// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details #include "Luau/Autocomplete.h" #include "Luau/AstQuery.h" #include "Luau/BuiltinDefinitions.h" #include "Luau/Frontend.h" #include "Luau/ToString.h" #include "Luau/TypeInfer.h" #include "Luau/TypePack.h" #include "Luau/Parser.h" // TODO: only needed for autocompleteSource which is deprecated #include #include #include LUAU_FASTFLAG(LuauSelfCallAutocompleteFix2) static const std::unordered_set kStatementStartingKeywords = { "while", "if", "local", "repeat", "function", "do", "for", "return", "break", "continue", "type", "export"}; namespace Luau { struct NodeFinder : public AstVisitor { const Position pos; std::vector ancestry; explicit NodeFinder(Position pos, AstNode* root) : pos(pos) { } bool visit(AstExpr* expr) override { if (expr->location.begin < pos && pos <= expr->location.end) { ancestry.push_back(expr); return true; } return false; } bool visit(AstStat* stat) override { if (stat->location.begin < pos && pos <= stat->location.end) { ancestry.push_back(stat); return true; } return false; } bool visit(AstType* type) override { if (type->location.begin < pos && pos <= type->location.end) { ancestry.push_back(type); return true; } return false; } bool visit(AstTypeError* type) override { // For a missing type, match the whole range including the start position if (type->isMissing && type->location.containsClosed(pos)) { ancestry.push_back(type); return true; } return false; } bool visit(class AstTypePack* typePack) override { return true; } bool visit(AstStatBlock* block) override { // If ancestry is empty, we are inspecting the root of the AST. Its extent is considered to be infinite. if (ancestry.empty()) { ancestry.push_back(block); return true; } // AstExprIndexName nodes are nested outside-in, so we want the outermost node in the case of nested nodes. // ex foo.bar.baz is represented in the AST as IndexName{ IndexName {foo, bar}, baz} if (!ancestry.empty() && ancestry.back()->is()) return false; // Type annotation error might intersect the block statement when the function header is being written, // annotation takes priority if (!ancestry.empty() && ancestry.back()->is()) return false; // If the cursor is at the end of an expression or type and simultaneously at the beginning of a block, // the expression or type wins out. // The exception to this is if we are in a block under an AstExprFunction. In this case, we consider the position to // be within the block. if (block->location.begin == pos && !ancestry.empty()) { if (ancestry.back()->asExpr() && !ancestry.back()->is()) return false; if (ancestry.back()->asType()) return false; } if (block->location.begin <= pos && pos <= block->location.end) { ancestry.push_back(block); return true; } return false; } }; static bool alreadyHasParens(const std::vector& nodes) { auto iter = nodes.rbegin(); while (iter != nodes.rend() && ((*iter)->is() || (*iter)->is() || (*iter)->is() || (*iter)->is())) { iter++; } if (iter == nodes.rend() || iter == nodes.rbegin()) { return false; } if (AstExprCall* call = (*iter)->as()) { return call->func == *(iter - 1); } return false; } static ParenthesesRecommendation getParenRecommendationForFunc(const FunctionTypeVar* func, const std::vector& nodes) { if (alreadyHasParens(nodes)) { return ParenthesesRecommendation::None; } auto idxExpr = nodes.back()->as(); bool hasImplicitSelf = idxExpr && idxExpr->op == ':'; auto [argTypes, argVariadicPack] = Luau::flatten(func->argTypes); if (argVariadicPack.has_value() && isVariadic(*argVariadicPack)) return ParenthesesRecommendation::CursorInside; bool noArgFunction = argTypes.empty() || (hasImplicitSelf && argTypes.size() == 1); return noArgFunction ? ParenthesesRecommendation::CursorAfter : ParenthesesRecommendation::CursorInside; } static ParenthesesRecommendation getParenRecommendationForIntersect(const IntersectionTypeVar* intersect, const std::vector& nodes) { ParenthesesRecommendation rec = ParenthesesRecommendation::None; for (Luau::TypeId partId : intersect->parts) { if (auto partFunc = Luau::get(partId)) { rec = std::max(rec, getParenRecommendationForFunc(partFunc, nodes)); } else { return ParenthesesRecommendation::None; } } return