op, sizeof(op));
return mix(h, k);
}
size_t operator()(const IrInst& key) const
{
// MurmurHash2 unrolled
uint32_t h = 25;
h = mix(h, uint32_t(key.cmd));
h = mix(h, key.a);
h = mix(h, key.b);
h = mix(h, key.c);
h = mix(h, key.d);
h = mix(h, key.e);
h = mix(h, key.f);
// MurmurHash2 tail
h ^= h >> 13;
h *= m;
h ^= h >> 15;
return h;
}
};
struct IrInstEq
{
bool operator()(const IrInst& a, const IrInst& b) const
{
return a.cmd == b.cmd && a.a == b.a && a.b == b.b && a.c == b.c && a.d == b.d && a.e == b.e && a.f == b.f;
}
};
enum class IrBlockKind : uint8_t
{
Bytecode,

View File

@ -135,7 +135,6 @@ inline bool hasResult(IrCmd cmd)
case IrCmd::MUL_NUM:
case IrCmd::DIV_NUM:
case IrCmd::MOD_NUM:
case IrCmd::POW_NUM:
case IrCmd::MIN_NUM:
case IrCmd::MAX_NUM:
case IrCmd::UNM_NUM:
@ -231,7 +230,7 @@ bool compare(double a, double b, IrCondition cond);
// But it can also be successful on conditional control-flow, replacing it with an unconditional IrCmd::JUMP
void foldConstants(IrBuilder& build, IrFunction& function, IrBlock& block, uint32_t instIdx);
uint32_t getNativeContextOffset(LuauBuiltinFunction bfid);
uint32_t getNativeContextOffset(int bfid);
} // namespace CodeGen
} // namespace Luau

View File

@ -10,8 +10,8 @@ namespace CodeGen
struct IrBuilder;
void constPropInBlockChains(IrBuilder& build);
void createLinearBlocks(IrBuilder& build);
void constPropInBlockChains(IrBuilder& build, bool useValueNumbering);
void createLinearBlocks(IrBuilder& build, bool useValueNumbering);
} // namespace CodeGen
} // namespace Luau

View File

@ -17,6 +17,7 @@ enum class KindA64 : uint8_t
none,
w, // 32-bit GPR
x, // 64-bit GPR
s, // 32-bit SIMD&FP scalar
d, // 64-bit SIMD&FP scalar
q, // 128-bit SIMD&FP vector
};
@ -128,6 +129,39 @@ constexpr RegisterA64 xzr{KindA64::x, 31};
constexpr RegisterA64 sp{KindA64::none, 31};
constexpr RegisterA64 s0{KindA64::s, 0};
constexpr RegisterA64 s1{KindA64::s, 1};
constexpr RegisterA64 s2{KindA64::s, 2};
constexpr RegisterA64 s3{KindA64::s, 3};
constexpr RegisterA64 s4{KindA64::s, 4};
constexpr RegisterA64 s5{KindA64::s, 5};
constexpr RegisterA64 s6{KindA64::s, 6};
constexpr RegisterA64 s7{KindA64::s, 7};
constexpr RegisterA64 s8{KindA64::s, 8};
constexpr RegisterA64 s9{KindA64::s, 9};
constexpr RegisterA64 s10{KindA64::s, 10};
constexpr RegisterA64 s11{KindA64::s, 11};
constexpr RegisterA64 s12{KindA64::s, 12};
constexpr RegisterA64 s13{KindA64::s, 13};
constexpr RegisterA64 s14{KindA64::s, 14};
constexpr RegisterA64 s15{KindA64::s, 15};
constexpr RegisterA64 s16{KindA64::s, 16};
constexpr RegisterA64 s17{KindA64::s, 17};
constexpr RegisterA64 s18{KindA64::s, 18};
constexpr RegisterA64 s19{KindA64::s, 19};
constexpr RegisterA64 s20{KindA64::s, 20};
constexpr RegisterA64 s21{KindA64::s, 21};
constexpr RegisterA64 s22{KindA64::s, 22};
constexpr RegisterA64 s23{KindA64::s, 23};
constexpr RegisterA64 s24{KindA64::s, 24};
constexpr RegisterA64 s25{KindA64::s, 25};
constexpr RegisterA64 s26{KindA64::s, 26};
constexpr RegisterA64 s27{KindA64::s, 27};
constexpr RegisterA64 s28{KindA64::s, 28};
constexpr RegisterA64 s29{KindA64::s, 29};
constexpr RegisterA64 s30{KindA64::s, 30};
constexpr RegisterA64 s31{KindA64::s, 31};
constexpr RegisterA64 d0{KindA64::d, 0};
constexpr RegisterA64 d1{KindA64::d, 1};
constexpr RegisterA64 d2{KindA64::d, 2};

View File

@ -282,7 +282,7 @@ void AssemblyBuilderA64::ror(RegisterA64 dst, RegisterA64 src1, uint8_t src2)
void AssemblyBuilderA64::ldr(RegisterA64 dst, AddressA64 src)
{
LUAU_ASSERT(dst.kind == KindA64::x || dst.kind == KindA64::w || dst.kind == KindA64::d || dst.kind == KindA64::q);
LUAU_ASSERT(dst.kind == KindA64::x || dst.kind == KindA64::w || dst.kind == KindA64::s || dst.kind == KindA64::d || dst.kind == KindA64::q);
switch (dst.kind)
{
@ -292,6 +292,9 @@ void AssemblyBuilderA64::ldr(RegisterA64 dst, AddressA64 src)
case KindA64::x:
placeA("ldr", dst, src, 0b11100001, 0b11, /* sizelog= */ 3);
break;
case KindA64::s:
placeA("ldr", dst, src, 0b11110001, 0b10, /* sizelog= */ 2);
break;
case KindA64::d:
placeA("ldr", dst, src, 0b11110001, 0b11, /* sizelog= */ 3);
break;
@ -348,7 +351,7 @@ void AssemblyBuilderA64::ldp(RegisterA64 dst1, RegisterA64 dst2, AddressA64 src)
void AssemblyBuilderA64::str(RegisterA64 src, AddressA64 dst)
{
LUAU_ASSERT(src.kind == KindA64::x || src.kind == KindA64::w || src.kind == KindA64::d || src.kind == KindA64::q);
LUAU_ASSERT(src.kind == KindA64::x || src.kind == KindA64::w || src.kind == KindA64::s || src.kind == KindA64::d || src.kind == KindA64::q);
switch (src.kind)
{
@ -358,6 +361,9 @@ void AssemblyBuilderA64::str(RegisterA64 src, AddressA64 dst)
case KindA64::x:
placeA("str", src, dst, 0b11100000, 0b11, /* sizelog= */ 3);
break;
case KindA64::s:
placeA("str", src, dst, 0b11110000, 0b10, /* sizelog= */ 2);
break;
case KindA64::d:
placeA("str", src, dst, 0b11110000, 0b11, /* sizelog= */ 3);
break;
@ -570,6 +576,16 @@ void AssemblyBuilderA64::frintp(RegisterA64 dst, RegisterA64 src)
placeR1("frintp", dst, src, 0b000'11110'01'1'001'001'10000);
}
void AssemblyBuilderA64::fcvt(RegisterA64 dst, RegisterA64 src)
{
if (dst.kind == KindA64::s && src.kind == KindA64::d)
placeR1("fcvt", dst, src, 0b11110'01'1'0001'00'10000);
else if (dst.kind == KindA64::d && src.kind == KindA64::s)
placeR1("fcvt", dst, src, 0b11110'00'1'0001'01'10000);
else
LUAU_ASSERT(!"Unexpected register kind");
}
void AssemblyBuilderA64::fcvtzs(RegisterA64 dst, RegisterA64 src)
{
LUAU_ASSERT(dst.kind == KindA64::w || dst.kind == KindA64::x);
@ -1229,6 +1245,10 @@ void AssemblyBuilderA64::log(RegisterA64 reg)
logAppend("x%d", reg.index);
break;
case KindA64::s:
logAppend("s%d", reg.index);
break;
case KindA64::d:
logAppend("d%d", reg.index);
break;

View File

@ -831,7 +831,7 @@ void AssemblyBuilderX64::vblendvpd(RegisterX64 dst, RegisterX64 src1, OperandX64
placeAvx("vblendvpd", dst, src1, mask, src3.index << 4, 0x4b, false, AVX_0F3A, AVX_66);
}
void AssemblyBuilderX64::finalize()
bool AssemblyBuilderX64::finalize()
{
code.resize(codePos - code.data());
@ -853,6 +853,8 @@ void AssemblyBuilderX64::finalize()
data.resize(dataSize);
finalized = true;
return true;
}
Label AssemblyBuilderX64::setLabel()

View File

@ -32,5 +32,25 @@ inline int countrz(uint32_t n)
#endif
}
inline int lrotate(uint32_t u, int s)
{
// MSVC doesn't recognize the rotate form that is UB-safe
#ifdef _MSC_VER
return _rotl(u, s);
#else
return (u << (s & 31)) | (u >> ((32 - s) & 31));
#endif
}
inline int rrotate(uint32_t u, int s)
{
// MSVC doesn't recognize the rotate form that is UB-safe
#ifdef _MSC_VER
return _rotr(u, s);
#else
return (u >> (s & 31)) | (u << ((32 - s) & 31));
#endif
}
} // namespace CodeGen
} // namespace Luau

View File

@ -51,6 +51,7 @@
LUAU_FASTFLAGVARIABLE(DebugCodegenNoOpt, false)
LUAU_FASTFLAGVARIABLE(DebugCodegenOptSize, false)
LUAU_FASTFLAGVARIABLE(DebugCodegenSkipNumbering, false)
namespace Luau
{
@ -59,21 +60,33 @@ namespace CodeGen
static NativeProto* createNativeProto(Proto* proto, const IrBuilder& ir)
{
NativeProto* result = new NativeProto();
int sizecode = proto->sizecode;
int sizecodeAlloc = (sizecode + 1) & ~1; // align uint32_t array to 8 bytes so that NativeProto is aligned to 8 bytes
void* memory = ::operator new(sizeof(NativeProto) + sizecodeAlloc * sizeof(uint32_t));
NativeProto* result = new (static_cast<char*>(memory) + sizecodeAlloc * sizeof(uint32_t)) NativeProto;
result->proto = proto;
result->instTargets = new uintptr_t[proto->sizecode];
for (int i = 0; i < proto->sizecode; i++)
uint32_t* instOffsets = result->instOffsets;
for (int i = 0; i < sizecode; i++)
{
auto [irLocation, asmLocation] = ir.function.bcMapping[i];
result->instTargets[i] = irLocation == ~0u ? 0 : asmLocation;
// instOffsets uses negative indexing for optimal codegen for RETURN opcode
instOffsets[-i] = ir.function.bcMapping[i].asmLocation;
}
return result;
}
static void destroyNativeProto(NativeProto* nativeProto)
{
int sizecode = nativeProto->proto->sizecode;
int sizecodeAlloc = (sizecode + 1) & ~1; // align uint32_t array to 8 bytes so that NativeProto is aligned to 8 bytes
void* memory = reinterpret_cast<char*>(nativeProto) - sizecodeAlloc * sizeof(uint32_t);
::operator delete(memory);
}
template<typename AssemblyBuilder, typename IrLowering>
static bool lowerImpl(AssemblyBuilder& build, IrLowering& lowering, IrFunction& function, int bytecodeid, AssemblyOptions options)
{
@ -95,30 +108,19 @@ static bool lowerImpl(AssemblyBuilder& build, IrLowering& lowering, IrFunction&
return a.start < b.start;
});
DenseHashMap<uint32_t, uint32_t> bcLocations{~0u};
// For each IR instruction that begins a bytecode instruction, which bytecode instruction is it?
std::vector<uint32_t> bcLocations(function.instructions.size() + 1, ~0u);
// Create keys for IR assembly locations that original bytecode instruction are interested in
for (const auto& [irLocation, asmLocation] : function.bcMapping)
for (size_t i = 0; i < function.bcMapping.size(); ++i)
{
uint32_t irLocation = function.bcMapping[i].irLocation;
if (irLocation != ~0u)
bcLocations[irLocation] = 0;
bcLocations[irLocation] = uint32_t(i);
}
DenseHashMap<uint32_t, uint32_t> indexIrToBc{~0u};
bool outputEnabled = options.includeAssembly || options.includeIr;
if (outputEnabled && options.annotator)
{
// Create reverse mapping from IR location to bytecode location
for (size_t i = 0; i < function.bcMapping.size(); ++i)
{
uint32_t irLocation = function.bcMapping[i].irLocation;
if (irLocation != ~0u)
indexIrToBc[irLocation] = uint32_t(i);
}
}
IrToStringContext ctx{build.text, function.blocks, function.constants, function.cfg};
// We use this to skip outlined fallback blocks from IR/asm text output
@ -164,18 +166,19 @@ static bool lowerImpl(AssemblyBuilder& build, IrLowering& lowering, IrFunction&
{
LUAU_ASSERT(index < function.instructions.size());
uint32_t bcLocation = bcLocations[index];
// If IR instruction is the first one for the original bytecode, we can annotate it with source code text
if (outputEnabled && options.annotator)
if (outputEnabled && options.annotator && bcLocation != ~0u)
{
if (uint32_t* bcIndex = indexIrToBc.find(index))
options.annotator(options.annotatorContext, build.text, bytecodeid, *bcIndex);
options.annotator(options.annotatorContext, build.text, bytecodeid, bcLocation);
}
// If bytecode needs the location of this instruction for jumps, record it
if (uint32_t* bcLocation = bcLocations.find(index))
if (bcLocation != ~0u)
{
Label label = (index == block.start) ? block.label : build.setLabel();
*bcLocation = build.getLabelOffset(label);
function.bcMapping[bcLocation].asmLocation = build.getLabelOffset(label);
}
IrInst& inst = function.instructions[index];
@ -227,13 +230,6 @@ static bool lowerImpl(AssemblyBuilder& build, IrLowering& lowering, IrFunction&
build.logAppend("; skipping %u bytes of outlined code\n", unsigned((build.getCodeSize() - codeSize) * sizeof(build.code[0])));
}
// Copy assembly locations of IR instructions that are mapped to bytecode instructions
for (auto& [irLocation, asmLocation] : function.bcMapping)
{
if (irLocation != ~0u)
asmLocation = bcLocations[irLocation];
}
return true;
}
@ -293,10 +289,12 @@ static NativeProto* assembleFunction(AssemblyBuilder& build, NativeState& data,
if (!FFlag::DebugCodegenNoOpt)
{
constPropInBlockChains(ir);
bool useValueNumbering = !FFlag::DebugCodegenSkipNumbering;
constPropInBlockChains(ir, useValueNumbering);
if (!FFlag::DebugCodegenOptSize)
createLinearBlocks(ir);
createLinearBlocks(ir, useValueNumbering);
}
if (!lowerIr(build, ir, data, helpers, proto, options))
@ -313,12 +311,6 @@ static NativeProto* assembleFunction(AssemblyBuilder& build, NativeState& data,
return createNativeProto(proto, ir);
}
static void destroyNativeProto(NativeProto* nativeProto)
{
delete[] nativeProto->instTargets;
delete nativeProto;
}
static void onCloseState(lua_State* L)
{
destroyNativeState(L);
@ -347,7 +339,9 @@ static int onEnter(lua_State* L, Proto* proto)
bool (*gate)(lua_State*, Proto*, uintptr_t, NativeContext*) = (bool (*)(lua_State*, Proto*, uintptr_t, NativeContext*))data->context.gateEntry;
NativeProto* nativeProto = getProtoExecData(proto);
uintptr_t target = nativeProto->instTargets[L->ci->savedpc - proto->code];
// instOffsets uses negative indexing for optimal codegen for RETURN opcode
uintptr_t target = nativeProto->instBase + nativeProto->instOffsets[-(L->ci->savedpc - proto->code)];
// Returns 1 to finish the function in the VM
return gate(L, proto, target, &data->context);
@ -517,7 +511,14 @@ void compile(lua_State* L, int idx)
if (NativeProto* np = assembleFunction(build, *data, helpers, p, {}))
results.push_back(np);
build.finalize();
// Very large modules might result in overflowing a jump offset; in this case we currently abandon the entire module
if (!build.finalize())
{
for (NativeProto* result : results)
destroyNativeProto(result);
return;
}
// If no functions were assembled, we don't need to allocate/copy executable pages for helpers
if (results.empty())
@ -535,14 +536,11 @@ void compile(lua_State* L, int idx)
return;
}
// Relocate instruction offsets
// Record instruction base address; at runtime, instOffsets[] will be used as offsets from instBase
for (NativeProto* result : results)
{
for (int i = 0; i < result->proto->sizecode; i++)
result->instTargets[i] += uintptr_t(codeStart);
LUAU_ASSERT(result->proto->sizecode);
result->entryTarget = result->instTargets[0];
result->instBase = uintptr_t(codeStart);
result->entryTarget = uintptr_t(codeStart) + result->instOffsets[0];
}
// Link native proto objects to Proto; the memory is now managed by VM and will be freed via onDestroyFunction
@ -579,7 +577,8 @@ std::string getAssembly(lua_State* L, int idx, AssemblyOptions options)
if (NativeProto* np = assembleFunction(build, data, helpers, p, options))
destroyNativeProto(np);
build.finalize();
if (!build.finalize())
return std::string();
if (options.outputBinary)
return std::string(reinterpret_cast<const char*>(build.code.data()), reinterpret_cast<const char*>(build.code.data() + build.code.size())) +

View File

@ -35,11 +35,17 @@ static void emitInterrupt(AssemblyBuilderA64& build)
{
// x0 = pc offset
// x1 = return address in native code
// x2 = interrupt
Label skip;
// Stash return address in rBase; we need to reload rBase anyway
build.mov(rBase, x1);
// Load interrupt handler; it may be nullptr in case the update raced with the check before we got here
build.ldr(x2, mem(rState, offsetof(lua_State, global)));
build.ldr(x2, mem(x2, offsetof(global_State, cb.interrupt)));
build.cbz(x2, skip);
// Update savedpc; required in case interrupt errors
build.add(x0, rCode, x0);
build.ldr(x1, mem(rState, offsetof(lua_State, ci)));
@ -51,7 +57,6 @@ static void emitInterrupt(AssemblyBuilderA64& build)
build.blr(x2);
// Check if we need to exit
Label skip;
build.ldrb(w0, mem(rState, offsetof(lua_State, status)));
build.cbz(w0, skip);
@ -92,11 +97,11 @@ static void emitReentry(AssemblyBuilderA64& build, ModuleHelpers& helpers)
// Get instruction index from instruction pointer
// To get instruction index from instruction pointer, we need to divide byte offset by 4
// But we will actually need to scale instruction index by 8 back to byte offset later so it cancels out
// But we will actually need to scale instruction index by 4 back to byte offset later so it cancels out
// Note that we're computing negative offset here (code-savedpc) so that we can add it to NativeProto address, as we use reverse indexing
build.ldr(x2, mem(rState, offsetof(lua_State, ci))); // L->ci
build.ldr(x2, mem(x2, offsetof(CallInfo, savedpc))); // L->ci->savedpc
build.sub(x2, x2, rCode);
build.add(x2, x2, x2); // TODO: this would not be necessary if we supported shifted register offsets in loads
build.sub(x2, rCode, x2);
// We need to check if the new function can be executed natively
// TODO: This can be done earlier in the function flow, to reduce the JIT->VM transition penalty
@ -104,8 +109,10 @@ static void emitReentry(AssemblyBuilderA64& build, ModuleHelpers& helpers)
build.cbz(x1, helpers.exitContinueVm);
// Get new instruction location and jump to it
build.ldr(x1, mem(x1, offsetof(NativeProto, instTargets)));
build.ldr(x1, mem(x1, x2));
LUAU_ASSERT(offsetof(NativeProto, instOffsets) == 0);
build.ldr(w2, mem(x1, x2));
build.ldr(x1, mem(x1, offsetof(NativeProto, instBase)));
build.add(x1, x1, x2);
build.br(x1);
}

View File

@ -18,24 +18,10 @@ namespace CodeGen
namespace X64
{
void emitBuiltinMathLog(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
{
regs.assertAllFree();
build.vmovsd(xmm0, luauRegValue(arg));
// TODO: IR builtin lowering assumes that the only valid 2-argument call is log2; ideally, we use a less hacky way to indicate that
if (nparams == 2)
build.call(qword[rNativeContext + offsetof(NativeContext, libm_log2)]);
else
build.call(qword[rNativeContext + offsetof(NativeContext, libm_log)]);
build.vmovsd(luauRegValue(ra), xmm0);
}
void emitBuiltinMathLdexp(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
static void emitBuiltinMathLdexp(IrRegAllocX64& regs, AssemblyBuilderX64& build, int ra, int arg, OperandX64 arg2)
{
ScopedRegX64 tmp{regs, SizeX64::qword};
build.vcvttsd2si(tmp.reg, qword[args + offsetof(TValue, value)]);
build.vcvttsd2si(tmp.reg, arg2);
IrCallWrapperX64 callWrap(regs, build);
callWrap.addArgument(SizeX64::xmmword, luauRegValue(arg));
@ -45,7 +31,7 @@ void emitBuiltinMathLdexp(IrRegAllocX64& regs, AssemblyBuilderX64& build, int np
build.vmovsd(luauRegValue(ra), xmm0);
}
void emitBuiltinMathFrexp(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
static void emitBuiltinMathFrexp(IrRegAllocX64& regs, AssemblyBuilderX64& build, int ra, int arg, int nresults)
{
IrCallWrapperX64 callWrap(regs, build);
callWrap.addArgument(SizeX64::xmmword, luauRegValue(arg));
@ -61,7 +47,7 @@ void emitBuiltinMathFrexp(IrRegAllocX64& regs, AssemblyBuilderX64& build, int np
}
}
void emitBuiltinMathModf(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
static void emitBuiltinMathModf(IrRegAllocX64& regs, AssemblyBuilderX64& build, int ra, int arg, int nresults)
{
IrCallWrapperX64 callWrap(regs, build);
callWrap.addArgument(SizeX64::xmmword, luauRegValue(arg));
@ -75,7 +61,7 @@ void emitBuiltinMathModf(IrRegAllocX64& regs, AssemblyBuilderX64& build, int npa
build.vmovsd(luauRegValue(ra + 1), xmm0);
}
void emitBuiltinMathSign(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
static void emitBuiltinMathSign(IrRegAllocX64& regs, AssemblyBuilderX64& build, int ra, int arg)
{
ScopedRegX64 tmp0{regs, SizeX64::xmmword};
ScopedRegX64 tmp1{regs, SizeX64::xmmword};
@ -102,7 +88,7 @@ void emitBuiltinMathSign(IrRegAllocX64& regs, AssemblyBuilderX64& build, int npa
build.vmovsd(luauRegValue(ra), tmp0.reg);
}
void emitBuiltinType(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
static void emitBuiltinType(IrRegAllocX64& regs, AssemblyBuilderX64& build, int ra, int arg)
{
ScopedRegX64 tmp0{regs, SizeX64::qword};
ScopedRegX64 tag{regs, SizeX64::dword};
@ -115,7 +101,7 @@ void emitBuiltinType(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams
build.mov(luauRegValue(ra), tmp0.reg);
}
void emitBuiltinTypeof(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
static void emitBuiltinTypeof(IrRegAllocX64& regs, AssemblyBuilderX64& build, int ra, int arg)
{
IrCallWrapperX64 callWrap(regs, build);
callWrap.addArgument(SizeX64::qword, rState);
@ -125,38 +111,28 @@ void emitBuiltinTypeof(IrRegAllocX64& regs, AssemblyBuilderX64& build, int npara
build.mov(luauRegValue(ra), rax);
}
void emitBuiltin(IrRegAllocX64& regs, AssemblyBuilderX64& build, int bfid, int ra, int arg, IrOp args, int nparams, int nresults)
void emitBuiltin(IrRegAllocX64& regs, AssemblyBuilderX64& build, int bfid, int ra, int arg, OperandX64 arg2, int nparams, int nresults)
{
OperandX64 argsOp = 0;
if (args.kind == IrOpKind::VmReg)
argsOp = luauRegAddress(vmRegOp(args));
else if (args.kind == IrOpKind::VmConst)
argsOp = luauConstantAddress(vmConstOp(args));
switch (bfid)
{
case LBF_MATH_LOG:
LUAU_ASSERT((nparams == 1 || nparams == 2) && nresults == 1);
return emitBuiltinMathLog(regs, build, nparams, ra, arg, argsOp, nresults);
case LBF_MATH_LDEXP:
LUAU_ASSERT(nparams == 2 && nresults == 1);
return emitBuiltinMathLdexp(regs, build, nparams, ra, arg, argsOp, nresults);
return emitBuiltinMathLdexp(regs, build, ra, arg, arg2);
case LBF_MATH_FREXP:
LUAU_ASSERT(nparams == 1 && (nresults == 1 || nresults == 2));
return emitBuiltinMathFrexp(regs, build, nparams, ra, arg, argsOp, nresults);
return emitBuiltinMathFrexp(regs, build, ra, arg, nresults);
case LBF_MATH_MODF:
LUAU_ASSERT(nparams == 1 && (nresults == 1 || nresults == 2));
return emitBuiltinMathModf(regs, build, nparams, ra, arg, argsOp, nresults);
return emitBuiltinMathModf(regs, build, ra, arg, nresults);
case LBF_MATH_SIGN:
LUAU_ASSERT(nparams == 1 && nresults == 1);
return emitBuiltinMathSign(regs, build, nparams, ra, arg, argsOp, nresults);
return emitBuiltinMathSign(regs, build, ra, arg);
case LBF_TYPE:
LUAU_ASSERT(nparams == 1 && nresults == 1);
return emitBuiltinType(regs, build, nparams, ra, arg, argsOp, nresults);
return emitBuiltinType(regs, build, ra, arg);
case LBF_TYPEOF:
LUAU_ASSERT(nparams == 1 && nresults == 1);
return emitBuiltinTypeof(regs, build, nparams, ra, arg, argsOp, nresults);
return emitBuiltinTypeof(regs, build, ra, arg);
default:
LUAU_ASSERT(!"Missing x64 lowering");
break;