rec; } static ParenthesesRecommendation getParenRecommendation(TypeId id, const std::vector& nodes, TypeCorrectKind typeCorrect) { // If element is already type-correct, even a function should be inserted without parenthesis if (typeCorrect == TypeCorrectKind::Correct) return ParenthesesRecommendation::None; id = Luau::follow(id); if (auto func = get(id)) { return getParenRecommendationForFunc(func, nodes); } else if (auto intersect = get(id)) { return getParenRecommendationForIntersect(intersect, nodes); } return ParenthesesRecommendation::None; } static std::optional findExpectedTypeAt(const Module& module, AstNode* node, Position position) { auto expr = node->asExpr(); if (!expr) return std::nullopt; // Extra care for first function call argument location // When we don't have anything inside () yet, we also don't have an AST node to base our lookup if (AstExprCall* exprCall = expr->as()) { if (exprCall->args.size == 0 && exprCall->argLocation.contains(position)) { auto it = module.astTypes.find(exprCall->func); if (!it) return std::nullopt; const FunctionTypeVar* ftv = get(follow(*it)); if (!ftv) return std::nullopt; auto [head, tail] = flatten(ftv->argTypes); unsigned index = exprCall->self ? 1 : 0; if (index < head.size()) return head[index]; return std::nullopt; } } auto it = module.astExpectedTypes.find(expr); if (!it) return std::nullopt; return *it; } static bool checkTypeMatch(TypeArena* typeArena, TypeId subTy, TypeId superTy) { InternalErrorReporter iceReporter; UnifierSharedState unifierState(&iceReporter); Unifier unifier(typeArena, Mode::Strict, Location(), Variance::Covariant, unifierState); return unifier.canUnify(subTy, superTy).empty(); } static TypeCorrectKind checkTypeCorrectKind(const Module& module, TypeArena* typeArena, AstNode* node, Position position, TypeId ty) { ty = follow(ty); auto canUnify = [&typeArena](TypeId subTy, TypeId superTy) { LUAU_ASSERT(!FFlag::LuauSelfCallAutocompleteFix2); InternalErrorReporter iceReporter; UnifierSharedState unifierState(&iceReporter); Unifier unifier(typeArena, Mode::Strict, Location(), Variance::Covariant, unifierState); unifier.tryUnify(subTy, superTy); bool ok = unifier.errors.empty(); return ok; }; auto typeAtPosition = findExpectedTypeAt(module, node, position); if (!typeAtPosition) return TypeCorrectKind::None; TypeId expectedType = follow(*typeAtPosition); auto checkFunctionType = [typeArena, &canUnify, &expectedType](const FunctionTypeVar* ftv) { if (FFlag::LuauSelfCallAutocompleteFix2) { if (std::optional firstRetTy = first(ftv->retTypes)) return checkTypeMatch(typeArena, *firstRetTy, expectedType); return false; } else { auto [retHead, retTail] = flatten(ftv->retTypes); if (!retHead.empty() && canUnify(retHead.front(), expectedType)) return true; // We might only have a variadic tail pack, check if the element is compatible if (retTail) { if (const VariadicTypePack* vtp = get(follow(*retTail)); vtp && canUnify(vtp->ty, expectedType)) return true; } return false; } }; // We also want to suggest functions that return compatible result if (const FunctionTypeVar* ftv = get(ty); ftv && checkFunctionType(ftv)) { return TypeCorrectKind::CorrectFunctionResult; } else if (const IntersectionTypeVar* itv = get(ty)) { for (TypeId id : itv->parts) { if (const FunctionTypeVar* ftv = get(id); ftv && checkFunctionType(ftv)) { return TypeCorrectKind::CorrectFunctionResult; } } } if (FFlag::LuauSelfCallAutocompleteFix2) return checkTypeMatch(typeArena, ty, expectedType) ? TypeCorrectKind::Correct : TypeCorrectKind::None; else return canUnify(ty, expectedType) ? TypeCorrectKind::Correct : TypeCorrectKind::None; } enum class PropIndexType { Point, Colon, Key, }; static void autocompleteProps(const Module& module, TypeArena* typeArena, TypeId rootTy, TypeId ty, PropIndexType indexType, const std::vector& nodes, AutocompleteEntryMap& result, std::unordered_set& seen, std::optional containingClass = std::nullopt) { if (FFlag::LuauSelfCallAutocompleteFix2) rootTy = follow(rootTy); ty = follow(ty); if (seen.count(ty)) return; seen.insert(ty); auto isWrongIndexer_DEPRECATED = [indexType, useStrictFunctionIndexers = !!get(ty)](Luau::TypeId type) { LUAU_ASSERT(!FFlag::LuauSelfCallAutocompleteFix2); if (indexType == PropIndexType::Key) return false; bool colonIndex = indexType == PropIndexType::Colon; if (const FunctionTypeVar* ftv = get(type)) { return useStrictFunctionIndexers ? colonIndex != ftv->hasSelf : false; } else if (const IntersectionTypeVar* itv = get(type)) { bool allHaveSelf = true; for (auto subType : itv->parts) { if (const FunctionTypeVar* ftv = get(Luau::follow(subType))) { allHaveSelf &= ftv->hasSelf; } else { return colonIndex; } } return useStrictFunctionIndexers ? colonIndex != allHaveSelf : false; } else { return colonIndex; } }; auto isWrongIndexer = [typeArena, rootTy, indexType](Luau::TypeId type) { LUAU_ASSERT(FFlag::LuauSelfCallAutocompleteFix2); if (indexType == PropIndexType::Key) return false; bool calledWithSelf = indexType == PropIndexType::Colon; auto isCompatibleCall = [typeArena, rootTy, calledWithSelf](const FunctionTypeVar* ftv) { if (get(rootTy)) { // Calls on classes require strict match between how function is declared and how it's called return calledWithSelf == ftv->hasSelf; } // If a call is made with ':', it is invalid if a function has incompatible first argument or no arguments at all // If a call is made with '.', but it was declared with 'self', it is considered invalid if first argument is compatible if (calledWithSelf || ftv->hasSelf) { if (std::optional firstArgTy = first(ftv->argTypes)) { if (checkTypeMatch(typeArena, rootTy, *firstArgTy)) return calledWithSelf; } } return !calledWithSelf; }; if (const FunctionTypeVar* ftv = get(type)) return !isCompatibleCall(ftv); // For intersections, any part that is successful makes the whole call successful if (const IntersectionTypeVar* itv = get(type)) { for (auto subType : itv->parts) { if (const FunctionTypeVar* ftv = get(Luau::follow(subType))) { if (isCompatibleCall(ftv)) return false; } } } return calledWithSelf; }; auto fillProps = [&](const ClassTypeVar::Props& props) { for (const auto& [name, prop] : props) { // We are walking up the class hierarchy, so if we encounter a property that we have // already populated, it takes precedence over the property we found just now. if (result.count(name) == 0 && name != kParseNameError) { Luau::TypeId type = Luau::follow(prop.type); TypeCorrectKind typeCorrect = indexType == PropIndexType::Key ? TypeCorrectKind::Correct : checkTypeCorrectKind(module, typeArena, nodes.back(), {{}, {}}, type); ParenthesesRecommendation parens = indexType == PropIndexType::Key ? ParenthesesRecommendation::None : getParenRecommendation(type, nodes, typeCorrect); result[name] = AutocompleteEntry{ AutocompleteEntryKind::Property, type, prop.deprecated, FFlag::LuauSelfCallAutocompleteFix2 ? isWrongIndexer(type) : isWrongIndexer_DEPRECATED(type), typeCorrect, containingClass, &prop, prop.documentationSymbol, {}, parens, }; } } }; auto fillMetatableProps = [&](const TableTypeVar* mtable) { auto indexIt = mtable->props.find("__index"); if (indexIt != mtable->props.end()) { TypeId followed = follow(indexIt->second.type); if (get(followed) || get(followed)) { autocompleteProps(module, typeArena, rootTy, followed, indexType, nodes, result, seen); } else if (auto indexFunction = get(followed)) { std::optional indexFunctionResult = first(indexFunction->retTypes); if (indexFunctionResult) autocompleteProps(module, typeArena, rootTy, *indexFunctionResult, indexType, nodes, result, seen); } } }; if (auto cls = get(ty)) { containingClass = containingClass.value_or(cls); fillProps(cls->props); if (cls->parent) autocompleteProps(module, typeArena, rootTy, *cls->parent, indexType, nodes, result, seen, containingClass); } else if (auto tbl = get(ty)) fillProps(tbl->props); else if (auto mt = get(ty)) { autocompleteProps(module, typeArena, rootTy, mt->table, indexType, nodes, result, seen); if (FFlag::LuauSelfCallAutocompleteFix2) { if (auto mtable = get(mt->metatable)) fillMetatableProps(mtable); } else { auto mtable = get(mt->metatable); if (!mtable) return; auto indexIt = mtable->props.find("__index"); if (indexIt != mtable->props.end()) { TypeId followed = follow(indexIt->second.type); if (get(followed) || get(followed)) autocompleteProps(module, typeArena, rootTy, followed, indexType, nodes, result, seen); else