View File

@ -16,7 +16,7 @@ class AssemblyBuilderX64;
struct OperandX64;
struct IrRegAllocX64;
void emitBuiltin(IrRegAllocX64& regs, AssemblyBuilderX64& build, int bfid, int ra, int arg, IrOp args, int nparams, int nresults);
void emitBuiltin(IrRegAllocX64& regs, AssemblyBuilderX64& build, int bfid, int ra, int arg, OperandX64 arg2, int nparams, int nresults);
} // namespace X64
} // namespace CodeGen

View File

@ -13,8 +13,9 @@
// Arguments: x0-x7, v0-v7
// Return: x0, v0 (or x8 that points to the address of the resulting structure)
// Volatile: x9-x15, v16-v31 ("caller-saved", any call may change them)
// Intra-procedure-call temporary: x16-x17 (any call or relocated jump may change them, as linker may point branches to veneers to perform long jumps)
// Non-volatile: x19-x28, v8-v15 ("callee-saved", preserved after calls, only bottom half of SIMD registers is preserved!)
// Reserved: x16-x18: reserved for linker/platform use; x29: frame pointer (unless omitted); x30: link register; x31: stack pointer
// Reserved: x18: reserved for platform use; x29: frame pointer (unless omitted); x30: link register; x31: stack pointer
namespace Luau
{

View File

@ -308,12 +308,15 @@ void emitInstReturn(AssemblyBuilderX64& build, ModuleHelpers& helpers, int ra, i
build.mov(rax, qword[cip + offsetof(CallInfo, savedpc)]);
// To get instruction index from instruction pointer, we need to divide byte offset by 4
// But we will actually need to scale instruction index by 8 back to byte offset later so it cancels out
build.sub(rax, rdx);
// But we will actually need to scale instruction index by 4 back to byte offset later so it cancels out
// Note that we're computing negative offset here (code-savedpc) so that we can add it to NativeProto address, as we use reverse indexing
build.sub(rdx, rax);
// Get new instruction location and jump to it
build.mov(rdx, qword[execdata + offsetof(NativeProto, instTargets)]);
build.jmp(qword[rdx + rax * 2]);
LUAU_ASSERT(offsetof(NativeProto, instOffsets) == 0);
build.mov(edx, dword[execdata + rdx]);
build.add(rdx, qword[execdata + offsetof(NativeProto, instBase)]);
build.jmp(rdx);
}
void emitInstSetList(IrRegAllocX64& regs, AssemblyBuilderX64& build, int ra, int rb, int count, uint32_t index)

View File

@ -529,7 +529,8 @@ static void computeCfgLiveInOutRegSets(IrFunction& function)
RegisterSet& outRs = info.out[blockIdx];
// Current block has to provide all registers in successor blocks
for (uint32_t succIdx : successors(info, blockIdx))
BlockIteratorWrapper successorsIt = successors(info, blockIdx);
for (uint32_t succIdx : successorsIt)
{
IrBlock& succ = function.blocks[succIdx];
@ -538,7 +539,11 @@ static void computeCfgLiveInOutRegSets(IrFunction& function)
// This is because fallback blocks define an alternative implementation of the same operations
// This can cause the current block to define more registers that actually were available at fallback entry
if (curr.kind != IrBlockKind::Fallback && succ.kind == IrBlockKind::Fallback)
{
// If this is the only successor, this skip will not be valid
LUAU_ASSERT(successorsIt.size() != 1);
continue;
}
const RegisterSet& succRs = info.in[succIdx];

View File

@ -30,7 +30,7 @@ void IrBuilder::buildFunctionIr(Proto* proto)
// Rebuild original control flow blocks
rebuildBytecodeBasicBlocks(proto);
function.bcMapping.resize(proto->sizecode, {~0u, 0});
function.bcMapping.resize(proto->sizecode, {~0u, ~0u});
// Translate all instructions to IR inside blocks
for (int i = 0; i < proto->sizecode;)
@ -41,7 +41,7 @@ void IrBuilder::buildFunctionIr(Proto* proto)
int nexti = i + getOpLength(op);
LUAU_ASSERT(nexti <= proto->sizecode);
function.bcMapping[i] = {uint32_t(function.instructions.size()), 0};
function.bcMapping[i] = {uint32_t(function.instructions.size()), ~0u};
// Begin new block at this instruction if it was in the bytecode or requested during translation
if (instIndexToBlock[i] != kNoAssociatedBlockIndex)
@ -293,7 +293,7 @@ void IrBuilder::translateInst(LuauOpcode op, const Instruction* pc, int i)
int skip = LUAU_INSN_C(*pc);
IrOp next = blockAtInst(i + skip + 2);
translateFastCallN(*this, pc, i, true, 1, constBool(false), next);
translateFastCallN(*this, pc, i, true, 1, undef(), next);
activeFastcallFallback = true;
fastcallFallbackReturn = next;
@ -496,6 +496,11 @@ void IrBuilder::clone(const IrBlock& source, bool removeCurrentTerminator)
}
}
IrOp IrBuilder::undef()
{
return {IrOpKind::Undef, 0};
}
IrOp IrBuilder::constBool(bool value)
{
IrConst constant;

View File

@ -120,8 +120,6 @@ const char* getCmdName(IrCmd cmd)
return "DIV_NUM";
case IrCmd::MOD_NUM:
return "MOD_NUM";
case IrCmd::POW_NUM:
return "POW_NUM";
case IrCmd::MIN_NUM:
return "MIN_NUM";
case IrCmd::MAX_NUM:
@ -359,6 +357,9 @@ void toString(IrToStringContext& ctx, IrOp op)
{
case IrOpKind::None:
break;
case IrOpKind::Undef:
append(ctx.result, "undef");
break;
case IrOpKind::Constant:
toString(ctx.result, ctx.constants[op.index]);
break;
@ -398,7 +399,10 @@ void toString(std::string& result, IrConst constant)
append(result, "%uu", constant.valueUint);
break;
case IrConstKind::Double:
append(result, "%.17g", constant.valueDouble);
if (constant.valueDouble != constant.valueDouble)
append(result, "nan");
else
append(result, "%.17g", constant.valueDouble);
break;
case IrConstKind::Tag:
result.append(getTagName(constant.valueTag));

View File

@ -109,46 +109,6 @@ static void emitFallback(AssemblyBuilderA64& build, int op, int pcpos)
emitUpdateBase(build);
}
static void emitInvokeLibm1(AssemblyBuilderA64& build, size_t func, int res, int arg)
{
build.ldr(d0, mem(rBase, arg * sizeof(TValue) + offsetof(TValue, value.n)));
build.ldr(x0, mem(rNativeContext, uint32_t(func)));
build.blr(x0);
build.str(d0, mem(rBase, res * sizeof(TValue) + offsetof(TValue, value.n)));
}
static void emitInvokeLibm2(AssemblyBuilderA64& build, size_t func, int res, int arg, IrOp args, bool argsInt = false)
{
if (args.kind == IrOpKind::VmReg)
build.ldr(d1, mem(rBase, args.index * sizeof(TValue) + offsetof(TValue, value.n)));
else if (args.kind == IrOpKind::VmConst)
{
size_t constantOffset = args.index * sizeof(TValue) + offsetof(TValue, value.n);
// Note: cumulative offset is guaranteed to be divisible by 8 (since we're loading a double); we can use that to expand the useful range that
// doesn't require temporaries
if (constantOffset / 8 <= AddressA64::kMaxOffset)
{
build.ldr(d1, mem(rConstants, int(constantOffset)));
}
else
{
emitAddOffset(build, x0, rConstants, constantOffset);
build.ldr(d1, x0);
}
}
else
LUAU_ASSERT(!"Unsupported instruction form");
if (argsInt)
build.fcvtzs(w0, d1);
build.ldr(d0, mem(rBase, arg * sizeof(TValue) + offsetof(TValue, value.n)));
build.ldr(x1, mem(rNativeContext, uint32_t(func)));
build.blr(x1);
build.str(d0, mem(rBase, res * sizeof(TValue) + offsetof(TValue, value.n)));
}
static void emitInvokeLibm1P(AssemblyBuilderA64& build, size_t func, int arg)
{
build.ldr(d0, mem(rBase, arg * sizeof(TValue) + offsetof(TValue, value.n)));
@ -157,21 +117,46 @@ static void emitInvokeLibm1P(AssemblyBuilderA64& build, size_t func, int arg)
build.blr(x1);
}
static bool emitBuiltin(AssemblyBuilderA64& build, IrRegAllocA64& regs, int bfid, int res, int arg, IrOp args, int nparams, int nresults)
static bool emitBuiltin(
AssemblyBuilderA64& build, IrFunction& function, IrRegAllocA64& regs, int bfid, int res, int arg, IrOp args, int nparams, int nresults)
{
switch (bfid)
{
case LBF_MATH_LOG:
LUAU_ASSERT((nparams == 1 || nparams == 2) && nresults == 1);
// TODO: IR builtin lowering assumes that the only valid 2-argument call is log2; ideally, we use a less hacky way to indicate that
if (nparams == 2)
emitInvokeLibm1(build, offsetof(NativeContext, libm_log2), res, arg);
else
emitInvokeLibm1(build, offsetof(NativeContext, libm_log), res, arg);
return true;
case LBF_MATH_LDEXP:
LUAU_ASSERT(nparams == 2 && nresults == 1);
emitInvokeLibm2(build, offsetof(NativeContext, libm_ldexp), res, arg, args, /* argsInt= */ true);
if (args.kind == IrOpKind::VmReg)
{
build.ldr(d1, mem(rBase, args.index * sizeof(TValue) + offsetof(TValue, value.n)));
build.fcvtzs(w0, d1);
}
else if (args.kind == IrOpKind::VmConst)
{
size_t constantOffset = args.index * sizeof(TValue) + offsetof(TValue, value.n);
// Note: cumulative offset is guaranteed to be divisible by 8 (since we're loading a double); we can use that to expand the useful range
// that doesn't require temporaries
if (constantOffset / 8 <= AddressA64::kMaxOffset)
{
build.ldr(d1, mem(rConstants, int(constantOffset)));
}
else
{
emitAddOffset(build, x0, rConstants, constantOffset);
build.ldr(d1, x0);
}
build.fcvtzs(w0, d1);
}
else if (args.kind == IrOpKind::Constant)
build.mov(w0, int(function.doubleOp(args)));
else if (args.kind != IrOpKind::Undef)
LUAU_ASSERT(!"Unsupported instruction form");
build.ldr(d0, mem(rBase, arg * sizeof(TValue) + offsetof(TValue, value.n)));
build.ldr(x1, mem(rNativeContext, offsetof(NativeContext, libm_ldexp)));
build.blr(x1);
build.str(d0, mem(rBase, res * sizeof(TValue) + offsetof(TValue, value.n)));
return true;
case LBF_MATH_FREXP:
LUAU_ASSERT(nparams == 1 && (nresults == 1 || nresults == 2));
@ -233,14 +218,22 @@ IrLoweringA64::IrLoweringA64(AssemblyBuilderA64& build, ModuleHelpers& helpers,
, data(data)
, proto(proto)
, function(function)
, regs(function, {{x0, x15}, {q0, q7}, {q16, q31}})
, regs(function, {{x0, x15}, {x16, x17}, {q0, q7}, {q16, q31}})
, valueTracker(function)
{
// In order to allocate registers during lowering, we need to know where instruction results are last used
updateLastUseLocations(function);
valueTracker.setRestoreCallack(this, [](void* context, IrInst& inst) {
IrLoweringA64* self = static_cast<IrLoweringA64*>(context);
self->regs.restoreReg(self->build, inst);
});
}
void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
{
valueTracker.beforeInstLowering(inst);
switch (inst.cmd)
{
case IrCmd::LOAD_TAG:
@ -299,7 +292,6 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
}
else if (inst.b.kind == IrOpKind::Constant)
{
// TODO: refactor into a common helper? can't use emitAddOffset because we need a temp register
if (intOp(inst.b) * sizeof(TValue) <= AssemblyBuilderA64::kMaxImmediate)
{
build.add(inst.regA64, inst.regA64, uint16_t(intOp(inst.b) * sizeof(TValue)));
@ -387,6 +379,24 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
build.str(temp, addr);
break;
}
case IrCmd::STORE_VECTOR:
{
RegisterA64 temp1 = tempDouble(inst.b);
RegisterA64 temp2 = tempDouble(inst.c);
RegisterA64 temp3 = tempDouble(inst.d);
RegisterA64 temp4 = regs.allocTemp(KindA64::s);
AddressA64 addr = tempAddr(inst.a, offsetof(TValue, value));
LUAU_ASSERT(addr.kind == AddressKindA64::imm && addr.data % 4 == 0 && unsigned(addr.data + 8) / 4 <= AddressA64::kMaxOffset);
build.fcvt(temp4, temp1);
build.str(temp4, AddressA64(addr.base, addr.data + 0));
build.fcvt(temp4, temp2);
build.str(temp4, AddressA64(addr.base, addr.data + 4));
build.fcvt(temp4, temp3);
build.str(temp4, AddressA64(addr.base, addr.data + 8));
break;
}
case IrCmd::STORE_TVALUE:
{
AddressA64 addr = tempAddr(inst.a, 0);
@ -400,6 +410,8 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.a, inst.b});
if (inst.b.kind == IrOpKind::Constant && unsigned(intOp(inst.b)) <= AssemblyBuilderA64::kMaxImmediate)
build.add(inst.regA64, regOp(inst.a), uint16_t(intOp(inst.b)));
else if (inst.a.kind == IrOpKind::Constant && unsigned(intOp(inst.a)) <= AssemblyBuilderA64::kMaxImmediate)
build.add(inst.regA64, regOp(inst.b), uint16_t(intOp(inst.a)));
else
{
RegisterA64 temp = tempInt(inst.b);
@ -459,21 +471,6 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
build.fsub(inst.regA64, temp1, inst.regA64);
break;
}
case IrCmd::POW_NUM:
{
RegisterA64 temp1 = tempDouble(inst.a);
RegisterA64 temp2 = tempDouble(inst.b);
build.fmov(d0, temp1); // TODO: aliasing hazard
build.fmov(d1, temp2); // TODO: aliasing hazard
regs.spill(build, index, {d0, d1});
build.ldr(x0, mem(rNativeContext, offsetof(NativeContext, libm_pow)));
build.blr(x0);
// TODO: we could takeReg d0 but it's unclear if we will be able to keep d0 allocatable due to aliasing concerns
inst.regA64 = regs.allocReuse(KindA64::d, index, {inst.a, inst.b});
build.fmov(inst.regA64, d0);
break;
}
case IrCmd::MIN_NUM:
{
inst.regA64 = regs.allocReuse(KindA64::d, index, {inst.a, inst.b});
@ -635,8 +632,8 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
break;
case IrCmd::JUMP_GE_UINT:
{
LUAU_ASSERT(uintOp(inst.b) <= AssemblyBuilderA64::kMaxImmediate);
build.cmp(regOp(inst.a), uint16_t(uintOp(inst.b)));
LUAU_ASSERT(unsigned(intOp(inst.b)) <= AssemblyBuilderA64::kMaxImmediate);
build.cmp(regOp(inst.a), uint16_t(unsigned(intOp(inst.b))));
build.b(ConditionA64::CarrySet, labelOp(inst.c));
jumpOrFallthrough(blockOp(inst.d), next);
break;
@ -723,8 +720,9 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
}
case IrCmd::TABLE_LEN:
{
build.mov(x0, regOp(inst.a)); // TODO: aliasing hazard
regs.spill(build, index, {x0});
RegisterA64 reg = regOp(inst.a); // note: we need to call regOp before spill so that we don't do redundant reloads
regs.spill(build, index, {reg});
build.mov(x0, reg);
build.ldr(x1, mem(rNativeContext, offsetof(NativeContext, luaH_getn)));
build.blr(x1);
inst.regA64 = regs.allocReg(KindA64::d, index);
@ -739,21 +737,18 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
build.mov(x2, uintOp(inst.b));
build.ldr(x3, mem(rNativeContext, offsetof(NativeContext, luaH_new)));
build.blr(x3);
// TODO: we could takeReg x0 but it's unclear if we will be able to keep x0 allocatable due to aliasing concerns
inst.regA64 = regs.allocReg(KindA64::x, index);
build.mov(inst.regA64, x0);
inst.regA64 = regs.takeReg(x0, index);
break;
}
case IrCmd::DUP_TABLE:
{
build.mov(x1, regOp(inst.a)); // TODO: aliasing hazard
regs.spill(build, index, {x1});
RegisterA64 reg = regOp(inst.a); // note: we need to call regOp before spill so that we don't do redundant reloads
regs.spill(build, index, {reg});
build.mov(x1, reg);
build.mov(x0, rState);
build.ldr(x2, mem(rNativeContext, offsetof(NativeContext, luaH_clone)));
build.blr(x2);
// TODO: we could takeReg x0 but it's unclear if we will be able to keep x0 allocatable due to aliasing concerns
inst.regA64 = regs.allocReuse(KindA64::x, index, {inst.a});
build.mov(inst.regA64, x0);
inst.regA64 = regs.takeReg(x0, index);
break;
}
case IrCmd::TRY_NUM_TO_INDEX:
@ -789,17 +784,14 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
build.tst(temp2, 1 << intOp(inst.b)); // can't use tbz/tbnz because their jump offsets are too short
build.b(ConditionA64::NotEqual, labelOp(inst.c)); // Equal = Zero after tst; tmcache caches *absence* of metamethods
regs.spill(build, index, {temp1});
build.mov(x0, temp1);
regs.spill(build, index, {x0});
build.mov(w1, intOp(inst.b));
build.ldr(x2, mem(rState, offsetof(lua_State, global)));
build.ldr(x2, mem(x2, offsetof(global_State, tmname) + intOp(inst.b) * sizeof(TString*)));
build.ldr(x3, mem(rNativeContext, offsetof(NativeContext, luaT_gettm)));
build.blr(x3);
// TODO: we could takeReg x0 but it's unclear if we will be able to keep x0 allocatable due to aliasing concerns
inst.regA64 = regs.allocReuse(KindA64::x, index, {inst.a});
build.mov(inst.regA64, x0);
inst.regA64 = regs.takeReg(x0, index);
break;
}
case IrCmd::INT_TO_NUM:
@ -861,9 +853,7 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
}
case IrCmd::FASTCALL:
regs.spill(build, index);
// TODO: emitBuiltin should be exhaustive
if (!emitBuiltin(build, regs, uintOp(inst.a), vmRegOp(inst.b), vmRegOp(inst.c), inst.d, intOp(inst.e), intOp(inst.f)))
error = true;
error |= emitBuiltin(build, function, regs, uintOp(inst.a), vmRegOp(inst.b), vmRegOp(inst.c), inst.d, intOp(inst.e), intOp(inst.f));
break;
case IrCmd::INVOKE_FASTCALL:
{
@ -878,7 +868,7 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
else if (inst.d.kind == IrOpKind::VmConst)
emitAddOffset(build, x4, rConstants, vmConstOp(inst.d) * sizeof(TValue));
else
LUAU_ASSERT(boolOp(inst.d) == false);
LUAU_ASSERT(inst.d.kind == IrOpKind::Undef);
// nparams
if (intOp(inst.e) == LUA_MULTRET)
@ -1047,10 +1037,9 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
Label skip;
checkObjectBarrierConditions(build, temp1, temp2, vmRegOp(inst.b), skip);
build.mov(x1, temp1); // TODO: aliasing hazard
size_t spills = regs.spill(build, index, {x1});
size_t spills = regs.spill(build, index, {temp1});
build.mov(x1, temp1);
build.mov(x0, rState);
build.ldr(x2, mem(rBase, vmRegOp(inst.b) * sizeof(TValue) + offsetof(TValue, value)));
build.ldr(x3, mem(rNativeContext, offsetof(NativeContext, luaC_barrierf)));
@ -1108,7 +1097,6 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
build.cmp(temp, regOp(inst.b));
else if (inst.b.kind == IrOpKind::Constant)
{
// TODO: refactor into a common helper?
if (size_t(intOp(inst.b)) <= AssemblyBuilderA64::kMaxImmediate)
{
build.cmp(temp, uint16_t(intOp(inst.b)));
@ -1159,17 +1147,17 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
}
case IrCmd::INTERRUPT:
{
unsigned int pcpos = uintOp(inst.a);
RegisterA64 temp = regs.allocTemp(KindA64::x);
Label skip, next;
build.ldr(x2, mem(rState, offsetof(lua_State, global)));
build.ldr(x2, mem(x2, offsetof(global_State, cb.interrupt)));
build.cbz(x2, skip);
build.ldr(temp, mem(rState, offsetof(lua_State, global)));
build.ldr(temp, mem(temp, offsetof(global_State, cb.interrupt)));
build.cbz(temp, skip);
size_t spills = regs.spill(build, index, {x2});
size_t spills = regs.spill(build, index);
// Jump to outlined interrupt handler, it will give back control to x1
build.mov(x0, (pcpos + 1) * sizeof(Instruction));
build.mov(x0, (uintOp(inst.a) + 1) * sizeof(Instruction));
build.adr(x1, next);
build.b(helpers.interrupt);
@ -1182,7 +1170,6 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
}
case IrCmd::CHECK_GC:
{
regs.spill(build, index);
RegisterA64 temp1 = regs.allocTemp(KindA64::x);
RegisterA64 temp2 = regs.allocTemp(KindA64::x);
@ -1193,12 +1180,17 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
build.cmp(temp1, temp2);
build.b(ConditionA64::UnsignedGreater, skip);
size_t spills = regs.spill(build, index);
build.mov(x0, rState);
build.mov(w1, 1);
build.ldr(x1, mem(rNativeContext, offsetof(NativeContext, luaC_step)));
build.blr(x1);
emitUpdateBase(build);
regs.restore(build, spills); // need to restore before skip so that registers are in a consistent state
build.setLabel(skip);
break;
}
@ -1209,8 +1201,9 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
Label skip;
checkObjectBarrierConditions(build, regOp(inst.a), temp, vmRegOp(inst.b), skip);
build.mov(x1, regOp(inst.a)); // TODO: aliasing hazard
size_t spills = regs.spill(build, index, {x1});
RegisterA64 reg = regOp(inst.a); // note: we need to call regOp before spill so that we don't do redundant reloads
size_t spills = regs.spill(build, index, {reg});
build.mov(x1, reg);
build.mov(x0, rState);
build.ldr(x2, mem(rBase, vmRegOp(inst.b) * sizeof(TValue) + offsetof(TValue, value)));
build.ldr(x3, mem(rNativeContext, offsetof(NativeContext, luaC_barrierf)));
@ -1231,8 +1224,9 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
build.ldrb(temp, mem(regOp(inst.a), offsetof(GCheader, marked)));
build.tbz(temp, BLACKBIT, skip);
build.mov(x1, regOp(inst.a)); // TODO: aliasing hazard
size_t spills = regs.spill(build, index, {x1});
RegisterA64 reg = regOp(inst.a); // note: we need to call regOp before spill so that we don't do redundant reloads
size_t spills = regs.spill(build, index, {reg});
build.mov(x1, reg);
build.mov(x0, rState);
build.add(x2, x1, uint16_t(offsetof(Table, gclist)));
build.ldr(x3, mem(rNativeContext, offsetof(NativeContext, luaC_barrierback)));
@ -1251,8 +1245,9 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
Label skip;
checkObjectBarrierConditions(build, regOp(inst.a), temp, vmRegOp(inst.b), skip);
build.mov(x1, regOp(inst.a)); // TODO: aliasing hazard
size_t spills = regs.spill(build, index, {x1});
RegisterA64 reg = regOp(inst.a); // note: we need to call regOp before spill so that we don't do redundant reloads
size_t spills = regs.spill(build, index, {reg});
build.mov(x1, reg);
build.mov(x0, rState);
build.ldr(x2, mem(rBase, vmRegOp(inst.b) * sizeof(TValue) + offsetof(TValue, value)));
build.ldr(x3, mem(rNativeContext, offsetof(NativeContext, luaC_barriertable)));
@ -1290,8 +1285,8 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
build.cmp(temp2, temp1);
build.b(ConditionA64::UnsignedGreater, skip);
build.mov(x1, temp2); // TODO: aliasing hazard
size_t spills = regs.spill(build, index, {x1});
size_t spills = regs.spill(build, index, {temp2});
build.mov(x1, temp2);
build.mov(x0, rState);
build.ldr(x2, mem(rNativeContext, offsetof(NativeContext, luaF_close)));
build.blr(x2);
@ -1484,8 +1479,8 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
case IrCmd::BITAND_UINT:
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.a, inst.b});
if (inst.b.kind == IrOpKind::Constant && AssemblyBuilderA64::isMaskSupported(uintOp(inst.b)))
build.and_(inst.regA64, regOp(inst.a), uintOp(inst.b));
if (inst.b.kind == IrOpKind::Constant && AssemblyBuilderA64::isMaskSupported(unsigned(intOp(inst.b))))
build.and_(inst.regA64, regOp(inst.a), unsigned(intOp(inst.b)));
else
{
RegisterA64 temp1 = tempUint(inst.a);
@ -1497,8 +1492,8 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
case IrCmd::BITXOR_UINT:
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.a, inst.b});
if (inst.b.kind == IrOpKind::Constant && AssemblyBuilderA64::isMaskSupported(uintOp(inst.b)))
build.eor(inst.regA64, regOp(inst.a), uintOp(inst.b));
if (inst.b.kind == IrOpKind::Constant && AssemblyBuilderA64::isMaskSupported(unsigned(intOp(inst.b))))
build.eor(inst.regA64, regOp(inst.a), unsigned(intOp(inst.b)));
else
{
RegisterA64 temp1 = tempUint(inst.a);
@ -1510,8 +1505,8 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
case IrCmd::BITOR_UINT:
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.a, inst.b});
if (inst.b.kind == IrOpKind::Constant && AssemblyBuilderA64::isMaskSupported(uintOp(inst.b)))
build.orr(inst.regA64, regOp(inst.a), uintOp(inst.b));
if (inst.b.kind == IrOpKind::Constant && AssemblyBuilderA64::isMaskSupported(unsigned(intOp(inst.b))))
build.orr(inst.regA64, regOp(inst.a), unsigned(intOp(inst.b)));
else
{
RegisterA64 temp1 = tempUint(inst.a);
@ -1531,7 +1526,7 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.a, inst.b});
if (inst.b.kind == IrOpKind::Constant)
build.lsl(inst.regA64, regOp(inst.a), uint8_t(uintOp(inst.b) & 31));
build.lsl(inst.regA64, regOp(inst.a), uint8_t(unsigned(intOp(inst.b)) & 31));
else
{
RegisterA64 temp1 = tempUint(inst.a);
@ -1544,7 +1539,7 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.a, inst.b});
if (inst.b.kind == IrOpKind::Constant)
build.lsr(inst.regA64, regOp(inst.a), uint8_t(uintOp(inst.b) & 31));
build.lsr(inst.regA64, regOp(inst.a), uint8_t(unsigned(intOp(inst.b)) & 31));
else
{
RegisterA64 temp1 = tempUint(inst.a);
@ -1557,7 +1552,7 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.a, inst.b});
if (inst.b.kind == IrOpKind::Constant)
build.asr(inst.regA64, regOp(inst.a), uint8_t(uintOp(inst.b) & 31));
build.asr(inst.regA64, regOp(inst.a), uint8_t(unsigned(intOp(inst.b)) & 31));
else
{
RegisterA64 temp1 = tempUint(inst.a);
@ -1571,7 +1566,7 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
if (inst.b.kind == IrOpKind::Constant)
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.a});
build.ror(inst.regA64, regOp(inst.a), uint8_t((32 - uintOp(inst.b)) & 31));
build.ror(inst.regA64, regOp(inst.a), uint8_t((32 - unsigned(intOp(inst.b))) & 31));
}
else
{
@ -1587,7 +1582,7 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.a, inst.b});
if (inst.b.kind == IrOpKind::Constant)
build.ror(inst.regA64, regOp(inst.a), uint8_t(uintOp(inst.b) & 31));
build.ror(inst.regA64, regOp(inst.a), uint8_t(unsigned(intOp(inst.b)) & 31));
else
{
RegisterA64 temp1 = tempUint(inst.a);
@ -1613,39 +1608,51 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
}
case IrCmd::INVOKE_LIBM:
{
RegisterA64 temp1 = tempDouble(inst.b);
build.fmov(d0, temp1); // TODO: aliasing hazard
if (inst.c.kind != IrOpKind::None)
{
RegisterA64 temp1 = tempDouble(inst.b);
RegisterA64 temp2 = tempDouble(inst.c);
build.fmov(d1, temp2); // TODO: aliasing hazard
regs.spill(build, index, {d0, d1});
RegisterA64 temp3 = regs.allocTemp(KindA64::d); // note: spill() frees all registers so we need to avoid alloc after spill
regs.spill(build, index, {temp1, temp2});
if (d0 != temp2)
{
build.fmov(d0, temp1);
build.fmov(d1, temp2);
}
else
{
build.fmov(temp3, d0);
build.fmov(d0, temp1);
build.fmov(d1, temp3);
}
}
else
regs.spill(build, index, {d0});
{
RegisterA64 temp1 = tempDouble(inst.b);
regs.spill(build, index, {temp1});
build.fmov(d0, temp1);
}
build.ldr(x0, mem(rNativeContext, getNativeContextOffset(LuauBuiltinFunction(uintOp(inst.a)))));
build.ldr(x0, mem(rNativeContext, getNativeContextOffset(uintOp(inst.a))));
build.blr(x0);
// TODO: we could takeReg d0 but it's unclear if we will be able to keep d0 allocatable due to aliasing concerns
inst.regA64 = regs.allocReg(KindA64::d, index);
build.fmov(inst.regA64, d0);
inst.regA64 = regs.takeReg(d0, index);
break;
}
// Unsupported instructions
// Note: when adding implementations for these, please move the case: label so that implemented instructions match the order in IrData.h
case IrCmd::STORE_VECTOR:
error = true;
break;
// To handle unsupported instructions, add "case IrCmd::OP" and make sure to set error = true!
}
valueTracker.afterInstLowering(inst, index);
regs.freeLastUseRegs(inst, index);
regs.freeTempRegs();
}
void IrLoweringA64::finishBlock() {}
void IrLoweringA64::finishBlock()
{
regs.assertNoSpills();
}
bool IrLoweringA64::hasError() const
{
@ -1717,7 +1724,7 @@ RegisterA64 IrLoweringA64::tempUint(IrOp op)
else if (op.kind == IrOpKind::Constant)
{
RegisterA64 temp = regs.allocTemp(KindA64::w);
build.mov(temp, uintOp(op));
build.mov(temp, unsigned(intOp(op)));
return temp;
}
else
@ -1762,7 +1769,7 @@ RegisterA64 IrLoweringA64::regOp(IrOp op)
{
IrInst& inst = function.instOp(op);
if (inst.spilled)
if (inst.spilled || inst.needsReload)
regs.restoreReg(build, inst);
LUAU_ASSERT(inst.regA64 != noreg);

View File

@ -5,6 +5,7 @@
#include "Luau/IrData.h"
#include "IrRegAllocA64.h"
#include "IrValueLocationTracking.h"
#include <vector>
@ -64,6 +65,8 @@ struct IrLoweringA64
IrRegAllocA64 regs;
IrValueLocationTracking valueTracker;
bool error = false;
};

View File

@ -237,17 +237,38 @@ void IrLoweringX64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
build.vmovups(luauNodeValue(regOp(inst.a)), regOp(inst.b));
break;
case IrCmd::ADD_INT:
{
inst.regX64 = regs.allocRegOrReuse(SizeX64::dword, index, {inst.a});
if (inst.b.kind == IrOpKind::Inst)
build.lea(inst.regX64, addr[regOp(inst.a) + regOp(inst.b)]);
else if (inst.regX64 == regOp(inst.a) && intOp(inst.b) == 1)
build.inc(inst.regX64);
else if (inst.regX64 == regOp(inst.a))
build.add(inst.regX64, intOp(inst.b));
if (inst.a.kind == IrOpKind::Constant)
{
build.lea(inst.regX64, addr[regOp(inst.b) + intOp(inst.a)]);
}
else if (inst.a.kind == IrOpKind::Inst)
{
if (inst.regX64 == regOp(inst.a))
{
if (inst.b.kind == IrOpKind::Inst)
build.add(inst.regX64, regOp(inst.b));
else if (intOp(inst.b) == 1)
build.inc(inst.regX64);
else
build.add(inst.regX64, intOp(inst.b));
}
else
{
if (inst.b.kind == IrOpKind::Inst)
build.lea(inst.regX64, addr[regOp(inst.a) + regOp(inst.b)]);
else
build.lea(inst.regX64, addr[regOp(inst.a) + intOp(inst.b)]);
}
}
else
build.lea(inst.regX64, addr[regOp(inst.a) + intOp(inst.b)]);
{
LUAU_ASSERT(!"Unsupported instruction form");
}
break;
}
case IrCmd::SUB_INT:
inst.regX64 = regs.allocRegOrReuse(SizeX64::dword, index, {inst.a});
@ -359,15 +380,6 @@ void IrLoweringX64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
}
break;
}
case IrCmd::POW_NUM:
{
IrCallWrapperX64 callWrap(regs, build, index);
callWrap.addArgument(SizeX64::xmmword, memRegDoubleOp(inst.a), inst.a);
callWrap.addArgument(SizeX64::xmmword, memRegDoubleOp(inst.b), inst.b);
callWrap.call(qword[rNativeContext + offsetof(NativeContext, libm_pow)]);
inst.regX64 = regs.takeReg(xmm0, index);
break;
}
case IrCmd::MIN_NUM:
inst.regX64 = regs.allocRegOrReuse(SizeX64::xmmword, index, {inst.a, inst.b});
@ -537,7 +549,7 @@ void IrLoweringX64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
jumpOrFallthrough(blockOp(inst.d), next);
break;
case IrCmd::JUMP_GE_UINT:
build.cmp(regOp(inst.a), uintOp(inst.b));
build.cmp(regOp(inst.a), unsigned(intOp(inst.b)));
build.jcc(ConditionX64::AboveEqual, labelOp(inst.c));
jumpOrFallthrough(blockOp(inst.d), next);
@ -690,8 +702,12 @@ void IrLoweringX64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
}
case IrCmd::FASTCALL:
emitBuiltin(regs, build, uintOp(inst.a), vmRegOp(inst.b), vmRegOp(inst.c), inst.d, intOp(inst.e), intOp(inst.f));
{
OperandX64 arg2 = inst.d.kind != IrOpKind::Undef ? memRegDoubleOp(inst.d) : OperandX64{0};
emitBuiltin(regs, build, uintOp(inst.a), vmRegOp(inst.b), vmRegOp(inst.c), arg2, intOp(inst.e), intOp(inst.f));
break;
}
case IrCmd::INVOKE_FASTCALL:
{
unsigned bfid = uintOp(inst.a);
@ -703,7 +719,7 @@ void IrLoweringX64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
else if (inst.d.kind == IrOpKind::VmConst)
args = luauConstantAddress(vmConstOp(inst.d));
else
LUAU_ASSERT(boolOp(inst.d) == false);
LUAU_ASSERT(inst.d.kind == IrOpKind::Undef);
int ra = vmRegOp(inst.b);
int arg = vmRegOp(inst.c);
@ -1141,32 +1157,32 @@ void IrLoweringX64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
case IrCmd::BITAND_UINT:
inst.regX64 = regs.allocRegOrReuse(SizeX64::dword, index, {inst.a});
if (inst.regX64 != regOp(inst.a))
build.mov(inst.regX64, regOp(inst.a));
if (inst.a.kind != IrOpKind::Inst || inst.regX64 != regOp(inst.a))
build.mov(inst.regX64, memRegUintOp(inst.a));
build.and_(inst.regX64, memRegUintOp(inst.b));
break;
case IrCmd::BITXOR_UINT:
inst.regX64 = regs.allocRegOrReuse(SizeX64::dword, index, {inst.a});
if (inst.regX64 != regOp(inst.a))
build.mov(inst.regX64, regOp(inst.a));
if (inst.a.kind != IrOpKind::Inst || inst.regX64 != regOp(inst.a))
build.mov(inst.regX64, memRegUintOp(inst.a));
build.xor_(inst.regX64, memRegUintOp(inst.b));
break;
case IrCmd::BITOR_UINT:
inst.regX64 = regs.allocRegOrReuse(SizeX64::dword, index, {inst.a});
if (inst.regX64 != regOp(inst.a))
build.mov(inst.regX64, regOp(inst.a));
if (inst.a.kind != IrOpKind::Inst || inst.regX64 != regOp(inst.a))
build.mov(inst.regX64, memRegUintOp(inst.a));
build.or_(inst.regX64, memRegUintOp(inst.b));
break;
case IrCmd::BITNOT_UINT:
inst.regX64 = regs.allocRegOrReuse(SizeX64::dword, index, {inst.a});
if (inst.regX64 != regOp(inst.a))
build.mov(inst.regX64, regOp(inst.a));
if (inst.a.kind != IrOpKind::Inst || inst.regX64 != regOp(inst.a))
build.mov(inst.regX64, memRegUintOp(inst.a));
build.not_(inst.regX64);
break;
@ -1179,10 +1195,8 @@ void IrLoweringX64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
build.mov(shiftTmp.reg, memRegUintOp(inst.b));
if (inst.a.kind == IrOpKind::Constant)
build.mov(inst.regX64, uintOp(inst.a));
else if (inst.regX64 != regOp(inst.a))
build.mov(inst.regX64, regOp(inst.a));
if (inst.a.kind != IrOpKind::Inst || inst.regX64 != regOp(inst.a))
build.mov(inst.regX64, memRegUintOp(inst.a));
build.shl(inst.regX64, byteReg(shiftTmp.reg));
break;
@ -1196,10 +1210,8 @@ void IrLoweringX64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
build.mov(shiftTmp.reg, memRegUintOp(inst.b));
if (inst.a.kind == IrOpKind::Constant)
build.mov(inst.regX64, uintOp(inst.a));
else if (inst.regX64 != regOp(inst.a))
build.mov(inst.regX64, regOp(inst.a));
if (inst.a.kind != IrOpKind::Inst || inst.regX64 != regOp(inst.a))
build.mov(inst.regX64, memRegUintOp(inst.a));
build.shr(inst.regX64, byteReg(shiftTmp.reg));
break;
@ -1213,10 +1225,8 @@ void IrLoweringX64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
build.mov(shiftTmp.reg, memRegUintOp(inst.b));
if (inst.a.kind == IrOpKind::Constant)
build.mov(inst.regX64, uintOp(inst.a));
else if (inst.regX64 != regOp(inst.a))
build.mov(inst.regX64, regOp(inst.a));
if (inst.a.kind != IrOpKind::Inst || inst.regX64 != regOp(inst.a))
build.mov(inst.regX64, memRegUintOp(inst.a));
build.sar(inst.regX64, byteReg(shiftTmp.reg));
break;
@ -1230,10 +1240,8 @@ void IrLoweringX64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
build.mov(shiftTmp.reg, memRegUintOp(inst.b));
if (inst.a.kind == IrOpKind::Constant)
build.mov(inst.regX64, uintOp(inst.a));
else if (inst.regX64 != regOp(inst.a))
build.mov(inst.regX64, regOp(inst.a));
if (inst.a.kind != IrOpKind::Inst || inst.regX64 != regOp(inst.a))
build.mov(inst.regX64, memRegUintOp(inst.a));
build.rol(inst.regX64, byteReg(shiftTmp.reg));
break;
@ -1247,10 +1255,8 @@ void IrLoweringX64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
build.mov(shiftTmp.reg, memRegUintOp(inst.b));
if (inst.a.kind == IrOpKind::Constant)
build.mov(inst.regX64, uintOp(inst.a));
else if (inst.regX64 != regOp(inst.a))
build.mov(inst.regX64, regOp(inst.a));
if (inst.a.kind != IrOpKind::Inst || inst.regX64 != regOp(inst.a))
build.mov(inst.regX64, memRegUintOp(inst.a));
build.ror(inst.regX64, byteReg(shiftTmp.reg));
break;
@ -1294,15 +1300,13 @@ void IrLoweringX64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
}
case IrCmd::INVOKE_LIBM:
{
LuauBuiltinFunction bfid = LuauBuiltinFunction(uintOp(inst.a));
IrCallWrapperX64 callWrap(regs, build, index);
callWrap.addArgument(SizeX64::xmmword, memRegDoubleOp(inst.b), inst.b);
if (inst.c.kind != IrOpKind::None)
callWrap.addArgument(SizeX64::xmmword, memRegDoubleOp(inst.c), inst.c);
callWrap.call(qword[rNativeContext + getNativeContextOffset(bfid)]);
callWrap.call(qword[rNativeContext + getNativeContextOffset(uintOp(inst.a))]);
inst.regX64 = regs.takeReg(xmm0, index);
break;
}
@ -1370,7 +1374,7 @@ OperandX64 IrLoweringX64::memRegUintOp(IrOp op)
case IrOpKind::Inst:
return regOp(op);
case IrOpKind::Constant:
return OperandX64(uintOp(op));
return OperandX64(unsigned(intOp(op)));
default:
LUAU_ASSERT(!"Unsupported operand kind");
}

View File

@ -2,12 +2,15 @@
#include "IrRegAllocA64.h"
#include "Luau/AssemblyBuilderA64.h"
#include "Luau/IrUtils.h"
#include "BitUtils.h"
#include "EmitCommonA64.h"
#include <string.h>
LUAU_FASTFLAGVARIABLE(DebugLuauCodegenChaosA64, false)
namespace Luau
{
namespace CodeGen
@ -41,6 +44,68 @@ static void freeSpill(uint32_t& free, KindA64 kind, uint8_t slot)
free |= mask;
}
static int getReloadOffset(IrCmd cmd)
{
switch (getCmdValueKind(cmd))
{
case IrValueKind::Unknown:
case IrValueKind::None:
LUAU_ASSERT(!"Invalid operand restore value kind");
break;
case IrValueKind::Tag:
return offsetof(TValue, tt);
case IrValueKind::Int:
return offsetof(TValue, value);
case IrValueKind::Pointer:
return offsetof(TValue, value.gc);
case IrValueKind::Double:
return offsetof(TValue, value.n);
case IrValueKind::Tvalue:
return 0;
}
LUAU_ASSERT(!"Invalid operand restore value kind");
LUAU_UNREACHABLE();
}
static AddressA64 getReloadAddress(const IrFunction& function, const IrInst& inst)
{
IrOp location = function.findRestoreOp(inst);
if (location.kind == IrOpKind::VmReg)
return mem(rBase, vmRegOp(location) * sizeof(TValue) + getReloadOffset(inst.cmd));
// loads are 4/8/16 bytes; we conservatively limit the offset to fit assuming a 4b index
if (location.kind == IrOpKind::VmConst && vmConstOp(location) * sizeof(TValue) <= AddressA64::kMaxOffset * 4)
return mem(rConstants, vmConstOp(location) * sizeof(TValue) + getReloadOffset(inst.cmd));
return AddressA64(xzr); // dummy
}
static void restoreInst(AssemblyBuilderA64& build, uint32_t& freeSpillSlots, IrFunction& function, const IrRegAllocA64::Spill& s, RegisterA64 reg)
{
IrInst& inst = function.instructions[s.inst];
LUAU_ASSERT(inst.regA64 == noreg);
if (s.slot >= 0)
{
build.ldr(reg, mem(sp, sSpillArea.data + s.slot * 8));
freeSpill(freeSpillSlots, reg.kind, s.slot);
}
else
{
LUAU_ASSERT(!inst.spilled && inst.needsReload);
AddressA64 addr = getReloadAddress(function, function.instructions[s.inst]);
LUAU_ASSERT(addr.base != xzr);
build.ldr(reg, addr);
}
inst.spilled = false;
inst.needsReload = false;
inst.regA64 = reg;
}
IrRegAllocA64::IrRegAllocA64(IrFunction& function, std::initializer_list<std::pair<RegisterA64, RegisterA64>> regs)
: function(function)
{
@ -70,11 +135,16 @@ RegisterA64 IrRegAllocA64::allocReg(KindA64 kind, uint32_t index)
if (set.free == 0)
{
// TODO: remember the error and fail lowering
LUAU_ASSERT(!"Out of registers to allocate");
return noreg;
}
int reg = 31 - countlz(set.free);
if (FFlag::DebugLuauCodegenChaosA64)
reg = countrz(set.free); // allocate from low end; this causes extra conflicts for calls
set.free &= ~(1u << reg);
set.defs[reg] = index;
@ -87,12 +157,16 @@ RegisterA64 IrRegAllocA64::allocTemp(KindA64 kind)
if (set.free == 0)
{
// TODO: remember the error and fail lowering
LUAU_ASSERT(!"Out of registers to allocate");
return noreg;
}
int reg = 31 - countlz(set.free);
if (FFlag::DebugLuauCodegenChaosA64)
reg = countrz(set.free); // allocate from low end; this causes extra conflicts for calls
set.free &= ~(1u << reg);
set.temp |= 1u << reg;
LUAU_ASSERT(set.defs[reg] == kInvalidInstIdx);
@ -109,8 +183,9 @@ RegisterA64 IrRegAllocA64::allocReuse(KindA64 kind, uint32_t index, std::initial
IrInst& source = function.instructions[op.index];
if (source.lastUse == index && !source.reusedReg && !source.spilled && source.regA64 != noreg)
if (source.lastUse == index && !source.reusedReg && source.regA64 != noreg)
{
LUAU_ASSERT(!source.spilled && !source.needsReload);
LUAU_ASSERT(source.regA64.kind == kind);
Set& set = getSet(kind);
@ -154,7 +229,7 @@ void IrRegAllocA64::freeLastUseReg(IrInst& target, uint32_t index)
{
if (target.lastUse == index && !target.reusedReg)
{
LUAU_ASSERT(!target.spilled);
LUAU_ASSERT(!target.spilled && !target.needsReload);
// Register might have already been freed if it had multiple uses inside a single instruction
if (target.regA64 == noreg)
@ -197,13 +272,19 @@ size_t IrRegAllocA64::spill(AssemblyBuilderA64& build, uint32_t index, std::init
size_t start = spills.size();
for (RegisterA64 reg : live)
{
Set& set = getSet(reg.kind);
uint32_t poisongpr = 0;
uint32_t poisonsimd = 0;
// make sure registers that we expect to survive past spill barrier are not allocated
// TODO: we need to handle this condition somehow in the future; if this fails, this likely means the caller has an aliasing hazard
LUAU_ASSERT(set.free & (1u << reg.index));
if (FFlag::DebugLuauCodegenChaosA64)
{
poisongpr = gpr.base & ~gpr.free;
poisonsimd = simd.base & ~simd.free;
for (RegisterA64 reg : live)
{
Set& set = getSet(reg.kind);
(&set == &simd ? poisonsimd : poisongpr) &= ~(1u << reg.index);
}
}
for (KindA64 kind : sets)
@ -231,26 +312,38 @@ size_t IrRegAllocA64::spill(AssemblyBuilderA64& build, uint32_t index, std::init
IrInst& def = function.instructions[inst];
LUAU_ASSERT(def.regA64.index == reg);
LUAU_ASSERT(!def.spilled);
LUAU_ASSERT(!def.reusedReg);
LUAU_ASSERT(!def.spilled);
LUAU_ASSERT(!def.needsReload);
if (def.lastUse == index)
{
// instead of spilling the register to never reload it, we assume the register is not needed anymore
def.regA64 = noreg;
}
else if (getReloadAddress(function, def).base != xzr)
{
// instead of spilling the register to stack, we can reload it from VM stack/constants
// we still need to record the spill for restore(start) to work
Spill s = {inst, def.regA64, -1};
spills.push_back(s);
def.needsReload = true;
}
else
{
int slot = allocSpill(freeSpillSlots, def.regA64.kind);
LUAU_ASSERT(slot >= 0); // TODO: remember the error and fail lowering
Spill s = {inst, def.regA64, uint8_t(slot)};
build.str(def.regA64, mem(sp, sSpillArea.data + slot * 8));
Spill s = {inst, def.regA64, int8_t(slot)};
spills.push_back(s);
def.spilled = true;
def.regA64 = noreg;
}
def.regA64 = noreg;
regs &= ~(1u << reg);
set.free |= 1u << reg;
set.defs[reg] = kInvalidInstIdx;
@ -259,11 +352,15 @@ size_t IrRegAllocA64::spill(AssemblyBuilderA64& build, uint32_t index, std::init
LUAU_ASSERT(set.free == set.base);
}
if (start < spills.size())
if (FFlag::DebugLuauCodegenChaosA64)
{
// TODO: use stp for consecutive slots
for (size_t i = start; i < spills.size(); ++i)
build.str(spills[i].origin, mem(sp, sSpillArea.data + spills[i].slot * 8));
for (int reg = 0; reg < 32; ++reg)
{
if (poisongpr & (1u << reg))
build.mov(RegisterA64{KindA64::x, uint8_t(reg)}, 0xdead);
if (poisonsimd & (1u << reg))
build.fmov(RegisterA64{KindA64::d, uint8_t(reg)}, -0.125);
}
}
return start;
@ -275,22 +372,12 @@ void IrRegAllocA64::restore(AssemblyBuilderA64& build, size_t start)
if (start < spills.size())
{
// TODO: use ldp for consecutive slots
for (size_t i = start; i < spills.size(); ++i)
build.ldr(spills[i].origin, mem(sp, sSpillArea.data + spills[i].slot * 8));
for (size_t i = start; i < spills.size(); ++i)
{
Spill s = spills[i]; // copy in case takeReg reallocates spills
RegisterA64 reg = takeReg(s.origin, s.inst);
IrInst& def = function.instructions[s.inst];
LUAU_ASSERT(def.spilled);
LUAU_ASSERT(def.regA64 == noreg);
def.spilled = false;
def.regA64 = takeReg(s.origin, s.inst);
freeSpill(freeSpillSlots, s.origin.kind, s.slot);
restoreInst(build, freeSpillSlots, function, s, reg);
}
spills.resize(start);
@ -301,9 +388,6 @@ void IrRegAllocA64::restoreReg(AssemblyBuilderA64& build, IrInst& inst)
{
uint32_t index = function.getInstIndex(inst);
LUAU_ASSERT(inst.spilled);
LUAU_ASSERT(inst.regA64 == noreg);
for (size_t i = 0; i < spills.size(); ++i)
{
if (spills[i].inst == index)
@ -311,12 +395,7 @@ void IrRegAllocA64::restoreReg(AssemblyBuilderA64& build, IrInst& inst)
Spill s = spills[i]; // copy in case allocReg reallocates spills
RegisterA64 reg = allocReg(s.origin.kind, index);
build.ldr(reg, mem(sp, sSpillArea.data + s.slot * 8));
inst.spilled = false;
inst.regA64 = reg;
freeSpill(freeSpillSlots, reg.kind, s.slot);
restoreInst(build, freeSpillSlots, function, s, reg);
spills[i] = spills.back();
spills.pop_back();
@ -340,6 +419,7 @@ IrRegAllocA64::Set& IrRegAllocA64::getSet(KindA64 kind)
case KindA64::w:
return gpr;
case KindA64::s:
case KindA64::d:
case KindA64::q:
return simd;

View File

@ -65,7 +65,7 @@ struct IrRegAllocA64
uint32_t inst;
RegisterA64 origin;
uint8_t slot;
int8_t slot;
};
Set& getSet(KindA64 kind);