if (auto indexFunction = get(followed)) { std::optional indexFunctionResult = first(indexFunction->retTypes); if (indexFunctionResult) autocompleteProps(module, typeArena, rootTy, *indexFunctionResult, indexType, nodes, result, seen); } } } } else if (auto i = get(ty)) { // Complete all properties in every variant for (TypeId ty : i->parts) { AutocompleteEntryMap inner; std::unordered_set innerSeen = seen; autocompleteProps(module, typeArena, rootTy, ty, indexType, nodes, inner, innerSeen); for (auto& pair : inner) result.insert(pair); } } else if (auto u = get(ty)) { // Complete all properties common to all variants auto iter = begin(u); auto endIter = end(u); while (iter != endIter) { if (isNil(*iter)) ++iter; else break; } if (iter == endIter) return; autocompleteProps(module, typeArena, rootTy, *iter, indexType, nodes, result, seen); ++iter; while (iter != endIter) { AutocompleteEntryMap inner; std::unordered_set innerSeen; if (!FFlag::LuauSelfCallAutocompleteFix2) innerSeen = seen; if (isNil(*iter)) { ++iter; continue; } autocompleteProps(module, typeArena, rootTy, *iter, indexType, nodes, inner, innerSeen); std::unordered_set toRemove; for (const auto& [k, v] : result) { (void)v; if (!inner.count(k)) toRemove.insert(k); } for (const std::string& k : toRemove) result.erase(k); ++iter; } } else if (auto pt = get(ty); pt && FFlag::LuauSelfCallAutocompleteFix2) { if (pt->metatable) { if (auto mtable = get(*pt->metatable)) fillMetatableProps(mtable); } } else if (FFlag::LuauSelfCallAutocompleteFix2 && get(get(ty))) { autocompleteProps(module, typeArena, rootTy, getSingletonTypes().stringType, indexType, nodes, result, seen); } } static void autocompleteKeywords( const SourceModule& sourceModule, const std::vector& ancestry, Position position, AutocompleteEntryMap& result) { LUAU_ASSERT(!ancestry.empty()); AstNode* node = ancestry.back(); if (!node->is() && node->asExpr()) { // This is not strictly correct. We should recommend `and` and `or` only after // another expression, not at the start of a new one. We should only recommend // `not` at the start of an expression. Detecting either case reliably is quite // complex, however; this is good enough for now. // These are not context-sensitive keywords, so we can unconditionally assign. result["and"] = {AutocompleteEntryKind::Keyword}; result["or"] = {AutocompleteEntryKind::Keyword}; result["not"] = {AutocompleteEntryKind::Keyword}; } } static void autocompleteProps( const Module& module, TypeArena* typeArena, TypeId ty, PropIndexType indexType, const std::vector& nodes, AutocompleteEntryMap& result) { std::unordered_set seen; autocompleteProps(module, typeArena, ty, ty, indexType, nodes, result, seen); } AutocompleteEntryMap autocompleteProps( const Module& module, TypeArena* typeArena, TypeId ty, PropIndexType indexType, const std::vector& nodes) { AutocompleteEntryMap result; autocompleteProps(module, typeArena, ty, indexType, nodes, result); return result; } AutocompleteEntryMap autocompleteModuleTypes(const Module& module, Position position, std::string_view moduleName) { AutocompleteEntryMap result; for (ScopePtr scope = findScopeAtPosition(module, position); scope; scope = scope->parent) { if (auto it = scope->importedTypeBindings.find(std::string(moduleName)); it != scope->importedTypeBindings.end()) { for (const auto& [name, ty] : it->second) result[name] = AutocompleteEntry{AutocompleteEntryKind::Type, ty.type}; break; } } return result; } static void autocompleteStringSingleton(TypeId ty, bool addQuotes, AutocompleteEntryMap& result) { auto formatKey = [addQuotes](const std::string& key) { if (addQuotes) return "\"" + escape(key) + "\""; return escape(key); }; ty = follow(ty); if (auto ss = get(get(ty))) { result[formatKey(ss->value)] = AutocompleteEntry{AutocompleteEntryKind::String, ty, false, false, TypeCorrectKind::Correct}; } else if (auto uty = get(ty)) { for (auto el : uty) { if (auto ss = get(get(el))) result[formatKey(ss->value)] = AutocompleteEntry{AutocompleteEntryKind::String, ty, false, false, TypeCorrectKind::Correct}; } } }; static bool canSuggestInferredType(ScopePtr scope, TypeId ty) { ty = follow(ty); // No point in suggesting 