View File

@ -6,6 +6,8 @@
#include "lstate.h"
#include <math.h>
// TODO: when nresults is less than our actual result count, we can skip computing/writing unused results
static const int kMinMaxUnrolledParams = 5;
@ -16,16 +18,32 @@ namespace Luau
namespace CodeGen
{
static void builtinCheckDouble(IrBuilder& build, IrOp arg, IrOp fallback)
{
if (arg.kind == IrOpKind::Constant)
LUAU_ASSERT(build.function.constOp(arg).kind == IrConstKind::Double);
else
build.loadAndCheckTag(arg, LUA_TNUMBER, fallback);
}
static IrOp builtinLoadDouble(IrBuilder& build, IrOp arg)
{
if (arg.kind == IrOpKind::Constant)
return arg;
return build.inst(IrCmd::LOAD_DOUBLE, arg);
}
// Wrapper code for all builtins with a fixed signature and manual assembly lowering of the body
// (number, ...) -> number
BuiltinImplResult translateBuiltinNumberToNumber(
static BuiltinImplResult translateBuiltinNumberToNumber(
IrBuilder& build, LuauBuiltinFunction bfid, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 1 || nresults > 1)
return {BuiltinImplType::None, -1};
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
builtinCheckDouble(build, build.vmReg(arg), fallback);
build.inst(IrCmd::FASTCALL, build.constUint(bfid), build.vmReg(ra), build.vmReg(arg), args, build.constInt(1), build.constInt(1));
if (ra != arg)
@ -34,14 +52,14 @@ BuiltinImplResult translateBuiltinNumberToNumber(
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult translateBuiltinNumberToNumberLibm(
static BuiltinImplResult translateBuiltinNumberToNumberLibm(
IrBuilder& build, LuauBuiltinFunction bfid, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 1 || nresults > 1)
return {BuiltinImplType::None, -1};
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
IrOp va = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(arg));
builtinCheckDouble(build, build.vmReg(arg), fallback);
IrOp va = builtinLoadDouble(build, build.vmReg(arg));
IrOp res = build.inst(IrCmd::INVOKE_LIBM, build.constUint(bfid), va);
@ -54,14 +72,14 @@ BuiltinImplResult translateBuiltinNumberToNumberLibm(
}
// (number, number, ...) -> number
BuiltinImplResult translateBuiltin2NumberToNumber(
static BuiltinImplResult translateBuiltin2NumberToNumber(
IrBuilder& build, LuauBuiltinFunction bfid, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 2 || nresults > 1)
return {BuiltinImplType::None, -1};
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
build.loadAndCheckTag(args, LUA_TNUMBER, fallback);
builtinCheckDouble(build, build.vmReg(arg), fallback);
builtinCheckDouble(build, args, fallback);
build.inst(IrCmd::FASTCALL, build.constUint(bfid), build.vmReg(ra), build.vmReg(arg), args, build.constInt(2), build.constInt(1));
if (ra != arg)
@ -70,17 +88,17 @@ BuiltinImplResult translateBuiltin2NumberToNumber(
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult translateBuiltin2NumberToNumberLibm(
static BuiltinImplResult translateBuiltin2NumberToNumberLibm(
IrBuilder& build, LuauBuiltinFunction bfid, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 2 || nresults > 1)
return {BuiltinImplType::None, -1};
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
build.loadAndCheckTag(args, LUA_TNUMBER, fallback);
builtinCheckDouble(build, build.vmReg(arg), fallback);
builtinCheckDouble(build, args, fallback);
IrOp va = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(arg));
IrOp vb = build.inst(IrCmd::LOAD_DOUBLE, args);
IrOp va = builtinLoadDouble(build, build.vmReg(arg));
IrOp vb = builtinLoadDouble(build, args);
IrOp res = build.inst(IrCmd::INVOKE_LIBM, build.constUint(bfid), va, vb);
@ -93,13 +111,13 @@ BuiltinImplResult translateBuiltin2NumberToNumberLibm(
}
// (number, ...) -> (number, number)
BuiltinImplResult translateBuiltinNumberTo2Number(
static BuiltinImplResult translateBuiltinNumberTo2Number(
IrBuilder& build, LuauBuiltinFunction bfid, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 1 || nresults > 2)
return {BuiltinImplType::None, -1};
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
builtinCheckDouble(build, build.vmReg(arg), fallback);
build.inst(
IrCmd::FASTCALL, build.constUint(bfid), build.vmReg(ra), build.vmReg(arg), args, build.constInt(1), build.constInt(nresults == 1 ? 1 : 2));
@ -112,7 +130,7 @@ BuiltinImplResult translateBuiltinNumberTo2Number(
return {BuiltinImplType::UsesFallback, 2};
}
BuiltinImplResult translateBuiltinAssert(IrBuilder& build, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
static BuiltinImplResult translateBuiltinAssert(IrBuilder& build, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 1 || nresults != 0)
return {BuiltinImplType::None, -1};
@ -126,16 +144,16 @@ BuiltinImplResult translateBuiltinAssert(IrBuilder& build, int nparams, int ra,
return {BuiltinImplType::UsesFallback, 0};
}
BuiltinImplResult translateBuiltinMathDeg(IrBuilder& build, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
static BuiltinImplResult translateBuiltinMathDeg(IrBuilder& build, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 1 || nresults > 1)
return {BuiltinImplType::None, -1};
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
builtinCheckDouble(build, build.vmReg(arg), fallback);
const double rpd = (3.14159265358979323846 / 180.0);
IrOp varg = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(arg));
IrOp varg = builtinLoadDouble(build, build.vmReg(arg));
IrOp value = build.inst(IrCmd::DIV_NUM, varg, build.constDouble(rpd));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(ra), value);
@ -145,16 +163,16 @@ BuiltinImplResult translateBuiltinMathDeg(IrBuilder& build, int nparams, int ra,
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult translateBuiltinMathRad(IrBuilder& build, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
static BuiltinImplResult translateBuiltinMathRad(IrBuilder& build, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 1 || nresults > 1)
return {BuiltinImplType::None, -1};
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
builtinCheckDouble(build, build.vmReg(arg), fallback);
const double rpd = (3.14159265358979323846 / 180.0);
IrOp varg = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(arg));
IrOp varg = builtinLoadDouble(build, build.vmReg(arg));
IrOp value = build.inst(IrCmd::MUL_NUM, varg, build.constDouble(rpd));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(ra), value);
@ -164,48 +182,40 @@ BuiltinImplResult translateBuiltinMathRad(IrBuilder& build, int nparams, int ra,
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult translateBuiltinMathLog(
static BuiltinImplResult translateBuiltinMathLog(
IrBuilder& build, LuauBuiltinFunction bfid, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 1 || nresults > 1)
return {BuiltinImplType::None, -1};
LuauBuiltinFunction fcId = bfid;
int fcParams = 1;
int libmId = bfid;
std::optional<double> denom;
if (nparams != 1)
{
if (args.kind != IrOpKind::VmConst)
std::optional<double> y = build.function.asDoubleOp(args);
if (!y)
return {BuiltinImplType::None, -1};
LUAU_ASSERT(build.function.proto);
TValue protok = build.function.proto->k[vmConstOp(args)];
if (protok.tt != LUA_TNUMBER)
return {BuiltinImplType::None, -1};
// TODO: IR builtin lowering assumes that the only valid 2-argument call is log2; ideally, we use a less hacky way to indicate that
if (protok.value.n == 2.0)
fcParams = 2;
else if (protok.value.n == 10.0)
fcId = LBF_MATH_LOG10;
if (*y == 2.0)
libmId = LBF_IR_MATH_LOG2;
else if (*y == 10.0)
libmId = LBF_MATH_LOG10;
else
// TODO: We can precompute log(args) and divide by it, but that requires extra LOAD/STORE so for now just fall back as this is rare
return {BuiltinImplType::None, -1};
denom = log(*y);
}
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
builtinCheckDouble(build, build.vmReg(arg), fallback);
if (fcId == LBF_MATH_LOG10)
{
IrOp va = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(arg));
IrOp va = builtinLoadDouble(build, build.vmReg(arg));
IrOp res = build.inst(IrCmd::INVOKE_LIBM, build.constUint(fcId), va);
IrOp res = build.inst(IrCmd::INVOKE_LIBM, build.constUint(libmId), va);
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(ra), res);
}
else
build.inst(IrCmd::FASTCALL, build.constUint(fcId), build.vmReg(ra), build.vmReg(arg), args, build.constInt(fcParams), build.constInt(1));
if (denom)
res = build.inst(IrCmd::DIV_NUM, res, build.constDouble(*denom));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(ra), res);
if (ra != arg)
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNUMBER));
@ -213,25 +223,25 @@ BuiltinImplResult translateBuiltinMathLog(
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult translateBuiltinMathMin(IrBuilder& build, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
static BuiltinImplResult translateBuiltinMathMin(IrBuilder& build, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 2 || nparams > kMinMaxUnrolledParams || nresults > 1)
return {BuiltinImplType::None, -1};
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
build.loadAndCheckTag(args, LUA_TNUMBER, fallback);
builtinCheckDouble(build, build.vmReg(arg), fallback);
builtinCheckDouble(build, args, fallback);
for (int i = 3; i <= nparams; ++i)
build.loadAndCheckTag(build.vmReg(vmRegOp(args) + (i - 2)), LUA_TNUMBER, fallback);
builtinCheckDouble(build, build.vmReg(vmRegOp(args) + (i - 2)), fallback);
IrOp varg1 = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(arg));
IrOp varg2 = build.inst(IrCmd::LOAD_DOUBLE, args);
IrOp varg1 = builtinLoadDouble(build, build.vmReg(arg));
IrOp varg2 = builtinLoadDouble(build, args);
IrOp res = build.inst(IrCmd::MIN_NUM, varg2, varg1); // Swapped arguments are required for consistency with VM builtins
for (int i = 3; i <= nparams; ++i)
{
IrOp arg = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(vmRegOp(args) + (i - 2)));
IrOp arg = builtinLoadDouble(build, build.vmReg(vmRegOp(args) + (i - 2)));
res = build.inst(IrCmd::MIN_NUM, arg, res);
}
@ -243,25 +253,25 @@ BuiltinImplResult translateBuiltinMathMin(IrBuilder& build, int nparams, int ra,
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult translateBuiltinMathMax(IrBuilder& build, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
static BuiltinImplResult translateBuiltinMathMax(IrBuilder& build, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 2 || nparams > kMinMaxUnrolledParams || nresults > 1)
return {BuiltinImplType::None, -1};
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
build.loadAndCheckTag(args, LUA_TNUMBER, fallback);
builtinCheckDouble(build, build.vmReg(arg), fallback);
builtinCheckDouble(build, args, fallback);
for (int i = 3; i <= nparams; ++i)
build.loadAndCheckTag(build.vmReg(vmRegOp(args) + (i - 2)), LUA_TNUMBER, fallback);
builtinCheckDouble(build, build.vmReg(vmRegOp(args) + (i - 2)), fallback);
IrOp varg1 = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(arg));
IrOp varg2 = build.inst(IrCmd::LOAD_DOUBLE, args);
IrOp varg1 = builtinLoadDouble(build, build.vmReg(arg));
IrOp varg2 = builtinLoadDouble(build, args);
IrOp res = build.inst(IrCmd::MAX_NUM, varg2, varg1); // Swapped arguments are required for consistency with VM builtins
for (int i = 3; i <= nparams; ++i)
{
IrOp arg = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(vmRegOp(args) + (i - 2)));
IrOp arg = builtinLoadDouble(build, build.vmReg(vmRegOp(args) + (i - 2)));
res = build.inst(IrCmd::MAX_NUM, arg, res);
}
@ -273,7 +283,7 @@ BuiltinImplResult translateBuiltinMathMax(IrBuilder& build, int nparams, int ra,
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult translateBuiltinMathClamp(IrBuilder& build, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
static BuiltinImplResult translateBuiltinMathClamp(IrBuilder& build, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 3 || nresults > 1)
return {BuiltinImplType::None, -1};
@ -282,17 +292,17 @@ BuiltinImplResult translateBuiltinMathClamp(IrBuilder& build, int nparams, int r
LUAU_ASSERT(args.kind == IrOpKind::VmReg);
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
build.loadAndCheckTag(args, LUA_TNUMBER, fallback);
build.loadAndCheckTag(build.vmReg(vmRegOp(args) + 1), LUA_TNUMBER, fallback);
builtinCheckDouble(build, build.vmReg(arg), fallback);
builtinCheckDouble(build, args, fallback);
builtinCheckDouble(build, build.vmReg(vmRegOp(args) + 1), fallback);
IrOp min = build.inst(IrCmd::LOAD_DOUBLE, args);
IrOp max = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(vmRegOp(args) + 1));
IrOp min = builtinLoadDouble(build, args);
IrOp max = builtinLoadDouble(build, build.vmReg(vmRegOp(args) + 1));
build.inst(IrCmd::JUMP_CMP_NUM, min, max, build.cond(IrCondition::NotLessEqual), fallback, block);
build.beginBlock(block);
IrOp v = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(arg));
IrOp v = builtinLoadDouble(build, build.vmReg(arg));
IrOp r = build.inst(IrCmd::MAX_NUM, min, v);
IrOp clamped = build.inst(IrCmd::MIN_NUM, max, r);
@ -304,14 +314,14 @@ BuiltinImplResult translateBuiltinMathClamp(IrBuilder& build, int nparams, int r
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult translateBuiltinMathUnary(IrBuilder& build, IrCmd cmd, int nparams, int ra, int arg, int nresults, IrOp fallback)
static BuiltinImplResult translateBuiltinMathUnary(IrBuilder& build, IrCmd cmd, int nparams, int ra, int arg, int nresults, IrOp fallback)
{
if (nparams < 1 || nresults > 1)
return {BuiltinImplType::None, -1};
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
builtinCheckDouble(build, build.vmReg(arg), fallback);
IrOp varg = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(arg));
IrOp varg = builtinLoadDouble(build, build.vmReg(arg));
IrOp result = build.inst(cmd, varg);
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(ra), result);
@ -322,27 +332,7 @@ BuiltinImplResult translateBuiltinMathUnary(IrBuilder& build, IrCmd cmd, int npa
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult translateBuiltinMathBinary(IrBuilder& build, IrCmd cmd, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 2 || nresults > 1)
return {BuiltinImplType::None, -1};
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
build.loadAndCheckTag(args, LUA_TNUMBER, fallback);
IrOp lhs = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(arg));
IrOp rhs = build.inst(IrCmd::LOAD_DOUBLE, args);
IrOp result = build.inst(cmd, lhs, rhs);
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(ra), result);
if (ra != arg)
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNUMBER));
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult translateBuiltinType(IrBuilder& build, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
static BuiltinImplResult translateBuiltinType(IrBuilder& build, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 1 || nresults > 1)
return {BuiltinImplType::None, -1};
@ -354,7 +344,7 @@ BuiltinImplResult translateBuiltinType(IrBuilder& build, int nparams, int ra, in
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult translateBuiltinTypeof(IrBuilder& build, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
static BuiltinImplResult translateBuiltinTypeof(IrBuilder& build, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 1 || nresults > 1)
return {BuiltinImplType::None, -1};
@ -366,20 +356,20 @@ BuiltinImplResult translateBuiltinTypeof(IrBuilder& build, int nparams, int ra,
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult translateBuiltinBit32BinaryOp(
static BuiltinImplResult translateBuiltinBit32BinaryOp(
IrBuilder& build, LuauBuiltinFunction bfid, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 2 || nparams > kBit32BinaryOpUnrolledParams || nresults > 1)
return {BuiltinImplType::None, -1};
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
build.loadAndCheckTag(args, LUA_TNUMBER, fallback);
builtinCheckDouble(build, build.vmReg(arg), fallback);
builtinCheckDouble(build, args, fallback);
for (int i = 3; i <= nparams; ++i)
build.loadAndCheckTag(build.vmReg(vmRegOp(args) + (i - 2)), LUA_TNUMBER, fallback);
builtinCheckDouble(build, build.vmReg(vmRegOp(args) + (i - 2)), fallback);
IrOp va = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(arg));
IrOp vb = build.inst(IrCmd::LOAD_DOUBLE, args);
IrOp va = builtinLoadDouble(build, build.vmReg(arg));
IrOp vb = builtinLoadDouble(build, args);
IrOp vaui = build.inst(IrCmd::NUM_TO_UINT, va);
IrOp vbui = build.inst(IrCmd::NUM_TO_UINT, vb);
@ -399,7 +389,7 @@ BuiltinImplResult translateBuiltinBit32BinaryOp(
for (int i = 3; i <= nparams; ++i)
{
IrOp vc = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(vmRegOp(args) + (i - 2)));
IrOp vc = builtinLoadDouble(build, build.vmReg(vmRegOp(args) + (i - 2)));
IrOp arg = build.inst(IrCmd::NUM_TO_UINT, vc);
res = build.inst(cmd, res, arg);
@ -436,14 +426,14 @@ BuiltinImplResult translateBuiltinBit32BinaryOp(
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult translateBuiltinBit32Bnot(
static BuiltinImplResult translateBuiltinBit32Bnot(
IrBuilder& build, LuauBuiltinFunction bfid, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 1 || nresults > 1)
return {BuiltinImplType::None, -1};
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
IrOp va = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(arg));
builtinCheckDouble(build, build.vmReg(arg), fallback);
IrOp va = builtinLoadDouble(build, build.vmReg(arg));
IrOp vaui = build.inst(IrCmd::NUM_TO_UINT, va);
IrOp not_ = build.inst(IrCmd::BITNOT_UINT, vaui);
@ -457,7 +447,7 @@ BuiltinImplResult translateBuiltinBit32Bnot(
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult translateBuiltinBit32Shift(
static BuiltinImplResult translateBuiltinBit32Shift(
IrBuilder& build, LuauBuiltinFunction bfid, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 2 || nresults > 1)
@ -465,16 +455,16 @@ BuiltinImplResult translateBuiltinBit32Shift(
IrOp block = build.block(IrBlockKind::Internal);
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
build.loadAndCheckTag(args, LUA_TNUMBER, fallback);
builtinCheckDouble(build, build.vmReg(arg), fallback);
builtinCheckDouble(build, args, fallback);
IrOp va = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(arg));
IrOp vb = build.inst(IrCmd::LOAD_DOUBLE, args);
IrOp va = builtinLoadDouble(build, build.vmReg(arg));
IrOp vb = builtinLoadDouble(build, args);
IrOp vaui = build.inst(IrCmd::NUM_TO_UINT, va);
IrOp vbi = build.inst(IrCmd::NUM_TO_INT, vb);
build.inst(IrCmd::JUMP_GE_UINT, vbi, build.constUint(32), fallback, block);
build.inst(IrCmd::JUMP_GE_UINT, vbi, build.constInt(32), fallback, block);
build.beginBlock(block);
IrCmd cmd = IrCmd::NOP;
@ -498,17 +488,17 @@ BuiltinImplResult translateBuiltinBit32Shift(
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult translateBuiltinBit32Rotate(
static BuiltinImplResult translateBuiltinBit32Rotate(
IrBuilder& build, LuauBuiltinFunction bfid, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 2 || nresults > 1)
return {BuiltinImplType::None, -1};
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
build.loadAndCheckTag(args, LUA_TNUMBER, fallback);
builtinCheckDouble(build, build.vmReg(arg), fallback);
builtinCheckDouble(build, args, fallback);
IrOp va = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(arg));
IrOp vb = build.inst(IrCmd::LOAD_DOUBLE, args);
IrOp va = builtinLoadDouble(build, build.vmReg(arg));
IrOp vb = builtinLoadDouble(build, args);
IrOp vaui = build.inst(IrCmd::NUM_TO_UINT, va);
IrOp vbi = build.inst(IrCmd::NUM_TO_INT, vb);
@ -525,17 +515,17 @@ BuiltinImplResult translateBuiltinBit32Rotate(
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult translateBuiltinBit32Extract(
static BuiltinImplResult translateBuiltinBit32Extract(
IrBuilder& build, LuauBuiltinFunction bfid, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 2 || nresults > 1)
return {BuiltinImplType::None, -1};
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
build.loadAndCheckTag(args, LUA_TNUMBER, fallback);
builtinCheckDouble(build, build.vmReg(arg), fallback);
builtinCheckDouble(build, args, fallback);
IrOp va = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(arg));
IrOp vb = build.inst(IrCmd::LOAD_DOUBLE, args);
IrOp va = builtinLoadDouble(build, build.vmReg(arg));
IrOp vb = builtinLoadDouble(build, args);
IrOp n = build.inst(IrCmd::NUM_TO_UINT, va);
IrOp f = build.inst(IrCmd::NUM_TO_INT, vb);
@ -544,17 +534,17 @@ BuiltinImplResult translateBuiltinBit32Extract(
if (nparams == 2)
{
IrOp block = build.block(IrBlockKind::Internal);
build.inst(IrCmd::JUMP_GE_UINT, f, build.constUint(32), fallback, block);
build.inst(IrCmd::JUMP_GE_UINT, f, build.constInt(32), fallback, block);
build.beginBlock(block);
// TODO: this can be optimized using a bit-select instruction (bt on x86)
IrOp shift = build.inst(IrCmd::BITRSHIFT_UINT, n, f);
value = build.inst(IrCmd::BITAND_UINT, shift, build.constUint(1));
value = build.inst(IrCmd::BITAND_UINT, shift, build.constInt(1));
}
else
{
build.loadAndCheckTag(build.vmReg(args.index + 1), LUA_TNUMBER, fallback);
IrOp vc = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(args.index + 1));
builtinCheckDouble(build, build.vmReg(args.index + 1), fallback);
IrOp vc = builtinLoadDouble(build, build.vmReg(args.index + 1));
IrOp w = build.inst(IrCmd::NUM_TO_INT, vc);
IrOp block1 = build.block(IrBlockKind::Internal);
@ -570,7 +560,7 @@ BuiltinImplResult translateBuiltinBit32Extract(
build.inst(IrCmd::JUMP_LT_INT, fw, build.constInt(33), block3, fallback);
build.beginBlock(block3);
IrOp shift = build.inst(IrCmd::BITLSHIFT_UINT, build.constUint(0xfffffffe), build.inst(IrCmd::SUB_INT, w, build.constInt(1)));
IrOp shift = build.inst(IrCmd::BITLSHIFT_UINT, build.constInt(0xfffffffe), build.inst(IrCmd::SUB_INT, w, build.constInt(1)));
IrOp m = build.inst(IrCmd::BITNOT_UINT, shift);
IrOp nf = build.inst(IrCmd::BITRSHIFT_UINT, n, f);
@ -585,15 +575,15 @@ BuiltinImplResult translateBuiltinBit32Extract(
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult translateBuiltinBit32ExtractK(
static BuiltinImplResult translateBuiltinBit32ExtractK(
IrBuilder& build, LuauBuiltinFunction bfid, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 2 || nresults > 1)
return {BuiltinImplType::None, -1};
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
builtinCheckDouble(build, build.vmReg(arg), fallback);
IrOp va = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(arg));
IrOp va = builtinLoadDouble(build, build.vmReg(arg));
IrOp n = build.inst(IrCmd::NUM_TO_UINT, va);
double a2 = build.function.doubleOp(args);
@ -604,8 +594,8 @@ BuiltinImplResult translateBuiltinBit32ExtractK(
uint32_t m = ~(0xfffffffeu << w1);
IrOp nf = build.inst(IrCmd::BITRSHIFT_UINT, n, build.constUint(f));
IrOp and_ = build.inst(IrCmd::BITAND_UINT, nf, build.constUint(m));
IrOp nf = build.inst(IrCmd::BITRSHIFT_UINT, n, build.constInt(f));
IrOp and_ = build.inst(IrCmd::BITAND_UINT, nf, build.constInt(m));
IrOp value = build.inst(IrCmd::UINT_TO_NUM, and_);
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(ra), value);
@ -616,14 +606,14 @@ BuiltinImplResult translateBuiltinBit32ExtractK(
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult translateBuiltinBit32Countz(
static BuiltinImplResult translateBuiltinBit32Countz(
IrBuilder& build, LuauBuiltinFunction bfid, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 1 || nresults > 1)
return {BuiltinImplType::None, -1};
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
IrOp va = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(arg));
builtinCheckDouble(build, build.vmReg(arg), fallback);
IrOp va = builtinLoadDouble(build, build.vmReg(arg));
IrOp vaui = build.inst(IrCmd::NUM_TO_UINT, va);
@ -640,19 +630,19 @@ BuiltinImplResult translateBuiltinBit32Countz(
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult translateBuiltinBit32Replace(
static BuiltinImplResult translateBuiltinBit32Replace(
IrBuilder& build, LuauBuiltinFunction bfid, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 3 || nresults > 1)
return {BuiltinImplType::None, -1};
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
build.loadAndCheckTag(args, LUA_TNUMBER, fallback);
build.loadAndCheckTag(build.vmReg(args.index + 1), LUA_TNUMBER, fallback);
builtinCheckDouble(build, build.vmReg(arg), fallback);
builtinCheckDouble(build, args, fallback);
builtinCheckDouble(build, build.vmReg(args.index + 1), fallback);
IrOp va = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(arg));
IrOp vb = build.inst(IrCmd::LOAD_DOUBLE, args);
IrOp vc = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(args.index + 1));
IrOp va = builtinLoadDouble(build, build.vmReg(arg));
IrOp vb = builtinLoadDouble(build, args);
IrOp vc = builtinLoadDouble(build, build.vmReg(args.index + 1));
IrOp n = build.inst(IrCmd::NUM_TO_UINT, va);
IrOp v = build.inst(IrCmd::NUM_TO_UINT, vb);
@ -662,11 +652,11 @@ BuiltinImplResult translateBuiltinBit32Replace(
if (nparams == 3)
{
IrOp block = build.block(IrBlockKind::Internal);
build.inst(IrCmd::JUMP_GE_UINT, f, build.constUint(32), fallback, block);
build.inst(IrCmd::JUMP_GE_UINT, f, build.constInt(32), fallback, block);
build.beginBlock(block);
// TODO: this can be optimized using a bit-select instruction (btr on x86)
IrOp m = build.constUint(1);
IrOp m = build.constInt(1);
IrOp shift = build.inst(IrCmd::BITLSHIFT_UINT, m, f);
IrOp not_ = build.inst(IrCmd::BITNOT_UINT, shift);
IrOp lhs = build.inst(IrCmd::BITAND_UINT, n, not_);
@ -678,8 +668,8 @@ BuiltinImplResult translateBuiltinBit32Replace(
}
else
{
build.loadAndCheckTag(build.vmReg(args.index + 2), LUA_TNUMBER, fallback);
IrOp vd = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(args.index + 2));
builtinCheckDouble(build, build.vmReg(args.index + 2), fallback);
IrOp vd = builtinLoadDouble(build, build.vmReg(args.index + 2));
IrOp w = build.inst(IrCmd::NUM_TO_INT, vd);
IrOp block1 = build.block(IrBlockKind::Internal);
@ -695,7 +685,7 @@ BuiltinImplResult translateBuiltinBit32Replace(
build.inst(IrCmd::JUMP_LT_INT, fw, build.constInt(33), block3, fallback);
build.beginBlock(block3);
IrOp shift1 = build.inst(IrCmd::BITLSHIFT_UINT, build.constUint(0xfffffffe), build.inst(IrCmd::SUB_INT, w, build.constInt(1)));
IrOp shift1 = build.inst(IrCmd::BITLSHIFT_UINT, build.constInt(0xfffffffe), build.inst(IrCmd::SUB_INT, w, build.constInt(1)));
IrOp m = build.inst(IrCmd::BITNOT_UINT, shift1);
IrOp shift2 = build.inst(IrCmd::BITLSHIFT_UINT, m, f);
@ -716,20 +706,20 @@ BuiltinImplResult translateBuiltinBit32Replace(
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult translateBuiltinVector(IrBuilder& build, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
static BuiltinImplResult translateBuiltinVector(IrBuilder& build, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 3 || nresults > 1)
return {BuiltinImplType::None, -1};
LUAU_ASSERT(LUA_VECTOR_SIZE == 3);
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
build.loadAndCheckTag(args, LUA_TNUMBER, fallback);
build.loadAndCheckTag(build.vmReg(vmRegOp(args) + 1), LUA_TNUMBER, fallback);
builtinCheckDouble(build, build.vmReg(arg), fallback);
builtinCheckDouble(build, args, fallback);
builtinCheckDouble(build, build.vmReg(vmRegOp(args) + 1), fallback);
IrOp x = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(arg));
IrOp y = build.inst(IrCmd::LOAD_DOUBLE, args);
IrOp z = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(vmRegOp(args) + 1));
IrOp x = builtinLoadDouble(build, build.vmReg(arg));
IrOp y = builtinLoadDouble(build, args);
IrOp z = builtinLoadDouble(build, build.vmReg(vmRegOp(args) + 1));
build.inst(IrCmd::STORE_VECTOR, build.vmReg(ra), x, y, z);
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TVECTOR));
@ -769,8 +759,6 @@ BuiltinImplResult translateBuiltin(IrBuilder& build, int bfid, int ra, int arg,
return translateBuiltinMathUnary(build, IrCmd::ABS_NUM, nparams, ra, arg, nresults, fallback);
case LBF_MATH_ROUND:
return translateBuiltinMathUnary(build, IrCmd::ROUND_NUM, nparams, ra, arg, nresults, fallback);
case LBF_MATH_POW:
return translateBuiltinMathBinary(build, IrCmd::POW_NUM, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_EXP:
case LBF_MATH_ASIN:
case LBF_MATH_SIN:
@ -785,6 +773,7 @@ BuiltinImplResult translateBuiltin(IrBuilder& build, int bfid, int ra, int arg,
return translateBuiltinNumberToNumberLibm(build, LuauBuiltinFunction(bfid), nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_SIGN:
return translateBuiltinNumberToNumber(build, LuauBuiltinFunction(bfid), nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_POW:
case LBF_MATH_FMOD:
case LBF_MATH_ATAN2:
return translateBuiltin2NumberToNumberLibm(build, LuauBuiltinFunction(bfid), nparams, ra, arg, args, nresults, fallback);

View File

@ -342,7 +342,7 @@ static void translateInstBinaryNumeric(IrBuilder& build, int ra, int rb, int rc,
result = build.inst(IrCmd::MOD_NUM, vb, vc);
break;
case TM_POW:
result = build.inst(IrCmd::POW_NUM, vb, vc);
result = build.inst(IrCmd::INVOKE_LIBM, build.constUint(LBF_MATH_POW), vb, vc);
break;
default:
LUAU_ASSERT(!"unsupported binary op");
@ -498,8 +498,6 @@ void translateFastCallN(IrBuilder& build, const Instruction* pc, int pcpos, bool
int bfid = LUAU_INSN_A(*pc);
int skip = LUAU_INSN_C(*pc);
IrOp fallback = build.block(IrBlockKind::Fallback);
Instruction call = pc[skip + 1];
LUAU_ASSERT(LUAU_INSN_OP(call) == LOP_CALL);
int ra = LUAU_INSN_A(call);
@ -509,15 +507,21 @@ void translateFastCallN(IrBuilder& build, const Instruction* pc, int pcpos, bool
int arg = customParams ? LUAU_INSN_B(*pc) : ra + 1;
IrOp args = customParams ? customArgs : build.vmReg(ra + 2);
build.inst(IrCmd::CHECK_SAFE_ENV, fallback);
IrOp builtinArgs = args;
if (bfid == LBF_BIT32_EXTRACTK)
if (customArgs.kind == IrOpKind::VmConst)
{
TValue protok = build.function.proto->k[pc[1]];
args = build.constDouble(protok.value.n);
TValue protok = build.function.proto->k[customArgs.index];
if (protok.tt == LUA_TNUMBER)
builtinArgs = build.constDouble(protok.value.n);
}
BuiltinImplResult br = translateBuiltin(build, LuauBuiltinFunction(bfid), ra, arg, args, nparams, nresults, fallback);
IrOp fallback = build.block(IrBlockKind::Fallback);
build.inst(IrCmd::CHECK_SAFE_ENV, fallback);
BuiltinImplResult br = translateBuiltin(build, LuauBuiltinFunction(bfid), ra, arg, builtinArgs, nparams, nresults, fallback);
if (br.type == BuiltinImplType::UsesFallback)
{

View File

@ -3,6 +3,7 @@
#include "Luau/IrBuilder.h"
#include "BitUtils.h"
#include "NativeState.h"
#include "lua.h"
@ -54,7 +55,6 @@ IrValueKind getCmdValueKind(IrCmd cmd)
case IrCmd::MUL_NUM:
case IrCmd::DIV_NUM:
case IrCmd::MOD_NUM:
case IrCmd::POW_NUM:
case IrCmd::MIN_NUM:
case IrCmd::MAX_NUM:
case IrCmd::UNM_NUM:
@ -312,6 +312,8 @@ void substitute(IrFunction& function, IrInst& inst, IrOp replacement)
inst.cmd = IrCmd::SUBSTITUTE;
addUse(function, replacement);
removeUse(function, inst.a);
removeUse(function, inst.b);
removeUse(function, inst.c);
@ -349,6 +351,9 @@ void applySubstitutions(IrFunction& function, IrOp& op)
LUAU_ASSERT(src.useCount > 0);
src.useCount--;
if (src.useCount == 0)
removeUse(function, src.a);
}
}
}
@ -444,17 +449,13 @@ void foldConstants(IrBuilder& build, IrFunction& function, IrBlock& block, uint3
if (inst.a.kind == IrOpKind::Constant && inst.b.kind == IrOpKind::Constant)
substitute(function, inst, build.constDouble(luai_nummod(function.doubleOp(inst.a), function.doubleOp(inst.b))));
break;
case IrCmd::POW_NUM:
if (inst.a.kind == IrOpKind::Constant && inst.b.kind == IrOpKind::Constant)
substitute(function, inst, build.constDouble(pow(function.doubleOp(inst.a), function.doubleOp(inst.b))));
break;
case IrCmd::MIN_NUM:
if (inst.a.kind == IrOpKind::Constant && inst.b.kind == IrOpKind::Constant)
{
double a1 = function.doubleOp(inst.a);
double a2 = function.doubleOp(inst.b);
substitute(function, inst, build.constDouble((a2 < a1) ? a2 : a1));
substitute(function, inst, build.constDouble(a1 < a2 ? a1 : a2));
}
break;
case IrCmd::MAX_NUM:
@ -463,7 +464,7 @@ void foldConstants(IrBuilder& build, IrFunction& function, IrBlock& block, uint3
double a1 = function.doubleOp(inst.a);
double a2 = function.doubleOp(inst.b);
substitute(function, inst, build.constDouble((a2 > a1) ? a2 : a1));
substitute(function, inst, build.constDouble(a1 > a2 ? a1 : a2));
}
break;
case IrCmd::UNM_NUM:
@ -533,7 +534,7 @@ void foldConstants(IrBuilder& build, IrFunction& function, IrBlock& block, uint3
case IrCmd::JUMP_GE_UINT:
if (inst.a.kind == IrOpKind::Constant && inst.b.kind == IrOpKind::Constant)
{
if (function.uintOp(inst.a) >= function.uintOp(inst.b))
if (unsigned(function.intOp(inst.a)) >= unsigned(function.intOp(inst.b)))
replace(function, block, index, {IrCmd::JUMP, inst.c});
else
replace(function, block, index, {IrCmd::JUMP, inst.d});
@ -573,6 +574,30 @@ void foldConstants(IrBuilder& build, IrFunction& function, IrBlock& block, uint3
if (inst.a.kind == IrOpKind::Constant)
substitute(function, inst, build.constDouble(double(function.intOp(inst.a))));
break;
case IrCmd::UINT_TO_NUM:
if (inst.a.kind == IrOpKind::Constant)
substitute(function, inst, build.constDouble(double(unsigned(function.intOp(inst.a)))));
break;
case IrCmd::NUM_TO_INT:
if (inst.a.kind == IrOpKind::Constant)
{
double value = function.doubleOp(inst.a);
// To avoid undefined behavior of casting a value not representable in the target type, we check the range
if (value >= INT_MIN && value <= INT_MAX)
substitute(function, inst, build.constInt(int(value)));
}
break;
case IrCmd::NUM_TO_UINT:
if (inst.a.kind == IrOpKind::Constant)
{
double value = function.doubleOp(inst.a);
// To avoid undefined behavior of casting a value not representable in the target type, we check the range
if (value >= 0 && value <= UINT_MAX)
substitute(function, inst, build.constInt(unsigned(function.doubleOp(inst.a))));
}
break;
case IrCmd::CHECK_TAG:
if (inst.a.kind == IrOpKind::Constant && inst.b.kind == IrOpKind::Constant)
{
@ -582,12 +607,139 @@ void foldConstants(IrBuilder& build, IrFunction& function, IrBlock& block, uint3
replace(function, block, index, {IrCmd::JUMP, inst.c}); // Shows a conflict in assumptions on this path
}
break;
case IrCmd::BITAND_UINT:
if (inst.a.kind == IrOpKind::Constant && inst.b.kind == IrOpKind::Constant)
{
unsigned op1 = unsigned(function.intOp(inst.a));
unsigned op2 = unsigned(function.intOp(inst.b));
substitute(function, inst, build.constInt(op1 & op2));
}
else
{
if (inst.a.kind == IrOpKind::Constant && function.intOp(inst.a) == 0) // (0 & b) -> 0
substitute(function, inst, build.constInt(0));
else if (inst.a.kind == IrOpKind::Constant && function.intOp(inst.a) == -1) // (-1 & b) -> b
substitute(function, inst, inst.b);
else if (inst.b.kind == IrOpKind::Constant && function.intOp(inst.b) == 0) // (a & 0) -> 0
substitute(function, inst, build.constInt(0));
else if (inst.b.kind == IrOpKind::Constant && function.intOp(inst.b) == -1) // (a & -1) -> a
substitute(function, inst, inst.a);
}
break;
case IrCmd::BITXOR_UINT:
if (inst.a.kind == IrOpKind::Constant && inst.b.kind == IrOpKind::Constant)
{
unsigned op1 = unsigned(function.intOp(inst.a));
unsigned op2 = unsigned(function.intOp(inst.b));
substitute(function, inst, build.constInt(op1 ^ op2));
}
else
{
if (inst.a.kind == IrOpKind::Constant && function.intOp(inst.a) == 0) // (0 ^ b) -> b
substitute(function, inst, inst.b);
else if (inst.a.kind == IrOpKind::Constant && function.intOp(inst.a) == -1) // (-1 ^ b) -> ~b
replace(function, block, index, {IrCmd::BITNOT_UINT, inst.b});
else if (inst.b.kind == IrOpKind::Constant && function.intOp(inst.b) == 0) // (a ^ 0) -> a
substitute(function, inst, inst.a);
else if (inst.b.kind == IrOpKind::Constant && function.intOp(inst.b) == -1) // (a ^ -1) -> ~a
replace(function, block, index, {IrCmd::BITNOT_UINT, inst.a});
}
break;
case IrCmd::BITOR_UINT:
if (inst.a.kind == IrOpKind::Constant && inst.b.kind == IrOpKind::Constant)
{
unsigned op1 = unsigned(function.intOp(inst.a));
unsigned op2 = unsigned(function.intOp(inst.b));
substitute(function, inst, build.constInt(op1 | op2));
}
else
{
if (inst.a.kind == IrOpKind::Constant && function.intOp(inst.a) == 0) // (0 | b) -> b
substitute(function, inst, inst.b);
else if (inst.a.kind == IrOpKind::Constant && function.intOp(inst.a) == -1) // (-1 | b) -> -1
substitute(function, inst, build.constInt(-1));
else if (inst.b.kind == IrOpKind::Constant && function.intOp(inst.b) == 0) // (a | 0) -> a
substitute(function, inst, inst.a);
else if (inst.b.kind == IrOpKind::Constant && function.intOp(inst.b) == -1) // (a | -1) -> -1
substitute(function, inst, build.constInt(-1));
}
break;
case IrCmd::BITNOT_UINT:
if (inst.a.kind == IrOpKind::Constant)
substitute(function, inst, build.constInt(~unsigned(function.intOp(inst.a))));
break;
case IrCmd::BITLSHIFT_UINT:
if (inst.a.kind == IrOpKind::Constant && inst.b.kind == IrOpKind::Constant)
{
unsigned op1 = unsigned(function.intOp(inst.a));
int op2 = function.intOp(inst.b);
if (unsigned(op2) < 32)
substitute(function, inst, build.constInt(op1 << op2));
}
else if (inst.b.kind == IrOpKind::Constant && function.intOp(inst.b) == 0)
{
substitute(function, inst, inst.a);
}
break;
case IrCmd::BITRSHIFT_UINT:
if (inst.a.kind == IrOpKind::Constant && inst.b.kind == IrOpKind::Constant)
{
unsigned op1 = unsigned(function.intOp(inst.a));
int op2 = function.intOp(inst.b);
if (unsigned(op2) < 32)
substitute(function, inst, build.constInt(op1 >> op2));
}
else if (inst.b.kind == IrOpKind::Constant && function.intOp(inst.b) == 0)
{
substitute(function, inst, inst.a);
}
break;
case IrCmd::BITARSHIFT_UINT:
if (inst.a.kind == IrOpKind::Constant && inst.b.kind == IrOpKind::Constant)
{
int op1 = function.intOp(inst.a);
int op2 = function.intOp(inst.b);
if (unsigned(op2) < 32)
{
// note: technically right shift of negative values is UB, but this behavior is getting defined in C++20 and all compilers do the
// right (shift) thing.
substitute(function, inst, build.constInt(op1 >> op2));
}
}
else if (inst.b.kind == IrOpKind::Constant && function.intOp(inst.b) == 0)
{
substitute(function, inst, inst.a);
}
break;
case IrCmd::BITLROTATE_UINT:
if (inst.a.kind == IrOpKind::Constant && inst.b.kind == IrOpKind::Constant)
substitute(function, inst, build.constInt(lrotate(unsigned(function.intOp(inst.a)), function.intOp(inst.b))));
else if (inst.b.kind == IrOpKind::Constant && function.intOp(inst.b) == 0)
substitute(function, inst, inst.a);
break;
case IrCmd::BITRROTATE_UINT:
if (inst.a.kind == IrOpKind::Constant && inst.b.kind == IrOpKind::Constant)
substitute(function, inst, build.constInt(rrotate(unsigned(function.intOp(inst.a)), function.intOp(inst.b))));
else if (inst.b.kind == IrOpKind::Constant && function.intOp(inst.b) == 0)
substitute(function, inst, inst.a);
break;
case IrCmd::BITCOUNTLZ_UINT:
if (inst.a.kind == IrOpKind::Constant)
substitute(function, inst, build.constInt(countlz(unsigned(function.intOp(inst.a)))));
break;
case IrCmd::BITCOUNTRZ_UINT:
if (inst.a.kind == IrOpKind::Constant)
substitute(function, inst, build.constInt(countrz(unsigned(function.intOp(inst.a)))));
break;
default:
break;
}
}
uint32_t getNativeContextOffset(LuauBuiltinFunction bfid)
uint32_t getNativeContextOffset(int bfid)
{
switch (bfid)
{
@ -607,6 +759,8 @@ uint32_t getNativeContextOffset(LuauBuiltinFunction bfid)
return offsetof(NativeContext, libm_exp);
case LBF_MATH_LOG10:
return offsetof(NativeContext, libm_log10);
case LBF_MATH_LOG:
return offsetof(NativeContext, libm_log);
case LBF_MATH_SINH:
return offsetof(NativeContext, libm_sinh);
case LBF_MATH_SIN:
@ -617,6 +771,10 @@ uint32_t getNativeContextOffset(LuauBuiltinFunction bfid)
return offsetof(NativeContext, libm_tan);
case LBF_MATH_FMOD:
return offsetof(NativeContext, libm_fmod);
case LBF_MATH_POW:
return offsetof(NativeContext, libm_pow);
case LBF_IR_MATH_LOG2:
return offsetof(NativeContext, libm_log2);
default:
LUAU_ASSERT(!"Unsupported bfid");
}

View File

@ -117,7 +117,6 @@ void IrValueLocationTracking::beforeInstLowering(IrInst& inst)
case IrCmd::MUL_NUM:
case IrCmd::DIV_NUM:
case IrCmd::MOD_NUM:
case IrCmd::POW_NUM:
case IrCmd::MIN_NUM:
case IrCmd::MAX_NUM:
case IrCmd::JUMP_EQ_TAG:

View File

@ -27,9 +27,12 @@ using FallbackFn = const Instruction* (*)(lua_State* L, const Instruction* pc, S
struct NativeProto
{
uintptr_t entryTarget = 0;
uintptr_t* instTargets = nullptr; // TODO: NativeProto should be variable-size with all target embedded
// This array is stored before NativeProto in reverse order, so to get offset of instruction i you need to index instOffsets[-i]
// This awkward layout is helpful for maximally efficient address computation on X64/A64
uint32_t instOffsets[1];
uintptr_t instBase = 0;
uintptr_t entryTarget = 0; // = instOffsets[0] + instBase
Proto* proto = nullptr;
};

View File

@ -8,6 +8,7 @@
#include "lua.h"
#include <array>
#include <vector>
LUAU_FASTINTVARIABLE(LuauCodeGenMinLinearBlockPath, 3)
@ -42,8 +43,9 @@ struct RegisterLink
// Data we know about the current VM state
struct ConstPropState
{
ConstPropState(const IrFunction& function)
ConstPropState(IrFunction& function)
: function(function)
, valueMap({})
{
}
@ -58,7 +60,13 @@ struct ConstPropState
void saveTag(IrOp op, uint8_t tag)
{
if (RegisterInfo* info = tryGetRegisterInfo(op))
info->tag = tag;
{
if (info->tag != tag)
{
info->tag = tag;
info->version++;
}
}
}
IrOp tryGetValue(IrOp op)
@ -74,7 +82,15 @@ struct ConstPropState
LUAU_ASSERT(value.kind == IrOpKind::Constant);
if (RegisterInfo* info = tryGetRegisterInfo(op))
info->value = value;
{
if (info->value != value)
{
info->value = value;
info->knownNotReadonly = false;
info->knownNoMetatable = false;
info->version++;
}
}
}
void invalidate(RegisterInfo& reg, bool invalidateTag, bool invalidateValue)
@ -96,16 +112,22 @@ struct ConstPropState
void invalidateTag(IrOp regOp)
{
// TODO: use maxstacksize from Proto
maxReg = vmRegOp(regOp) > maxReg ? vmRegOp(regOp) : maxReg;
invalidate(regs[vmRegOp(regOp)], /* invalidateTag */ true, /* invalidateValue */ false);
}
void invalidateValue(IrOp regOp)
{
// TODO: use maxstacksize from Proto
maxReg = vmRegOp(regOp) > maxReg ? vmRegOp(regOp) : maxReg;
invalidate(regs[vmRegOp(regOp)], /* invalidateTag */ false, /* invalidateValue */ true);
}
void invalidate(IrOp regOp)
{
// TODO: use maxstacksize from Proto
maxReg = vmRegOp(regOp) > maxReg ? vmRegOp(regOp) : maxReg;
invalidate(regs[vmRegOp(regOp)], /* invalidateTag */ true, /* invalidateValue */ true);
}
@ -113,8 +135,6 @@ struct ConstPropState
{
for (int i = firstReg; i <= maxReg; ++i)
invalidate(regs[i], /* invalidateTag */ true, /* invalidateValue */ true);
maxReg = int(firstReg) - 1;
}
void invalidateRegisterRange(int firstReg, int count)
@ -191,9 +211,90 @@ struct ConstPropState
return nullptr;
}
const IrFunction& function;
// Attach register version number to the register operand in a load instruction
// This is used to allow instructions with register references to be compared for equality
IrInst versionedVmRegLoad(IrCmd loadCmd, IrOp op)
{
LUAU_ASSERT(op.kind == IrOpKind::VmReg);
uint32_t version = regs[vmRegOp(op)].version;
LUAU_ASSERT(version <= 0xffffff);
op.index = vmRegOp(op) | (version << 8);
return IrInst{loadCmd, op};
}
RegisterInfo regs[256];
// Find existing value of the instruction that is exactly the same, or record current on for future lookups
void substituteOrRecord(IrInst& inst, uint32_t instIdx)
{
if (!useValueNumbering)
return;
if (uint32_t* prevIdx = valueMap.find(inst))
substitute(function, inst, IrOp{IrOpKind::Inst, *prevIdx});
else
valueMap[inst] = instIdx;
}
// Vm register load can be replaced by a previous load of the same version of the register
// If there is no previous load, we record the current one for future lookups
void substituteOrRecordVmRegLoad(IrInst& loadInst)
{
LUAU_ASSERT(loadInst.a.kind == IrOpKind::VmReg);
if (!useValueNumbering)
return;
// To avoid captured register invalidation tracking in lowering later, values from loads from captured registers are not propagated
// This prevents the case where load value location is linked to memory in case of a spill and is then cloberred in a user call
if (function.cfg.captured.regs.test(vmRegOp(loadInst.a)))
return;
IrInst versionedLoad = versionedVmRegLoad(loadInst.cmd, loadInst.a);
// Check if there is a value that already has this version of the register
if (uint32_t* prevIdx = valueMap.find(versionedLoad))
{
// Previous value might not be linked to a register yet
// For example, it could be a NEW_TABLE stored into a register and we might need to track guards made with this value
if (!instLink.contains(*prevIdx))
createRegLink(*prevIdx, loadInst.a);
// Substitute load instructon with the previous value
substitute(function, loadInst, IrOp{IrOpKind::Inst, *prevIdx});
}
else
{
uint32_t instIdx = function.getInstIndex(loadInst);
// Record load of this register version for future substitution
valueMap[versionedLoad] = instIdx;
createRegLink(instIdx, loadInst.a);
}
}
// VM register loads can use the value that was stored in the same Vm register earlier
void forwardVmRegStoreToLoad(const IrInst& storeInst, IrCmd loadCmd)
{
LUAU_ASSERT(storeInst.a.kind == IrOpKind::VmReg);
LUAU_ASSERT(storeInst.b.kind == IrOpKind::Inst);
if (!useValueNumbering)
return;
// To avoid captured register invalidation tracking in lowering later, values from stores into captured registers are not propagated
// This prevents the case where store creates an alternative value location in case of a spill and is then cloberred in a user call
if (function.cfg.captured.regs.test(vmRegOp(storeInst.a)))
return;
// Future loads of this register version can use the value we stored
valueMap[versionedVmRegLoad(loadCmd, storeInst.a)] = storeInst.b.index;
}
IrFunction& function;
bool useValueNumbering = false;
std::array<RegisterInfo, 256> regs;
// For range/full invalidations, we only want to visit a limited number of data that we have recorded
int maxReg = 0;
@ -202,6 +303,8 @@ struct ConstPropState
bool checkedGc = false;
DenseHashMap<uint32_t, RegisterLink> instLink{~0u};
DenseHashMap<IrInst, uint32_t, IrInstHash, IrInstEq> valueMap;
};
static void handleBuiltinEffects(ConstPropState& state, LuauBuiltinFunction bfid, uint32_t firstReturnReg, int nresults)
@ -277,6 +380,7 @@ static void handleBuiltinEffects(ConstPropState& state, LuauBuiltinFunction bfid
}
// TODO: classify further using switch above, some fastcalls only modify the value, not the tag
// TODO: fastcalls are different from calls and it might be possible to not invalidate all register starting from return
state.invalidateRegistersFrom(firstReturnReg);
}
@ -292,45 +396,65 @@ static void constPropInInst(ConstPropState& state, IrBuilder& build, IrFunction&
break;
case IrCmd::LOAD_POINTER:
if (inst.a.kind == IrOpKind::VmReg)
state.createRegLink(index, inst.a);
state.substituteOrRecordVmRegLoad(inst);
break;
case IrCmd::LOAD_DOUBLE:
if (IrOp value = state.tryGetValue(inst.a); value.kind == IrOpKind::Constant)
substitute(function, inst, value);
else if (inst.a.kind == IrOpKind::VmReg)
state.createRegLink(index, inst.a);
state.substituteOrRecordVmRegLoad(inst);
break;
case IrCmd::LOAD_INT:
if (IrOp value = state.tryGetValue(inst.a); value.kind == IrOpKind::Constant)
substitute(function, inst, value);
else if (inst.a.kind == IrOpKind::VmReg)
state.createRegLink(index, inst.a);
state.substituteOrRecordVmRegLoad(inst);
break;
case IrCmd::LOAD_TVALUE:
if (inst.a.kind == IrOpKind::VmReg)
state.createRegLink(index, inst.a);
state.substituteOrRecordVmRegLoad(inst);
break;
case IrCmd::STORE_TAG:
if (inst.a.kind == IrOpKind::VmReg)
{
const IrOp source = inst.a;
uint32_t activeLoadDoubleValue = kInvalidInstIdx;
if (inst.b.kind == IrOpKind::Constant)
{
uint8_t value = function.tagOp(inst.b);
if (state.tryGetTag(inst.a) == value)
// STORE_TAG usually follows a store of the value, but it also bumps the version of the whole register
// To be able to propagate STORE_DOUBLE into LOAD_DOUBLE, we find active LOAD_DOUBLE value and recreate it with updated version
// Register in this optimization cannot be captured to avoid complications in lowering (IrValueLocationTracking doesn't model it)
// If stored tag is not a number, we can skip the lookup as there won't be future loads of this register as a number
if (value == LUA_TNUMBER && !function.cfg.captured.regs.test(vmRegOp(source)))
{
if (uint32_t* prevIdx = state.valueMap.find(state.versionedVmRegLoad(IrCmd::LOAD_DOUBLE, source)))
activeLoadDoubleValue = *prevIdx;
}
if (state.tryGetTag(source) == value)
kill(function, inst);
else
state.saveTag(inst.a, value);
state.saveTag(source, value);
}
else
{
state.invalidateTag(inst.a);
state.invalidateTag(source);
}
// Future LOAD_DOUBLE instructions can re-use previous register version load
if (activeLoadDoubleValue != kInvalidInstIdx)
state.valueMap[state.versionedVmRegLoad(IrCmd::LOAD_DOUBLE, source)] = activeLoadDoubleValue;
}
break;
case IrCmd::STORE_POINTER:
if (inst.a.kind == IrOpKind::VmReg)
{
state.invalidateValue(inst.a);
state.forwardVmRegStoreToLoad(inst, IrCmd::LOAD_POINTER);
}
break;
case IrCmd::STORE_DOUBLE:
if (inst.a.kind == IrOpKind::VmReg)
@ -345,6 +469,7 @@ static void constPropInInst(ConstPropState& state, IrBuilder& build, IrFunction&
else
{
state.invalidateValue(inst.a);
state.forwardVmRegStoreToLoad(inst, IrCmd::LOAD_DOUBLE);
}
}
break;
@ -361,6 +486,7 @@ static void constPropInInst(ConstPropState& state, IrBuilder& build, IrFunction&
else
{
state.invalidateValue(inst.a);
state.forwardVmRegStoreToLoad(inst, IrCmd::LOAD_INT);
}
}
break;
@ -377,6 +503,8 @@ static void constPropInInst(ConstPropState& state, IrBuilder& build, IrFunction&
if (IrOp value = state.tryGetValue(inst.b); value.kind != IrOpKind::None)
state.saveValue(inst.a, value);
state.forwardVmRegStoreToLoad(inst, IrCmd::LOAD_TVALUE);
}
break;
case IrCmd::JUMP_IF_TRUTHY:
@ -540,11 +668,12 @@ static void constPropInInst(ConstPropState& state, IrBuilder& build, IrFunction&
// These instructions don't have an effect on register/memory state we are tracking
case IrCmd::NOP:
case IrCmd::LOAD_NODE_VALUE_TV:
case IrCmd::STORE_NODE_VALUE_TV:
case IrCmd::LOAD_ENV:
case IrCmd::GET_ARR_ADDR:
case IrCmd::GET_SLOT_NODE_ADDR:
case IrCmd::GET_HASH_NODE_ADDR:
case IrCmd::STORE_NODE_VALUE_TV:
break;
case IrCmd::ADD_INT:
case IrCmd::SUB_INT:
case IrCmd::ADD_NUM:
@ -552,7 +681,6 @@ static void constPropInInst(ConstPropState& state, IrBuilder& build, IrFunction&
case IrCmd::MUL_NUM:
case IrCmd::DIV_NUM:
case IrCmd::MOD_NUM:
case IrCmd::POW_NUM:
case IrCmd::MIN_NUM:
case IrCmd::MAX_NUM:
case IrCmd::UNM_NUM:
@ -562,6 +690,8 @@ static void constPropInInst(ConstPropState& state, IrBuilder& build, IrFunction&
case IrCmd::SQRT_NUM:
case IrCmd::ABS_NUM:
case IrCmd::NOT_ANY:
state.substituteOrRecord(inst, index);
break;
case IrCmd::JUMP:
case IrCmd::JUMP_EQ_POINTER:
case IrCmd::JUMP_SLOT_MATCH:
@ -581,7 +711,6 @@ static void constPropInInst(ConstPropState& state, IrBuilder& build, IrFunction&
case IrCmd::RETURN:
case IrCmd::COVERAGE:
case IrCmd::SET_UPVALUE:
case IrCmd::SETLIST: // We don't track table state that this can invalidate
case IrCmd::SET_SAVEDPC: // TODO: we may be able to remove some updates to PC
case IrCmd::CLOSE_UPVALS: // Doesn't change memory that we track
case IrCmd::CAPTURE:
@ -642,12 +771,21 @@ static void constPropInInst(ConstPropState& state, IrBuilder& build, IrFunction&
case IrCmd::INTERRUPT:
state.invalidateUserCall();
break;
case IrCmd::SETLIST:
state.valueMap.clear(); // TODO: this can be relaxed when x64 emitInstSetList becomes aware of register allocator
break;
case IrCmd::CALL:
state.invalidateRegistersFrom(vmRegOp(inst.a));
state.invalidateUserCall();
// We cannot guarantee right now that all live values can be remeterialized from non-stack memory locations
// To prevent earlier values from being propagated to after the call, we have to clear the map
// TODO: remove only the values that don't have a guaranteed restore location
state.valueMap.clear();
break;
case IrCmd::FORGLOOP:
state.invalidateRegistersFrom(vmRegOp(inst.a) + 2); // Rn and Rn+1 are not modified
state.valueMap.clear(); // TODO: this can be relaxed when x64 emitInstForGLoop becomes aware of register allocator
break;
case IrCmd::FORGLOOP_FALLBACK:
state.invalidateRegistersFrom(vmRegOp(inst.a) + 2); // Rn and Rn+1 are not modified
@ -656,6 +794,8 @@ static void constPropInInst(ConstPropState& state, IrBuilder& build, IrFunction&
case IrCmd::FORGPREP_XNEXT_FALLBACK:
// This fallback only conditionally throws an exception
break;
// Full fallback instructions
case IrCmd::FALLBACK_GETGLOBAL:
state.invalidate(inst.b);
state.invalidateUserCall();
@ -678,7 +818,7 @@ static void constPropInInst(ConstPropState& state, IrBuilder& build, IrFunction&
case IrCmd::FALLBACK_PREPVARARGS:
break;
case IrCmd::FALLBACK_GETVARARGS:
state.invalidateRegistersFrom(vmRegOp(inst.b));
state.invalidateRegisterRange(vmRegOp(inst.b), function.intOp(inst.c));
break;
case IrCmd::FALLBACK_NEWCLOSURE:
state.invalidate(inst.b);
@ -709,13 +849,17 @@ static void constPropInBlock(IrBuilder& build, IrBlock& block, ConstPropState& s
constPropInInst(state, build, function, block, inst, index);
}
// Value numbering and load/store propagation is not performed between blocks
state.valueMap.clear();
}
static void constPropInBlockChain(IrBuilder& build, std::vector<uint8_t>& visited, IrBlock* block)
static void constPropInBlockChain(IrBuilder& build, std::vector<uint8_t>& visited, IrBlock* block, bool useValueNumbering)
{
IrFunction& function = build.function;
ConstPropState state{function};
state.useValueNumbering = useValueNumbering;
while (block)
{
@ -792,7 +936,7 @@ static std::vector<uint32_t> collectDirectBlockJumpPath(IrFunction& function, st
return path;
}
static void tryCreateLinearBlock(IrBuilder& build, std::vector<uint8_t>& visited, IrBlock& startingBlock)
static void tryCreateLinearBlock(IrBuilder& build, std::vector<uint8_t>& visited, IrBlock& startingBlock, bool useValueNumbering)
{
IrFunction& function = build.function;
@ -822,6 +966,7 @@ static void tryCreateLinearBlock(IrBuilder& build, std::vector<uint8_t>& visited
// Initialize state with the knowledge of our current block
ConstPropState state{function};
state.useValueNumbering = useValueNumbering;
constPropInBlock(build, startingBlock, state);
// Veryfy that target hasn't changed
@ -845,7 +990,7 @@ static void tryCreateLinearBlock(IrBuilder& build, std::vector<uint8_t>& visited
constPropInBlock(build, linearBlock, state);
}
void constPropInBlockChains(IrBuilder& build)
void constPropInBlockChains(IrBuilder& build, bool useValueNumbering)
{
IrFunction& function = build.function;
@ -859,11 +1004,11 @@ void constPropInBlockChains(IrBuilder& build)
if (visited[function.getBlockIndex(block)])
continue;
constPropInBlockChain(build, visited, &block);
constPropInBlockChain(build, visited, &block, useValueNumbering);
}
}
void createLinearBlocks(IrBuilder& build)
void createLinearBlocks(IrBuilder& build, bool useValueNumbering)
{
// Go through internal block chains and outline them into a single new block.
// Outlining will be able to linearize the execution, even if there was a jump to a block with multiple users,
@ -884,7 +1029,7 @@ void createLinearBlocks(IrBuilder& build)
if (visited[function.getBlockIndex(block)])
continue;
tryCreateLinearBlock(build, visited, block);
tryCreateLinearBlock(build, visited, block, useValueNumbering);
}
}

View File

@ -40,7 +40,6 @@ static void optimizeMemoryOperandsX64(IrFunction& function, IrBlock& block)
case IrCmd::MUL_NUM:
case IrCmd::DIV_NUM:
case IrCmd::MOD_NUM:
case IrCmd::POW_NUM:
case IrCmd::MIN_NUM:
case IrCmd::MAX_NUM:
{

View File

@ -79,6 +79,8 @@ public:
void setDebugLine(int line);
void pushDebugLocal(StringRef name, uint8_t reg, uint32_t startpc, uint32_t endpc);
void pushDebugUpval(StringRef name);
size_t getInstructionCount() const;
uint32_t getDebugPC() const;
void addDebugRemark(const char* format, ...) LUAU_PRINTF_ATTR(2, 3);

View File

@ -556,6 +556,11 @@ void BytecodeBuilder::pushDebugUpval(StringRef name)
debugUpvals.push_back(upval);
}
size_t BytecodeBuilder::getInstructionCount() const
{
return insns.size();
}
uint32_t BytecodeBuilder::getDebugPC() const
{
return uint32_t(insns.size());

View File

@ -25,6 +25,8 @@ LUAU_FASTINTVARIABLE(LuauCompileInlineThreshold, 25)
LUAU_FASTINTVARIABLE(LuauCompileInlineThresholdMaxBoost, 300)
LUAU_FASTINTVARIABLE(LuauCompileInlineDepth, 5)
LUAU_FASTFLAGVARIABLE(LuauCompileLimitInsns, false)
namespace Luau
{
@ -33,6 +35,7 @@ using namespace Luau::Compile;
static const uint32_t kMaxRegisterCount = 255;
static const uint32_t kMaxUpvalueCount = 200;
static const uint32_t kMaxLocalCount = 200;
static const uint32_t kMaxInstructionCount = 1'000'000'000;
static const uint8_t kInvalidReg = 255;
@ -247,6 +250,9 @@ struct Compiler
popLocals(0);
if (FFlag::LuauCompileLimitInsns && bytecode.getInstructionCount() > kMaxInstructionCount)
CompileError::raise(func->location, "Exceeded function instruction limit; split the function into parts to compile");
bytecode.endFunction(uint8_t(stackSize), uint8_t(upvals.size()));
Function& f = functions[func];

View File

@ -55,7 +55,7 @@ ifneq ($(opt),)
TESTS_ARGS+=-O$(opt)
endif
OBJECTS=$(AST_OBJECTS) $(COMPILER_OBJECTS) $(ANALYSIS_OBJECTS) $(CODEGEN_OBJECTS) $(VM_OBJECTS) $(ISOCLINE_OBJECTS) $(TESTS_OBJECTS) $(CLI_OBJECTS) $(FUZZ_OBJECTS)
OBJECTS=$(AST_OBJECTS) $(COMPILER_OBJECTS) $(ANALYSIS_OBJECTS) $(CODEGEN_OBJECTS) $(VM_OBJECTS) $(ISOCLINE_OBJECTS) $(TESTS_OBJECTS) $(REPL_CLI_OBJECTS) $(ANALYZE_CLI_OBJECTS) $(FUZZ_OBJECTS)
EXECUTABLE_ALIASES = luau luau-analyze luau-tests
# common flags

View File

@ -17,8 +17,6 @@
#include <string.h>
LUAU_FASTFLAGVARIABLE(LuauBetterOOMHandling, false)
/*
** {======================================================
** Error-recovery functions
@ -82,7 +80,7 @@ public:
const char* what() const throw() override
{
// LUA_ERRRUN passes error object on the stack
if (status == LUA_ERRRUN || (status == LUA_ERRSYNTAX && !FFlag::LuauBetterOOMHandling))
if (status == LUA_ERRRUN)
if (const char* str = lua_tostring(L, -1))
return str;
@ -552,30 +550,21 @@ int luaD_pcall(lua_State* L, Pfunc func, void* u, ptrdiff_t old_top, ptrdiff_t e
// call user-defined error function (used in xpcall)
if (ef)
{
if (FFlag::LuauBetterOOMHandling)
{
// push error object to stack top if it's not already there
if (status != LUA_ERRRUN)
seterrorobj(L, status, L->top);
// push error object to stack top if it's not already there
if (status != LUA_ERRRUN)
seterrorobj(L, status, L->top);
// if errfunc fails, we fail with "error in error handling" or "not enough memory"
int err = luaD_rawrunprotected(L, callerrfunc, restorestack(L, ef));
// if errfunc fails, we fail with "error in error handling" or "not enough memory"
int err = luaD_rawrunprotected(L, callerrfunc, restorestack(L, ef));
// in general we preserve the status, except for cases when the error handler fails
// out of memory is treated specially because it's common for it to be cascading, in which case we preserve the code
if (err == 0)
errstatus = LUA_ERRRUN;
else if (status == LUA_ERRMEM && err == LUA_ERRMEM)
errstatus = LUA_ERRMEM;
else
errstatus = status = LUA_ERRERR;
}
// in general we preserve the status, except for cases when the error handler fails
// out of memory is treated specially because it's common for it to be cascading, in which case we preserve the code
if (err == 0)
errstatus = LUA_ERRRUN;
else if (status == LUA_ERRMEM && err == LUA_ERRMEM)
errstatus = LUA_ERRMEM;
else
{
// if errfunc fails, we fail with "error in error handling"
if (luaD_rawrunprotected(L, callerrfunc, restorestack(L, ef)) != 0)
status = LUA_ERRERR;
}
errstatus = status = LUA_ERRERR;
}
// since the call failed with an error, we might have to reset the 'active' thread state
@ -597,7 +586,7 @@ int luaD_pcall(lua_State* L, Pfunc func, void* u, ptrdiff_t old_top, ptrdiff_t e
StkId oldtop = restorestack(L, old_top);
luaF_close(L, oldtop); // close eventual pending closures
seterrorobj(L, FFlag::LuauBetterOOMHandling ? errstatus : status, oldtop);
seterrorobj(L, errstatus, oldtop);
L->ci = restoreci(L, old_ci);
L->base = L->ci->base;
restore_stack_limit(L);

View File

@ -10,8 +10,6 @@
#include "ldebug.h"
#include "lvm.h"
LUAU_FASTFLAGVARIABLE(LuauIntrosort, false)
static int foreachi(lua_State* L)
{
luaL_checktype(L, 1, LUA_TTABLE);
@ -389,7 +387,7 @@ static void sort_rec(lua_State* L, Table* t, int l, int u, int limit, SortPredic
while (l < u)
{
// if the limit has been reached, quick sort is going over the permitted nlogn complexity, so we fall back to heap sort
if (FFlag::LuauIntrosort && limit == 0)
if (limit == 0)
return sort_heap(L, t, l, u, pred);
// sort elements a[l], a[(l+u)/2] and a[u]
@ -435,43 +433,20 @@ static void sort_rec(lua_State* L, Table* t, int l, int u, int limit, SortPredic
// swap pivot a[p] with a[i], which is the new midpoint
sort_swap(L, t, p, i);
if (FFlag::LuauIntrosort)
{
// adjust limit to allow 1.5 log2N recursive steps
limit = (limit >> 1) + (limit >> 2);
// adjust limit to allow 1.5 log2N recursive steps
limit = (limit >> 1) + (limit >> 2);
// a[l..i-1] <= a[i] == P <= a[i+1..u]
// sort smaller half recursively; the larger half is sorted in the next loop iteration
if (i - l < u - i)
{
sort_rec(L, t, l, i - 1, limit, pred);
l = i + 1;
}
else
{
sort_rec(L, t, i + 1, u, limit, pred);
u = i - 1;
}
// a[l..i-1] <= a[i] == P <= a[i+1..u]
// sort smaller half recursively; the larger half is sorted in the next loop iteration
if (i - l < u - i)
{
sort_rec(L, t, l, i - 1, limit, pred);
l = i + 1;
}
else
{
// a[l..i-1] <= a[i] == P <= a[i+1..u]
// adjust so that smaller half is in [j..i] and larger one in [l..u]
if (i - l < u - i)
{
j = l;
i = i - 1;
l = i + 2;
}
else
{
j = i + 1;
i = u;
u = j - 2;
}
// sort smaller half recursively; the larger half is sorted in the next loop iteration
sort_rec(L, t, j, i, limit, pred);
sort_rec(L, t, i + 1, u, limit, pred);
u = i - 1;
}
}
}

View File

@ -354,6 +354,9 @@ TEST_CASE_FIXTURE(AssemblyBuilderA64Fixture, "FPMath")
SINGLE_COMPARE(frintm(d1, d2), 0x1E654041);
SINGLE_COMPARE(frintp(d1, d2), 0x1E64C041);
SINGLE_COMPARE(fcvt(s1, d2), 0x1E624041);
SINGLE_COMPARE(fcvt(d1, s2), 0x1E22C041);
SINGLE_COMPARE(fcvtzs(w1, d2), 0x1E780041);
SINGLE_COMPARE(fcvtzs(x1, d2), 0x9E780041);
SINGLE_COMPARE(fcvtzu(w1, d2), 0x1E790041);
@ -384,16 +387,20 @@ TEST_CASE_FIXTURE(AssemblyBuilderA64Fixture, "FPLoadStore")
SINGLE_COMPARE(str(d0, mem(x1, -7)), 0xFC1F9020);
// load/store sizes
SINGLE_COMPARE(ldr(s0, x1), 0xBD400020);
SINGLE_COMPARE(ldr(d0, x1), 0xFD400020);
SINGLE_COMPARE(ldr(q0, x1), 0x3DC00020);
SINGLE_COMPARE(str(s0, x1), 0xBD000020);
SINGLE_COMPARE(str(d0, x1), 0xFD000020);
SINGLE_COMPARE(str(q0, x1), 0x3D800020);
// load/store sizes x offset scaling
SINGLE_COMPARE(ldr(q0, mem(x1, 16)), 0x3DC00420);
SINGLE_COMPARE(ldr(d0, mem(x1, 16)), 0xFD400820);
SINGLE_COMPARE(ldr(s0, mem(x1, 16)), 0xBD401020);
SINGLE_COMPARE(str(q0, mem(x1, 16)), 0x3D800420);
SINGLE_COMPARE(str(d0, mem(x1, 16)), 0xFD000820);
SINGLE_COMPARE(str(s0, mem(x1, 16)), 0xBD001020);
}
TEST_CASE_FIXTURE(AssemblyBuilderA64Fixture, "FPCompare")
@ -471,6 +478,8 @@ TEST_CASE("LogTest")
build.fmov(d0, 0.25);
build.tbz(x0, 5, l);
build.fcvt(s1, d2);
build.setLabel(l);
build.ret();
@ -502,6 +511,7 @@ TEST_CASE("LogTest")
fcmp d0,#0
fmov d0,#0.25
tbz x0,#5,.L1
fcvt s1,d2
.L1:
ret
)";

View File

@ -408,8 +408,6 @@ static int cxxthrow(lua_State* L)
TEST_CASE("PCall")
{
ScopedFastFlag sff("LuauBetterOOMHandling", true);
runConformance(
"pcall.lua",
[](lua_State* L) {
@ -504,7 +502,7 @@ static void populateRTTI(lua_State* L, Luau::TypeId type)
for (const auto& [name, prop] : t->props)
{
populateRTTI(L, prop.type);
populateRTTI(L, prop.type());
lua_setfield(L, -2, name.c_str());
}
}
@ -1012,8 +1010,6 @@ TEST_CASE("ApiCalls")
lua_pop(L, 1);
}
ScopedFastFlag sff("LuauBetterOOMHandling", true);
// lua_pcall on OOM
{
lua_getfield(L, LUA_GLOBALSINDEX, "largealloc");

View File

@ -23,8 +23,8 @@ void ConstraintGraphBuilderFixture::generateConstraints(const std::string& code)
{
AstStatBlock* root = parse(code);
dfg = std::make_unique<DataFlowGraph>(DataFlowGraphBuilder::build(root, NotNull{&ice}));
cgb = std::make_unique<ConstraintGraphBuilder>(
mainModule, &arena, NotNull(&moduleResolver), builtinTypes, NotNull(&ice), frontend.globals.globalScope, &logger, NotNull{dfg.get()});
cgb = std::make_unique<ConstraintGraphBuilder>(mainModule, &arena, NotNull(&moduleResolver), builtinTypes, NotNull(&ice),
frontend.globals.globalScope, /*prepareModuleScope*/ nullptr, &logger, NotNull{dfg.get()});
cgb->visit(root);
rootScope = cgb->rootScope;
constraints = Luau::borrowConstraints(cgb->constraints);

View File

@ -21,7 +21,6 @@
static const char* mainModuleName = "MainModule";
LUAU_FASTFLAG(DebugLuauDeferredConstraintResolution);
LUAU_FASTFLAG(LuauOnDemandTypecheckers);
extern std::optional<unsigned> randomSeed; // tests/main.cpp
@ -177,13 +176,7 @@ AstStatBlock* Fixture::parse(const std::string& source, const ParseOptions& pars
if (FFlag::DebugLuauDeferredConstraintResolution)
{
ModulePtr module = Luau::check(*sourceModule, {}, builtinTypes, NotNull{&ice}, NotNull{&moduleResolver}, NotNull{&fileResolver},
frontend.globals.globalScope, frontend.options);
Luau::lint(sourceModule->root, *sourceModule->names, frontend.globals.globalScope, module.get(), sourceModule->hotcomments, {});
}
else if (!FFlag::LuauOnDemandTypecheckers)
{
ModulePtr module = frontend.typeChecker_DEPRECATED.check(*sourceModule, sourceModule->mode.value_or(Luau::Mode::Nonstrict));
frontend.globals.globalScope, /*prepareModuleScope*/ nullptr, frontend.options);
Luau::lint(sourceModule->root, *sourceModule->names, frontend.globals.globalScope, module.get(), sourceModule->hotcomments, {});
}

View File

@ -1129,4 +1129,21 @@ TEST_CASE_FIXTURE(BuiltinsFixture, "reexport_type_alias")
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "module_scope_check")
{
frontend.prepareModuleScope = [this](const ModuleName& name, const ScopePtr& scope, bool forAutocomplete) {
scope->bindings[Luau::AstName{"x"}] = Luau::Binding{frontend.globals.builtinTypes->numberType};
};
fileResolver.source["game/A"] = R"(
local a = x
)";
CheckResult result = frontend.check("game/A");
LUAU_REQUIRE_NO_ERRORS(result);
auto ty = requireType("game/A", "a");
CHECK_EQ(toString(ty), "number");
}
TEST_SUITE_END();

View File

@ -294,28 +294,31 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "Numeric")
build.beginBlock(block);
build.inst(IrCmd::STORE_INT, build.vmReg(0), build.inst(IrCmd::ADD_INT, build.constInt(10), build.constInt(20)));
build.inst(IrCmd::STORE_INT, build.vmReg(0), build.inst(IrCmd::ADD_INT, build.constInt(INT_MAX), build.constInt(1)));
build.inst(IrCmd::STORE_INT, build.vmReg(1), build.inst(IrCmd::ADD_INT, build.constInt(INT_MAX), build.constInt(1)));
build.inst(IrCmd::STORE_INT, build.vmReg(0), build.inst(IrCmd::SUB_INT, build.constInt(10), build.constInt(20)));
build.inst(IrCmd::STORE_INT, build.vmReg(0), build.inst(IrCmd::SUB_INT, build.constInt(INT_MIN), build.constInt(1)));
build.inst(IrCmd::STORE_INT, build.vmReg(2), build.inst(IrCmd::SUB_INT, build.constInt(10), build.constInt(20)));
build.inst(IrCmd::STORE_INT, build.vmReg(3), build.inst(IrCmd::SUB_INT, build.constInt(INT_MIN), build.constInt(1)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(0), build.inst(IrCmd::ADD_NUM, build.constDouble(2), build.constDouble(5)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(0), build.inst(IrCmd::SUB_NUM, build.constDouble(2), build.constDouble(5)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(0), build.inst(IrCmd::MUL_NUM, build.constDouble(2), build.constDouble(5)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(0), build.inst(IrCmd::DIV_NUM, build.constDouble(2), build.constDouble(5)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(0), build.inst(IrCmd::MOD_NUM, build.constDouble(5), build.constDouble(2)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(0), build.inst(IrCmd::POW_NUM, build.constDouble(5), build.constDouble(2)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(0), build.inst(IrCmd::MIN_NUM, build.constDouble(5), build.constDouble(2)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(0), build.inst(IrCmd::MAX_NUM, build.constDouble(5), build.constDouble(2)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(4), build.inst(IrCmd::ADD_NUM, build.constDouble(2), build.constDouble(5)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(5), build.inst(IrCmd::SUB_NUM, build.constDouble(2), build.constDouble(5)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(6), build.inst(IrCmd::MUL_NUM, build.constDouble(2), build.constDouble(5)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(7), build.inst(IrCmd::DIV_NUM, build.constDouble(2), build.constDouble(5)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(8), build.inst(IrCmd::MOD_NUM, build.constDouble(5), build.constDouble(2)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(10), build.inst(IrCmd::MIN_NUM, build.constDouble(5), build.constDouble(2)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(11), build.inst(IrCmd::MAX_NUM, build.constDouble(5), build.constDouble(2)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(0), build.inst(IrCmd::UNM_NUM, build.constDouble(5)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(12), build.inst(IrCmd::UNM_NUM, build.constDouble(5)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(13), build.inst(IrCmd::FLOOR_NUM, build.constDouble(2.5)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(14), build.inst(IrCmd::CEIL_NUM, build.constDouble(2.5)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(15), build.inst(IrCmd::ROUND_NUM, build.constDouble(2.5)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(16), build.inst(IrCmd::SQRT_NUM, build.constDouble(16)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(17), build.inst(IrCmd::ABS_NUM, build.constDouble(-4)));
build.inst(IrCmd::STORE_INT, build.vmReg(0), build.inst(IrCmd::NOT_ANY, build.constTag(tnil), build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(1))));
build.inst(IrCmd::STORE_INT, build.vmReg(0), build.inst(IrCmd::NOT_ANY, build.constTag(tnumber), build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(1))));
build.inst(IrCmd::STORE_INT, build.vmReg(0), build.inst(IrCmd::NOT_ANY, build.constTag(tboolean), build.constInt(0)));
build.inst(IrCmd::STORE_INT, build.vmReg(0), build.inst(IrCmd::NOT_ANY, build.constTag(tboolean), build.constInt(1)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(0), build.inst(IrCmd::INT_TO_NUM, build.constInt(8)));
build.inst(IrCmd::STORE_INT, build.vmReg(18), build.inst(IrCmd::NOT_ANY, build.constTag(tnil), build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(1))));
build.inst(
IrCmd::STORE_INT, build.vmReg(19), build.inst(IrCmd::NOT_ANY, build.constTag(tnumber), build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(1))));
build.inst(IrCmd::STORE_INT, build.vmReg(20), build.inst(IrCmd::NOT_ANY, build.constTag(tboolean), build.constInt(0)));
build.inst(IrCmd::STORE_INT, build.vmReg(21), build.inst(IrCmd::NOT_ANY, build.constTag(tboolean), build.constInt(1)));
build.inst(IrCmd::RETURN, build.constUint(0));
@ -325,23 +328,233 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "Numeric")
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
STORE_INT R0, 30i
STORE_INT R0, -2147483648i
STORE_INT R0, -10i
STORE_INT R0, 2147483647i
STORE_DOUBLE R0, 7
STORE_DOUBLE R0, -3
STORE_DOUBLE R0, 10
STORE_DOUBLE R0, 0.40000000000000002
STORE_DOUBLE R0, 1
STORE_DOUBLE R0, 25
STORE_DOUBLE R0, 2
STORE_DOUBLE R0, 5
STORE_DOUBLE R0, -5
STORE_INT R0, 1i
STORE_INT R0, 0i
STORE_INT R0, 1i
STORE_INT R0, 0i
STORE_INT R1, -2147483648i
STORE_INT R2, -10i
STORE_INT R3, 2147483647i
STORE_DOUBLE R4, 7
STORE_DOUBLE R5, -3
STORE_DOUBLE R6, 10
STORE_DOUBLE R7, 0.40000000000000002
STORE_DOUBLE R8, 1
STORE_DOUBLE R10, 2
STORE_DOUBLE R11, 5
STORE_DOUBLE R12, -5
STORE_DOUBLE R13, 2
STORE_DOUBLE R14, 3
STORE_DOUBLE R15, 3
STORE_DOUBLE R16, 4
STORE_DOUBLE R17, 4
STORE_INT R18, 1i
STORE_INT R19, 0i
STORE_INT R20, 1i
STORE_INT R21, 0i
RETURN 0u
)");
}
TEST_CASE_FIXTURE(IrBuilderFixture, "NumericConversions")
{
IrOp block = build.block(IrBlockKind::Internal);
build.beginBlock(block);
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(0), build.inst(IrCmd::INT_TO_NUM, build.constInt(8)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(1), build.inst(IrCmd::UINT_TO_NUM, build.constInt(0xdeee0000u)));
build.inst(IrCmd::STORE_INT, build.vmReg(2), build.inst(IrCmd::NUM_TO_INT, build.constDouble(200.0)));
build.inst(IrCmd::STORE_INT, build.vmReg(3), build.inst(IrCmd::NUM_TO_UINT, build.constDouble(3740139520.0)));
build.inst(IrCmd::RETURN, build.constUint(0));
updateUseCounts(build.function);
constantFold();
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
STORE_DOUBLE R0, 8
STORE_DOUBLE R1, 3740139520
STORE_INT R2, 200i
STORE_INT R3, -554827776i
RETURN 0u
)");
}
TEST_CASE_FIXTURE(IrBuilderFixture, "NumericConversionsBlocked")
{
IrOp block = build.block(IrBlockKind::Internal);
build.beginBlock(block);
IrOp nan = build.inst(IrCmd::DIV_NUM, build.constDouble(0.0), build.constDouble(0.0));
build.inst(IrCmd::STORE_INT, build.vmReg(0), build.inst(IrCmd::NUM_TO_INT, build.constDouble(1e20)));
build.inst(IrCmd::STORE_INT, build.vmReg(1), build.inst(IrCmd::NUM_TO_UINT, build.constDouble(-10)));
build.inst(IrCmd::STORE_INT, build.vmReg(2), build.inst(IrCmd::NUM_TO_INT, nan));
build.inst(IrCmd::STORE_INT, build.vmReg(3), build.inst(IrCmd::NUM_TO_UINT, nan));
build.inst(IrCmd::RETURN, build.constUint(0));
updateUseCounts(build.function);
constantFold();
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
%1 = NUM_TO_INT 1e+20
STORE_INT R0, %1
%3 = NUM_TO_UINT -10
STORE_INT R1, %3
%5 = NUM_TO_INT nan
STORE_INT R2, %5
%7 = NUM_TO_UINT nan
STORE_INT R3, %7
RETURN 0u
)");
}
TEST_CASE_FIXTURE(IrBuilderFixture, "Bit32")
{
IrOp block = build.block(IrBlockKind::Internal);
build.beginBlock(block);
IrOp unk = build.inst(IrCmd::LOAD_INT, build.vmReg(0));
build.inst(IrCmd::STORE_INT, build.vmReg(0), build.inst(IrCmd::BITAND_UINT, build.constInt(0xfe), build.constInt(0xe)));
build.inst(IrCmd::STORE_INT, build.vmReg(1), build.inst(IrCmd::BITAND_UINT, unk, build.constInt(0)));
build.inst(IrCmd::STORE_INT, build.vmReg(2), build.inst(IrCmd::BITAND_UINT, build.constInt(0), unk));
build.inst(IrCmd::STORE_INT, build.vmReg(3), build.inst(IrCmd::BITAND_UINT, unk, build.constInt(~0u)));
build.inst(IrCmd::STORE_INT, build.vmReg(4), build.inst(IrCmd::BITAND_UINT, build.constInt(~0u), unk));
build.inst(IrCmd::STORE_INT, build.vmReg(5), build.inst(IrCmd::BITXOR_UINT, build.constInt(0xfe), build.constInt(0xe)));
build.inst(IrCmd::STORE_INT, build.vmReg(6), build.inst(IrCmd::BITXOR_UINT, unk, build.constInt(0)));
build.inst(IrCmd::STORE_INT, build.vmReg(7), build.inst(IrCmd::BITXOR_UINT, build.constInt(0), unk));
build.inst(IrCmd::STORE_INT, build.vmReg(8), build.inst(IrCmd::BITXOR_UINT, unk, build.constInt(~0u)));
build.inst(IrCmd::STORE_INT, build.vmReg(9), build.inst(IrCmd::BITXOR_UINT, build.constInt(~0u), unk));
build.inst(IrCmd::STORE_INT, build.vmReg(10), build.inst(IrCmd::BITOR_UINT, build.constInt(0xf0), build.constInt(0xe)));
build.inst(IrCmd::STORE_INT, build.vmReg(11), build.inst(IrCmd::BITOR_UINT, unk, build.constInt(0)));
build.inst(IrCmd::STORE_INT, build.vmReg(12), build.inst(IrCmd::BITOR_UINT, build.constInt(0), unk));
build.inst(IrCmd::STORE_INT, build.vmReg(13), build.inst(IrCmd::BITOR_UINT, unk, build.constInt(~0u)));
build.inst(IrCmd::STORE_INT, build.vmReg(14), build.inst(IrCmd::BITOR_UINT, build.constInt(~0u), unk));
build.inst(IrCmd::STORE_INT, build.vmReg(15), build.inst(IrCmd::BITNOT_UINT, build.constInt(0xe)));
build.inst(IrCmd::STORE_INT, build.vmReg(16), build.inst(IrCmd::BITLSHIFT_UINT, build.constInt(0xf0), build.constInt(4)));
build.inst(IrCmd::STORE_INT, build.vmReg(17), build.inst(IrCmd::BITLSHIFT_UINT, unk, build.constInt(0)));
build.inst(IrCmd::STORE_INT, build.vmReg(18), build.inst(IrCmd::BITRSHIFT_UINT, build.constInt(0xdeee0000u), build.constInt(8)));
build.inst(IrCmd::STORE_INT, build.vmReg(19), build.inst(IrCmd::BITRSHIFT_UINT, unk, build.constInt(0)));
build.inst(IrCmd::STORE_INT, build.vmReg(20), build.inst(IrCmd::BITARSHIFT_UINT, build.constInt(0xdeee0000u), build.constInt(8)));
build.inst(IrCmd::STORE_INT, build.vmReg(21), build.inst(IrCmd::BITARSHIFT_UINT, unk, build.constInt(0)));
build.inst(IrCmd::STORE_INT, build.vmReg(22), build.inst(IrCmd::BITLROTATE_UINT, build.constInt(0xdeee0000u), build.constInt(8)));
build.inst(IrCmd::STORE_INT, build.vmReg(23), build.inst(IrCmd::BITLROTATE_UINT, unk, build.constInt(0)));
build.inst(IrCmd::STORE_INT, build.vmReg(24), build.inst(IrCmd::BITRROTATE_UINT, build.constInt(0xdeee0000u), build.constInt(8)));
build.inst(IrCmd::STORE_INT, build.vmReg(25), build.inst(IrCmd::BITRROTATE_UINT, unk, build.constInt(0)));
build.inst(IrCmd::STORE_INT, build.vmReg(26), build.inst(IrCmd::BITCOUNTLZ_UINT, build.constInt(0xff00)));
build.inst(IrCmd::STORE_INT, build.vmReg(27), build.inst(IrCmd::BITCOUNTLZ_UINT, build.constInt(0)));
build.inst(IrCmd::STORE_INT, build.vmReg(28), build.inst(IrCmd::BITCOUNTRZ_UINT, build.constInt(0xff00)));
build.inst(IrCmd::STORE_INT, build.vmReg(29), build.inst(IrCmd::BITCOUNTRZ_UINT, build.constInt(0)));
build.inst(IrCmd::RETURN, build.constUint(0));
updateUseCounts(build.function);
constantFold();
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
%0 = LOAD_INT R0
STORE_INT R0, 14i
STORE_INT R1, 0i
STORE_INT R2, 0i
STORE_INT R3, %0
STORE_INT R4, %0
STORE_INT R5, 240i
STORE_INT R6, %0
STORE_INT R7, %0
%17 = BITNOT_UINT %0
STORE_INT R8, %17
%19 = BITNOT_UINT %0
STORE_INT R9, %19
STORE_INT R10, 254i
STORE_INT R11, %0
STORE_INT R12, %0
STORE_INT R13, -1i
STORE_INT R14, -1i
STORE_INT R15, -15i
STORE_INT R16, 3840i
STORE_INT R17, %0
STORE_INT R18, 14609920i
STORE_INT R19, %0
STORE_INT R20, -2167296i
STORE_INT R21, %0
STORE_INT R22, -301989666i
STORE_INT R23, %0
STORE_INT R24, 14609920i
STORE_INT R25, %0
STORE_INT R26, 16i
STORE_INT R27, 32i
STORE_INT R28, 8i
STORE_INT R29, 32i
RETURN 0u
)");
}
TEST_CASE_FIXTURE(IrBuilderFixture, "Bit32Blocked")
{
IrOp block = build.block(IrBlockKind::Internal);
build.beginBlock(block);
build.inst(IrCmd::STORE_INT, build.vmReg(10), build.inst(IrCmd::BITLSHIFT_UINT, build.constInt(0xf), build.constInt(-10)));
build.inst(IrCmd::STORE_INT, build.vmReg(10), build.inst(IrCmd::BITLSHIFT_UINT, build.constInt(0xf), build.constInt(140)));
build.inst(IrCmd::STORE_INT, build.vmReg(10), build.inst(IrCmd::BITRSHIFT_UINT, build.constInt(0xf), build.constInt(-10)));
build.inst(IrCmd::STORE_INT, build.vmReg(10), build.inst(IrCmd::BITRSHIFT_UINT, build.constInt(0xf), build.constInt(140)));
build.inst(IrCmd::STORE_INT, build.vmReg(10), build.inst(IrCmd::BITARSHIFT_UINT, build.constInt(0xf), build.constInt(-10)));
build.inst(IrCmd::STORE_INT, build.vmReg(10), build.inst(IrCmd::BITARSHIFT_UINT, build.constInt(0xf), build.constInt(140)));
build.inst(IrCmd::RETURN, build.constUint(0));
updateUseCounts(build.function);
constantFold();
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
%0 = BITLSHIFT_UINT 15i, -10i
STORE_INT R10, %0
%2 = BITLSHIFT_UINT 15i, 140i
STORE_INT R10, %2
%4 = BITRSHIFT_UINT 15i, -10i
STORE_INT R10, %4
%6 = BITRSHIFT_UINT 15i, 140i
STORE_INT R10, %6
%8 = BITARSHIFT_UINT 15i, -10i
STORE_INT R10, %8
%10 = BITARSHIFT_UINT 15i, 140i
STORE_INT R10, %10
RETURN 0u
)");
}
TEST_CASE_FIXTURE(IrBuilderFixture, "NumericNan")
{
IrOp block = build.block(IrBlockKind::Internal);
build.beginBlock(block);
IrOp nan = build.inst(IrCmd::DIV_NUM, build.constDouble(0.0), build.constDouble(0.0));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(0), build.inst(IrCmd::MIN_NUM, nan, build.constDouble(2)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(0), build.inst(IrCmd::MIN_NUM, build.constDouble(1), nan));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(0), build.inst(IrCmd::MAX_NUM, nan, build.constDouble(2)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(0), build.inst(IrCmd::MAX_NUM, build.constDouble(1), nan));
build.inst(IrCmd::RETURN, build.constUint(0));
updateUseCounts(build.function);
constantFold();
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
STORE_DOUBLE R0, 2
STORE_DOUBLE R0, nan
STORE_DOUBLE R0, 2
STORE_DOUBLE R0, nan
RETURN 0u
)");
@ -571,7 +784,7 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "RememberTagsAndValues")
build.inst(IrCmd::RETURN, build.constUint(0));
updateUseCounts(build.function);
constPropInBlockChains(build);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
@ -589,10 +802,8 @@ bb_0:
STORE_DOUBLE R2, %16
%18 = LOAD_TAG R0
STORE_TAG R9, %18
%20 = LOAD_INT R1
STORE_INT R10, %20
%22 = LOAD_DOUBLE R2
STORE_DOUBLE R11, %22
STORE_INT R10, %14
STORE_DOUBLE R11, %16
RETURN 0u
)");
@ -617,7 +828,7 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "PropagateThroughTvalue")
build.inst(IrCmd::RETURN, build.constUint(0));
updateUseCounts(build.function);
constPropInBlockChains(build);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
@ -647,7 +858,7 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "SkipCheckTag")
build.inst(IrCmd::RETURN, build.constUint(1));
updateUseCounts(build.function);
constPropInBlockChains(build);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
@ -674,7 +885,7 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "SkipOncePerBlockChecks")
build.inst(IrCmd::RETURN, build.constUint(0));
updateUseCounts(build.function);
constPropInBlockChains(build);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
@ -713,7 +924,7 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "RememberTableState")
build.inst(IrCmd::RETURN, build.constUint(1));
updateUseCounts(build.function);
constPropInBlockChains(build);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
@ -745,7 +956,7 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "SkipUselessBarriers")
build.inst(IrCmd::RETURN, build.constUint(0));
updateUseCounts(build.function);
constPropInBlockChains(build);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
@ -776,7 +987,7 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "ConcatInvalidation")
build.inst(IrCmd::RETURN, build.constUint(0));
updateUseCounts(build.function);
constPropInBlockChains(build);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
@ -825,7 +1036,7 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "BuiltinFastcallsMayInvalidateMemory")
build.inst(IrCmd::RETURN, build.constUint(1));
updateUseCounts(build.function);
constPropInBlockChains(build);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
@ -858,7 +1069,7 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "RedundantStoreCheckConstantType")
build.inst(IrCmd::RETURN, build.constUint(0));
updateUseCounts(build.function);
constPropInBlockChains(build);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
@ -888,7 +1099,7 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "TagCheckPropagation")
build.inst(IrCmd::RETURN, build.constUint(1));
updateUseCounts(build.function);
constPropInBlockChains(build);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
@ -920,7 +1131,7 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "TagCheckPropagationConflicting")
build.inst(IrCmd::RETURN, build.constUint(1));
updateUseCounts(build.function);
constPropInBlockChains(build);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
@ -956,7 +1167,7 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "TruthyTestRemoval")
build.inst(IrCmd::RETURN, build.constUint(3));
updateUseCounts(build.function);
constPropInBlockChains(build);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
@ -995,7 +1206,7 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "FalsyTestRemoval")
build.inst(IrCmd::RETURN, build.constUint(3));
updateUseCounts(build.function);
constPropInBlockChains(build);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
@ -1030,7 +1241,7 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "TagEqRemoval")
build.inst(IrCmd::RETURN, build.constUint(2));
updateUseCounts(build.function);
constPropInBlockChains(build);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
@ -1062,7 +1273,7 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "IntEqRemoval")
build.inst(IrCmd::RETURN, build.constUint(2));
updateUseCounts(build.function);
constPropInBlockChains(build);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
@ -1093,7 +1304,7 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "NumCmpRemoval")
build.inst(IrCmd::RETURN, build.constUint(2));
updateUseCounts(build.function);
constPropInBlockChains(build);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
@ -1121,7 +1332,7 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "DataFlowsThroughDirectJumpToUniqueSuccessor
build.inst(IrCmd::RETURN, build.constUint(1));
updateUseCounts(build.function);
constPropInBlockChains(build);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
@ -1154,7 +1365,7 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "DataDoesNotFlowThroughDirectJumpToNonUnique
build.inst(IrCmd::JUMP, block2);
updateUseCounts(build.function);
constPropInBlockChains(build);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
@ -1190,7 +1401,7 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "EntryBlockUseRemoval")
build.inst(IrCmd::JUMP, entry);
updateUseCounts(build.function);
constPropInBlockChains(build);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
@ -1225,7 +1436,7 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "RecursiveSccUseRemoval1")
build.inst(IrCmd::JUMP, block);
updateUseCounts(build.function);
constPropInBlockChains(build);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
@ -1267,7 +1478,7 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "RecursiveSccUseRemoval2")
build.inst(IrCmd::JUMP, block);
updateUseCounts(build.function);
constPropInBlockChains(build);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
@ -1325,8 +1536,8 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "SimplePathExtraction")
build.inst(IrCmd::RETURN, build.vmReg(0), build.constInt(0));
updateUseCounts(build.function);
constPropInBlockChains(build);
createLinearBlocks(build);
constPropInBlockChains(build, true);
createLinearBlocks(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
@ -1401,8 +1612,8 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "NoPathExtractionForBlocksWithLiveOutValues"
build.inst(IrCmd::RETURN, build.vmReg(0), build.constInt(0));
updateUseCounts(build.function);
constPropInBlockChains(build);
createLinearBlocks(build);
constPropInBlockChains(build, true);
createLinearBlocks(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
@ -1453,8 +1664,8 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "InfiniteLoopInPathAnalysis")
build.inst(IrCmd::JUMP, block2);
updateUseCounts(build.function);
constPropInBlockChains(build);
createLinearBlocks(build);
constPropInBlockChains(build, true);
createLinearBlocks(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
@ -1468,6 +1679,38 @@ bb_1:
)");
}
TEST_CASE_FIXTURE(IrBuilderFixture, "PartialStoreInvalidation")
{
IrOp block = build.block(IrBlockKind::Internal);
build.beginBlock(block);
build.inst(IrCmd::STORE_TVALUE, build.vmReg(1), build.inst(IrCmd::LOAD_TVALUE, build.vmReg(0)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(0), build.constDouble(0.5));
build.inst(IrCmd::STORE_TVALUE, build.vmReg(1), build.inst(IrCmd::LOAD_TVALUE, build.vmReg(0))); // Should be reloaded
build.inst(IrCmd::STORE_TAG, build.vmReg(0), build.constTag(tboolean));
build.inst(IrCmd::STORE_TVALUE, build.vmReg(1), build.inst(IrCmd::LOAD_TVALUE, build.vmReg(0))); // Should be reloaded
build.inst(IrCmd::RETURN, build.constUint(0));
updateUseCounts(build.function);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
%0 = LOAD_TVALUE R0
STORE_TVALUE R1, %0
STORE_DOUBLE R0, 0.5
%3 = LOAD_TVALUE R0
STORE_TVALUE R1, %3
STORE_TAG R0, tboolean
%6 = LOAD_TVALUE R0
STORE_TVALUE R1, %6
RETURN 0u
)");
}
TEST_SUITE_END();
TEST_SUITE_BEGIN("Analysis");
@ -1777,7 +2020,6 @@ bb_1:
)");
}
TEST_CASE_FIXTURE(IrBuilderFixture, "SetTable")
{
IrOp entry = build.block(IrBlockKind::Internal);
@ -1799,3 +2041,192 @@ bb_0:
}
TEST_SUITE_END();
TEST_SUITE_BEGIN("ValueNumbering");
TEST_CASE_FIXTURE(IrBuilderFixture, "RemoveDuplicateCalculation")
{
IrOp entry = build.block(IrBlockKind::Internal);
build.beginBlock(entry);
IrOp op1 = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(0));
IrOp op2 = build.inst(IrCmd::UNM_NUM, op1);
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(1), op2);
IrOp op3 = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(0)); // Load propagation is tested here
IrOp op4 = build.inst(IrCmd::UNM_NUM, op3); // And allows value numbering to trigger here
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(2), op4);
build.inst(IrCmd::RETURN, build.vmReg(1), build.constInt(2));
updateUseCounts(build.function);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
%0 = LOAD_DOUBLE R0
%1 = UNM_NUM %0
STORE_DOUBLE R1, %1
STORE_DOUBLE R2, %1
RETURN R1, 2i
)");
}
TEST_CASE_FIXTURE(IrBuilderFixture, "LateTableStateLink")
{
IrOp block = build.block(IrBlockKind::Internal);
IrOp fallback = build.block(IrBlockKind::Fallback);
build.beginBlock(block);
IrOp tmp = build.inst(IrCmd::DUP_TABLE, build.vmReg(0));
build.inst(IrCmd::STORE_POINTER, build.vmReg(0), tmp); // Late tmp -> R0 link is tested here
IrOp table = build.inst(IrCmd::LOAD_POINTER, build.vmReg(0)); // Store to load propagation test
build.inst(IrCmd::CHECK_NO_METATABLE, table, fallback);
build.inst(IrCmd::CHECK_READONLY, table, fallback);
build.inst(IrCmd::CHECK_NO_METATABLE, table, fallback);
build.inst(IrCmd::CHECK_READONLY, table, fallback);
build.inst(IrCmd::RETURN, build.constUint(0));
build.beginBlock(fallback);
build.inst(IrCmd::RETURN, build.constUint(1));
updateUseCounts(build.function);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
%0 = DUP_TABLE R0
STORE_POINTER R0, %0
CHECK_NO_METATABLE %0, bb_fallback_1
CHECK_READONLY %0, bb_fallback_1
RETURN 0u
bb_fallback_1:
RETURN 1u
)");
}
TEST_CASE_FIXTURE(IrBuilderFixture, "RegisterVersioning")
{
IrOp entry = build.block(IrBlockKind::Internal);
build.beginBlock(entry);
IrOp op1 = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(0));
IrOp op2 = build.inst(IrCmd::UNM_NUM, op1);
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(0), op2);
build.inst(IrCmd::STORE_TAG, build.vmReg(0), build.constTag(tnumber)); // Doesn't prevent previous store propagation
IrOp op3 = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(0)); // No longer 'op1'
IrOp op4 = build.inst(IrCmd::UNM_NUM, op3);
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(1), op4);
build.inst(IrCmd::RETURN, build.vmReg(0), build.constInt(2));
updateUseCounts(build.function);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
%0 = LOAD_DOUBLE R0
%1 = UNM_NUM %0
STORE_DOUBLE R0, %1
STORE_TAG R0, tnumber
%5 = UNM_NUM %1
STORE_DOUBLE R1, %5
RETURN R0, 2i
)");
}
// This can be relaxed in the future when SETLIST becomes aware of register allocator
TEST_CASE_FIXTURE(IrBuilderFixture, "SetListIsABlocker")
{
IrOp entry = build.block(IrBlockKind::Internal);
build.beginBlock(entry);
IrOp op1 = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(0));
build.inst(IrCmd::SETLIST);
IrOp op2 = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(0));
IrOp sum = build.inst(IrCmd::ADD_NUM, op1, op2);
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(0), sum);
build.inst(IrCmd::RETURN, build.vmReg(0), build.constInt(1));
updateUseCounts(build.function);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
%0 = LOAD_DOUBLE R0
SETLIST
%2 = LOAD_DOUBLE R0
%3 = ADD_NUM %0, %2
STORE_DOUBLE R0, %3
RETURN R0, 1i
)");
}
// Luau call will reuse the same stack and spills will be lost
// However, in the future we might propagate values that can be rematerialized
TEST_CASE_FIXTURE(IrBuilderFixture, "CallIsABlocker")
{
IrOp entry = build.block(IrBlockKind::Internal);
build.beginBlock(entry);
IrOp op1 = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(0));
build.inst(IrCmd::CALL, build.vmReg(1), build.constInt(1), build.vmReg(2), build.constInt(1));
IrOp op2 = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(0));
IrOp sum = build.inst(IrCmd::ADD_NUM, op1, op2);
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(1), sum);
build.inst(IrCmd::RETURN, build.vmReg(1), build.constInt(2));
updateUseCounts(build.function);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
bb_0:
%0 = LOAD_DOUBLE R0
CALL R1, 1i, R2, 1i
%2 = LOAD_DOUBLE R0
%3 = ADD_NUM %0, %2
STORE_DOUBLE R1, %3
RETURN R1, 2i
)");
}
// While constant propagation correctly versions captured registers, IrValueLocationTracking doesn't (yet)
TEST_CASE_FIXTURE(IrBuilderFixture, "NoPropagationOfCapturedRegs")
{
IrOp entry = build.block(IrBlockKind::Internal);
build.beginBlock(entry);
build.inst(IrCmd::CAPTURE, build.vmReg(0), build.constBool(true));
IrOp op1 = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(0));
IrOp op2 = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(0));
IrOp sum = build.inst(IrCmd::ADD_NUM, op1, op2);
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(1), sum);
build.inst(IrCmd::RETURN, build.vmReg(1), build.constInt(1));
updateUseCounts(build.function);
computeCfgInfo(build.function);
constPropInBlockChains(build, true);
CHECK("\n" + toString(build.function, /* includeUseInfo */ false) == R"(
; captured regs: R0
bb_0:
; in regs: R0
CAPTURE R0, true
%1 = LOAD_DOUBLE R0
%2 = LOAD_DOUBLE R0
%3 = ADD_NUM %1, %2
STORE_DOUBLE R1, %3
RETURN R1, 1i
)");
}
TEST_SUITE_END();

View File

@ -137,7 +137,7 @@ TEST_CASE_FIXTURE(Fixture, "deepClone_cyclic_table")
CHECK_EQ(std::optional<std::string>{"Cyclic"}, ttv->syntheticName);
TypeId methodType = ttv->props["get"].type;
TypeId methodType = ttv->props["get"].type();
REQUIRE(methodType != nullptr);
const FunctionType* ftv = get<FunctionType>(methodType);
@ -161,7 +161,7 @@ TEST_CASE_FIXTURE(Fixture, "deepClone_cyclic_table_2")
TypeId methodTy = src.addType(FunctionType{src.addTypePack({}), src.addTypePack({tableTy})});
tt->props["get"].type = methodTy;
tt->props["get"].setType(methodTy);
TypeArena dest;
@ -170,7 +170,7 @@ TEST_CASE_FIXTURE(Fixture, "deepClone_cyclic_table_2")
TableType* ctt = getMutable<TableType>(cloneTy);
REQUIRE(ctt);
TypeId clonedMethodType = ctt->props["get"].type;
TypeId clonedMethodType = ctt->props["get"].type();
REQUIRE(clonedMethodType);
const FunctionType* cmf = get<FunctionType>(clonedMethodType);
@ -199,7 +199,7 @@ TEST_CASE_FIXTURE(BuiltinsFixture, "builtin_types_point_into_globalTypes_arena")
TableType* exportsTable = getMutable<TableType>(*exports);
REQUIRE(exportsTable != nullptr);
TypeId signType = exportsTable->props["sign"].type;
TypeId signType = exportsTable->props["sign"].type();
REQUIRE(signType != nullptr);
CHECK(!isInArena(signType, module->interfaceTypes));
@ -340,8 +340,8 @@ TEST_CASE_FIXTURE(Fixture, "clone_recursion_limit")
{
TableType* ttv = getMutable<TableType>(nested);
ttv->props["a"].type = src.addType(TableType{});
nested = ttv->props["a"].type;
ttv->props["a"].setType(src.addType(TableType{}));
nested = ttv->props["a"].type();
}
TypeArena dest;
@ -411,7 +411,7 @@ return {}
TypeId typeB = modBiter->second.type;
TableType* tableB = getMutable<TableType>(typeB);
REQUIRE(tableB);
CHECK(typeA == tableB->props["q"].type);
CHECK(typeA == tableB->props["q"].type());
}
TEST_CASE_FIXTURE(BuiltinsFixture, "do_not_clone_types_of_reexported_values")
@ -447,7 +447,7 @@ return exports
REQUIRE(typeB);
TableType* tableA = getMutable<TableType>(*typeA);
TableType* tableB = getMutable<TableType>(*typeB);
CHECK(tableA->props["a"].type == tableB->props["b"].type);
CHECK(tableA->props["a"].type() == tableB->props["b"].type());
}
TEST_SUITE_END();

View File

@ -170,7 +170,7 @@ TEST_CASE_FIXTURE(Fixture, "table_props_are_any")
REQUIRE(ttv != nullptr);
REQUIRE(ttv->props.count("foo"));
TypeId fooProp = ttv->props["foo"].type;
TypeId fooProp = ttv->props["foo"].type();
REQUIRE(fooProp != nullptr);
CHECK_EQ(*fooProp, *builtinTypes->anyType);
@ -192,9 +192,9 @@ TEST_CASE_FIXTURE(Fixture, "inline_table_props_are_also_any")
TableType* ttv = getMutable<TableType>(requireType("T"));
REQUIRE_MESSAGE(ttv, "Should be a table: " << toString(requireType("T")));
CHECK_EQ(*builtinTypes->anyType, *ttv->props["one"].type);
CHECK_EQ(*builtinTypes->anyType, *ttv->props["two"].type);
CHECK_MESSAGE(get<FunctionType>(follow(ttv->props["three"].type)), "Should be a function: " << *ttv->props["three"].type);
CHECK_EQ(*builtinTypes->anyType, *ttv->props["one"].type());
CHECK_EQ(*builtinTypes->anyType, *ttv->props["two"].type());
CHECK_MESSAGE(get<FunctionType>(follow(ttv->props["three"].type())), "Should be a function: " << *ttv->props["three"].type());
}
TEST_CASE_FIXTURE(BuiltinsFixture, "for_in_iterator_variables_are_any")

View File

@ -514,14 +514,14 @@ TEST_CASE_FIXTURE(BuiltinsFixture, "toStringDetailed2")
REQUIRE(tMeta2);
REQUIRE(tMeta2->props.count("__index"));
const MetatableType* tMeta3 = get<MetatableType>(tMeta2->props["__index"].type);
const MetatableType* tMeta3 = get<MetatableType>(tMeta2->props["__index"].type());
REQUIRE(tMeta3);
TableType* tMeta4 = getMutable<TableType>(tMeta3->metatable);
REQUIRE(tMeta4);
REQUIRE(tMeta4->props.count("__index"));
TableType* tMeta5 = getMutable<TableType>(tMeta4->props["__index"].type);
TableType* tMeta5 = getMutable<TableType>(tMeta4->props["__index"].type());
REQUIRE(tMeta5);
REQUIRE(tMeta5->props.count("one") > 0);
@ -529,9 +529,9 @@ TEST_CASE_FIXTURE(BuiltinsFixture, "toStringDetailed2")
REQUIRE(tMeta6);
REQUIRE(tMeta6->props.count("two") > 0);
ToStringResult oneResult = toStringDetailed(tMeta5->props["one"].type, opts);
ToStringResult oneResult = toStringDetailed(tMeta5->props["one"].type(), opts);
std::string twoResult = toString(tMeta6->props["two"].type, opts);
std::string twoResult = toString(tMeta6->props["two"].type(), opts);
CHECK_EQ("<a>(a) -> number", oneResult.name);
CHECK_EQ("<b>(b) -> number", twoResult);
@ -786,7 +786,7 @@ TEST_CASE_FIXTURE(Fixture, "toStringNamedFunction_include_self_param")
TypeId parentTy = requireType("foo");
auto ttv = get<TableType>(follow(parentTy));
auto ftv = get<FunctionType>(follow(ttv->props.at("method").type));
auto ftv = get<FunctionType>(follow(ttv->props.at("method").type()));
CHECK_EQ("foo:method<a>(self: a, arg: string): ()", toStringNamedFunction("foo:method", *ftv));
}
@ -809,7 +809,7 @@ TEST_CASE_FIXTURE(Fixture, "toStringNamedFunction_hide_self_param")
TypeId parentTy = requireType("foo");
auto ttv = get<TableType>(follow(parentTy));
REQUIRE_MESSAGE(ttv, "Expected a table but got " << toString(parentTy, opts));
TypeId methodTy = follow(ttv->props.at("method").type);
TypeId methodTy = follow(ttv->props.at("method").type());
auto ftv = get<FunctionType>(methodTy);
REQUIRE_MESSAGE(ftv, "Expected a function but got " << toString(methodTy, opts));

View File

@ -330,7 +330,7 @@ TEST_CASE_FIXTURE(Fixture, "self_referential_type_alias")
std::optional<Property> incr = get(oTable->props, "incr");
REQUIRE(incr);
const FunctionType* incrFunc = get<FunctionType>(incr->type);
const FunctionType* incrFunc = get<FunctionType>(incr->type());
REQUIRE(incrFunc);
std::optional<TypeId> firstArg = first(incrFunc->argTypes);
@ -493,7 +493,7 @@ TEST_CASE_FIXTURE(Fixture, "interface_types_belong_to_interface_arena")
TableType* exportsTable = getMutable<TableType>(*exportsType);
REQUIRE(exportsTable != nullptr);
TypeId n = exportsTable->props["n"].type;
TypeId n = exportsTable->props["n"].type();
REQUIRE(n != nullptr);
CHECK(isInArena(n, mod.interfaceTypes));
@ -548,10 +548,10 @@ TEST_CASE_FIXTURE(Fixture, "cloned_interface_maintains_pointers_between_definiti
TableType* exportsTable = getMutable<TableType>(*exportsType);
REQUIRE(exportsTable != nullptr);
TypeId aType = exportsTable->props["a"].type;
TypeId aType = exportsTable->props["a"].type();
REQUIRE(aType);
TypeId bType = exportsTable->props["b"].type;
TypeId bType = exportsTable->props["b"].type();
REQUIRE(bType);
CHECK(isInArena(recordType, mod.interfaceTypes));

View File

@ -195,7 +195,7 @@ TEST_CASE_FIXTURE(Fixture, "assign_prop_to_table_by_calling_any_yields_any")
REQUIRE(ttv);
REQUIRE(ttv->props.count("prop"));
REQUIRE_EQ("any", toString(ttv->props["prop"].type));
REQUIRE_EQ("any", toString(ttv->props["prop"].type()));
}
TEST_CASE_FIXTURE(Fixture, "quantify_any_does_not_bind_to_itself")

View File

@ -1031,7 +1031,7 @@ TEST_CASE_FIXTURE(BuiltinsFixture, "no_persistent_typelevel_change")
REQUIRE(mathTy);
TableType* ttv = getMutable<TableType>(mathTy);
REQUIRE(ttv);
const FunctionType* ftv = get<FunctionType>(ttv->props["frexp"].type);
const FunctionType* ftv = get<FunctionType>(ttv->props["frexp"].type());
REQUIRE(ftv);
auto original = ftv->level;

View File

@ -111,7 +111,7 @@ TEST_CASE_FIXTURE(Fixture, "generalize_table_property")
const TableType* tt = get<TableType>(follow(t));
REQUIRE(tt);
TypeId fooTy = tt->props.at("foo").type;
TypeId fooTy = tt->props.at("foo").type();
CHECK("<a>(a) -> a" == toString(fooTy));
}
@ -156,7 +156,7 @@ TEST_CASE_FIXTURE(BuiltinsFixture, "vararg_function_is_quantified")
REQUIRE(ttv);
REQUIRE(ttv->props.count("f"));
TypeId k = ttv->props["f"].type;
TypeId k = ttv->props["f"].type();
REQUIRE(k);
}

View File

@ -865,7 +865,7 @@ TEST_CASE_FIXTURE(Fixture, "generic_table_method")
REQUIRE(tTable != nullptr);
REQUIRE(tTable->props.count("bar"));
TypeId barType = tTable->props["bar"].type;
TypeId barType = tTable->props["bar"].type();
REQUIRE(barType != nullptr);
const FunctionType* ftv = get<FunctionType>(follow(barType));
@ -900,7 +900,7 @@ TEST_CASE_FIXTURE(Fixture, "correctly_instantiate_polymorphic_member_functions")
std::optional<Property> fooProp = get(t->props, "foo");
REQUIRE(bool(fooProp));
const FunctionType* foo = get<FunctionType>(follow(fooProp->type));
const FunctionType* foo = get<FunctionType>(follow(fooProp->type()));
REQUIRE(bool(foo));
std::optional<TypeId> ret_ = first(foo->retTypes);
@ -947,7 +947,7 @@ TEST_CASE_FIXTURE(Fixture, "instantiate_cyclic_generic_function")
std::optional<Property> methodProp = get(argTable->props, "method");
REQUIRE(bool(methodProp));
const FunctionType* methodFunction = get<FunctionType>(methodProp->type);
const FunctionType* methodFunction = get<FunctionType>(methodProp->type());
REQUIRE(methodFunction != nullptr);
std::optional<TypeId> methodArg = first(methodFunction->argTypes);

View File

@ -2,6 +2,7 @@
#include "Fixture.h"
#include "Luau/ToString.h"
#include "doctest.h"
#include "Luau/Common.h"
#include "ScopedFlags.h"
@ -47,4 +48,32 @@ TEST_CASE_FIXTURE(NegationFixture, "string_is_not_a_subtype_of_negated_string")
LUAU_REQUIRE_ERROR_COUNT(1, result);
}
TEST_CASE_FIXTURE(Fixture, "cofinite_strings_can_be_compared_for_equality")
{
CheckResult result = check(R"(
function f(e)
if e == 'strictEqual' then
e = 'strictEqualObject'
end
if e == 'deepStrictEqual' or e == 'strictEqual' then
elseif e == 'notDeepStrictEqual' or e == 'notStrictEqual' then
end
return e
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK("(string) -> string" == toString(requireType("f")));
}
TEST_CASE_FIXTURE(NegationFixture, "compare_cofinite_strings")
{
CheckResult result = check(R"(
local u : Not<"a">
local v : "b"
if u == v then
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_SUITE_END();

View File

@ -1749,4 +1749,36 @@ TEST_CASE_FIXTURE(BuiltinsFixture, "type_annotations_arent_relevant_when_doing_d
CHECK_EQ("nil", toString(requireTypeAtPosition({9, 28})));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "function_call_with_colon_after_refining_not_to_be_nil")
{
ScopedFastFlag sff{"DebugLuauDeferredConstraintResolution", true};
CheckResult result = check(R"(
--!strict
export type Observer<T> = {
complete: ((self: Observer<T>) -> ())?,
}
local function _f(handler: Observer<any>)
assert(handler.complete ~= nil)
handler:complete() -- incorrectly gives Value of type '((Observer<any>) -> ())?' could be nil
handler.complete(handler) -- works fine, both forms should avoid the error
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "refinements_should_not_affect_assignment")
{
CheckResult result = check(R"(
local a: unknown = true
if a == true then
a = 'not even remotely similar to a boolean'
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_SUITE_END();

View File

@ -31,15 +31,15 @@ TEST_CASE_FIXTURE(Fixture, "basic")
std::optional<Property> fooProp = get(tType->props, "foo");
REQUIRE(bool(fooProp));
CHECK_EQ(PrimitiveType::String, getPrimitiveType(fooProp->type));
CHECK_EQ(PrimitiveType::String, getPrimitiveType(fooProp->type()));
std::optional<Property> bazProp = get(tType->props, "baz");
REQUIRE(bool(bazProp));
CHECK_EQ(PrimitiveType::Number, getPrimitiveType(bazProp->type));
CHECK_EQ(PrimitiveType::Number, getPrimitiveType(bazProp->type()));
std::optional<Property> quuxProp = get(tType->props, "quux");
REQUIRE(bool(quuxProp));
CHECK_EQ(PrimitiveType::NilType, getPrimitiveType(quuxProp->type));
CHECK_EQ(PrimitiveType::NilType, getPrimitiveType(quuxProp->type()));
}
TEST_CASE_FIXTURE(Fixture, "augment_table")
@ -65,7 +65,7 @@ TEST_CASE_FIXTURE(Fixture, "augment_nested_table")
REQUIRE(tType != nullptr);
REQUIRE(tType->props.find("p") != tType->props.end());
const TableType* pType = get<TableType>(tType->props["p"].type);
const TableType* pType = get<TableType>(tType->props["p"].type());
REQUIRE(pType != nullptr);
CHECK("{ p: { foo: string } }" == toString(requireType("t"), {true}));
@ -159,7 +159,7 @@ TEST_CASE_FIXTURE(Fixture, "tc_member_function")
std::optional<Property> fooProp = get(tableType->props, "foo");
REQUIRE(bool(fooProp));
const FunctionType* methodType = get<FunctionType>(follow(fooProp->type));
const FunctionType* methodType = get<FunctionType>(follow(fooProp->type()));
REQUIRE(methodType != nullptr);
}
@ -173,7 +173,7 @@ TEST_CASE_FIXTURE(Fixture, "tc_member_function_2")
std::optional<Property> uProp = get(tableType->props, "U");
REQUIRE(bool(uProp));
TypeId uType = uProp->type;
TypeId uType = uProp->type();
const TableType* uTable = get<TableType>(uType);
REQUIRE(uTable != nullptr);
@ -181,7 +181,7 @@ TEST_CASE_FIXTURE(Fixture, "tc_member_function_2")
std::optional<Property> fooProp = get(uTable->props, "foo");
REQUIRE(bool(fooProp));
const FunctionType* methodType = get<FunctionType>(follow(fooProp->type));
const FunctionType* methodType = get<FunctionType>(follow(fooProp->type()));
REQUIRE(methodType != nullptr);
std::vector<TypeId> methodArgs = flatten(methodType->argTypes).first;
@ -935,7 +935,7 @@ TEST_CASE_FIXTURE(Fixture, "assigning_to_an_unsealed_table_with_string_literal_s
REQUIRE(tableType->indexer == std::nullopt);
REQUIRE(0 != tableType->props.count("a"));
TypeId propertyA = tableType->props["a"].type;
TypeId propertyA = tableType->props["a"].type();
REQUIRE(propertyA != nullptr);
CHECK_EQ(*builtinTypes->stringType, *propertyA);
}
@ -1925,8 +1925,8 @@ TEST_CASE_FIXTURE(BuiltinsFixture, "quantifying_a_bound_var_works")
REQUIRE(ttv);
REQUIRE(ttv->props.count("new"));
Property& prop = ttv->props["new"];
REQUIRE(prop.type);
const FunctionType* ftv = get<FunctionType>(follow(prop.type));
REQUIRE(prop.type());
const FunctionType* ftv = get<FunctionType>(follow(prop.type()));
REQUIRE(ftv);
const TypePack* res = get<TypePack>(follow(ftv->retTypes));
REQUIRE(res);
@ -2647,7 +2647,7 @@ TEST_CASE_FIXTURE(BuiltinsFixture, "dont_quantify_table_that_belongs_to_outer_sc
REQUIRE(counterType);
REQUIRE(counterType->props.count("new"));
const FunctionType* newType = get<FunctionType>(follow(counterType->props["new"].type));
const FunctionType* newType = get<FunctionType>(follow(counterType->props["new"].type()));
REQUIRE(newType);
std::optional<TypeId> newRetType = *first(newType->retTypes);

View File

@ -101,7 +101,7 @@ TEST_CASE_FIXTURE(TryUnifyFixture, "tables_can_be_unified")
TableType{{{"foo", {arena.freshType(globalScope->level)}}}, std::nullopt, globalScope->level, TableState::Unsealed},
}};
CHECK_NE(*getMutable<TableType>(&tableOne)->props["foo"].type, *getMutable<TableType>(&tableTwo)->props["foo"].type);
CHECK_NE(*getMutable<TableType>(&tableOne)->props["foo"].type(), *getMutable<TableType>(&tableTwo)->props["foo"].type());
state.tryUnify(&tableTwo, &tableOne);
@ -110,7 +110,7 @@ TEST_CASE_FIXTURE(TryUnifyFixture, "tables_can_be_unified")
state.log.commit();
CHECK_EQ(*getMutable<TableType>(&tableOne)->props["foo"].type, *getMutable<TableType>(&tableTwo)->props["foo"].type);
CHECK_EQ(*getMutable<TableType>(&tableOne)->props["foo"].type(), *getMutable<TableType>(&tableTwo)->props["foo"].type());
}
TEST_CASE_FIXTURE(TryUnifyFixture, "incompatible_tables_are_preserved")
@ -129,14 +129,14 @@ TEST_CASE_FIXTURE(TryUnifyFixture, "incompatible_tables_are_preserved")
TableState::Unsealed},
}};
CHECK_NE(*getMutable<TableType>(&tableOne)->props["foo"].type, *getMutable<TableType>(&tableTwo)->props["foo"].type);
CHECK_NE(*getMutable<TableType>(&tableOne)->props["foo"].type(), *getMutable<TableType>(&tableTwo)->props["foo"].type());
state.tryUnify(&tableTwo, &tableOne);
CHECK(state.failure);
CHECK_EQ(1, state.errors.size());
CHECK_NE(*getMutable<TableType>(&tableOne)->props["foo"].type, *getMutable<TableType>(&tableTwo)->props["foo"].type);
CHECK_NE(*getMutable<TableType>(&tableOne)->props["foo"].type(), *getMutable<TableType>(&tableTwo)->props["foo"].type());
}
TEST_CASE_FIXTURE(TryUnifyFixture, "uninhabited_intersection_sub_never")

View File

@ -12,8 +12,6 @@ BuiltinTests.assert_returns_false_and_string_iff_it_knows_the_first_argument_can
BuiltinTests.bad_select_should_not_crash
BuiltinTests.dont_add_definitions_to_persistent_types
BuiltinTests.gmatch_definition
BuiltinTests.match_capture_types
BuiltinTests.match_capture_types2
BuiltinTests.math_max_checks_for_numbers
BuiltinTests.select_slightly_out_of_range
BuiltinTests.select_way_out_of_range
@ -33,6 +31,7 @@ GenericsTests.bound_tables_do_not_clone_original_fields
GenericsTests.check_mutual_generic_functions
GenericsTests.correctly_instantiate_polymorphic_member_functions
GenericsTests.do_not_infer_generic_functions
GenericsTests.dont_unify_bound_types
GenericsTests.generic_argument_count_too_few
GenericsTests.generic_argument_count_too_many
GenericsTests.generic_functions_should_be_memory_safe
@ -86,7 +85,6 @@ TableTests.give_up_after_one_metatable_index_look_up
TableTests.indexer_on_sealed_table_must_unify_with_free_table
TableTests.indexing_from_a_table_should_prefer_properties_when_possible
TableTests.inequality_operators_imply_exactly_matching_types
TableTests.infer_array_2
TableTests.inferred_return_type_of_free_table
TableTests.instantiate_table_cloning_3
TableTests.leaking_bad_metatable_errors
@ -138,7 +136,6 @@ TypeInfer.fuzz_free_table_type_change_during_index_check
TypeInfer.infer_assignment_value_types_mutable_lval
TypeInfer.no_stack_overflow_from_isoptional
TypeInfer.no_stack_overflow_from_isoptional2
TypeInfer.should_be_able_to_infer_this_without_stack_overflowing
TypeInfer.tc_after_error_recovery_no_replacement_name_in_error
TypeInfer.type_infer_recursion_limit_no_ice
TypeInfer.type_infer_recursion_limit_normalizer
@ -207,11 +204,9 @@ TypePackTests.unify_variadic_tails_in_arguments
TypePackTests.variadic_packs
TypeSingletons.function_call_with_singletons
TypeSingletons.function_call_with_singletons_mismatch
TypeSingletons.indexing_on_union_of_string_singletons
TypeSingletons.no_widening_from_callsites
TypeSingletons.return_type_of_f_is_not_widened
TypeSingletons.table_properties_type_error_escapes
TypeSingletons.taking_the_length_of_union_of_string_singleton
TypeSingletons.widen_the_supertype_if_it_is_free_and_subtype_has_singleton
TypeSingletons.widening_happens_almost_everywhere
UnionTypes.generic_function_with_optional_arg

View File

@ -108,10 +108,10 @@ def main():
help="Write a new faillist.txt after running tests.",
)
parser.add_argument(
"--lti",
dest="lti",
"--rwp",
dest="rwp",
action="store_true",
help="Run the tests with local type inference enabled.",
help="Run the tests with read-write properties enabled.",
)
parser.add_argument("--randomize", action="store_true", help="Pick a random seed")
@ -126,17 +126,17 @@ def main():
args = parser.parse_args()
if args.write and args.lti:
if args.write and args.rwp:
print_stderr(
"Cannot run test_dcr.py with --write *and* --lti. You don't want to commit local type inference faillist.txt yet."
"Cannot run test_dcr.py with --write *and* --rwp. You don't want to commit local type inference faillist.txt yet."
)
sys.exit(1)
failList = loadFailList()
flags = ["true", "DebugLuauDeferredConstraintResolution"]
if args.lti:
flags.append("DebugLuauLocalTypeInference")
if args.rwp:
flags.append("DebugLuauReadWriteProperties")
commandLine = [args.path, "--reporters=xml", "--fflags=" + ",".join(flags)]