'any', invalid to suggest others if (get(ty) || get(ty) || get(ty) || get(ty)) return false; // No syntax for unnamed tables with a metatable if (get(ty)) return false; if (const TableTypeVar* ttv = get(ty)) { if (ttv->name) return true; if (ttv->syntheticName) return false; } // We might still have a type with cycles or one that is too long, we'll check that later return true; } // Walk complex type trees to find the element that is being edited static std::optional findTypeElementAt(AstType* astType, TypeId ty, Position position); static std::optional findTypeElementAt(const AstTypeList& astTypeList, TypePackId tp, Position position) { for (size_t i = 0; i < astTypeList.types.size; i++) { AstType* type = astTypeList.types.data[i]; if (type->location.containsClosed(position)) { auto [head, _] = flatten(tp); if (i < head.size()) return findTypeElementAt(type, head[i], position); } } if (AstTypePack* argTp = astTypeList.tailType) { if (auto variadic = argTp->as()) { if (variadic->location.containsClosed(position)) { auto [_, tail] = flatten(tp); if (tail) { if (const VariadicTypePack* vtp = get(follow(*tail))) return findTypeElementAt(variadic->variadicType, vtp->ty, position); } } } } return {}; } static std::optional findTypeElementAt(AstType* astType, TypeId ty, Position position) { ty = follow(ty); if (astType->is()) return ty; if (astType->is()) return ty; if (AstTypeFunction* type = astType->as()) { const FunctionTypeVar* ftv = get(ty); if (!ftv) return {}; if (auto element = findTypeElementAt(type->argTypes, ftv->argTypes, position)) return element; if (auto element = findTypeElementAt(type->returnTypes, ftv->retTypes, position)) return element; } // It's possible to walk through other types like intrsection and unions if we find value in doing that return {}; } std::optional getLocalTypeInScopeAt(const Module& module, Position position, AstLocal* local) { if (ScopePtr scope = findScopeAtPosition(module, position)) { for (const auto& [name, binding] : scope->bindings) { if (name == local) return binding.typeId; } } return {}; } static std::optional tryGetTypeNameInScope(ScopePtr scope, TypeId ty) { if (!canSuggestInferredType(scope, ty)) return std::nullopt; ToStringOptions opts; opts.useLineBreaks = false; opts.hideTableKind = true; opts.scope = scope; ToStringResult name = toStringDetailed(ty, opts); if (name.error || name.invalid || name.cycle || name.truncated) return std::nullopt; return name.name; } static bool tryAddTypeCorrectSuggestion(AutocompleteEntryMap& result, ScopePtr scope, AstType* topType, TypeId inferredType, Position position) { std::optional ty; if (topType) ty = findTypeElementAt(topType, inferredType, position); else ty = inferredType; if (!ty) return false; if (auto name = tryGetTypeNameInScope(scope, *ty)) { if (auto it = result.find(*name); it != result.end()) it->second.typeCorrect = TypeCorrectKind::Correct; else result[*name] = AutocompleteEntry{AutocompleteEntryKind::Type, *ty, false, false, TypeCorrectKind::Correct}; return true; } return false; } static std::optional tryGetTypePackTypeAt(TypePackId tp, size_t index) { auto [tpHead, tpTail] = flatten(tp); if (index < tpHead.size()) return tpHead[index]; // Infinite tail if (tpTail) { if (const VariadicTypePack* vtp = get(follow(*tpTail))) return vtp->ty; } return {}; } template std::optional returnFirstNonnullOptionOfType(const UnionTypeVar* utv) { std::optional ret; for (TypeId subTy : utv) { if (isNil(subTy)) continue; if (const T* ftv = get(follow(subTy))) { if (ret.has_value()) { return std::nullopt; } ret = ftv; } else { return std::nullopt; } } return ret; } static std::optional functionIsExpectedAt(const Module& module, AstNode* node, Position position) { auto typeAtPosition = findExpectedTypeAt(module, node, position); if (!typeAtPosition) return std::nullopt; TypeId expectedType = follow(*typeAtPosition); if (get(expectedType)) return true; if (const IntersectionTypeVar* itv = get(expectedType)) { return std::all_of(begin(itv->parts), end(itv->parts), [](auto&& ty) { return get(Luau::follow(ty)) != nullptr; }); } if (const UnionTypeVar* utv = get(expectedType)) return returnFirstNonnullOptionOfType(utv).has_value(); return false; } AutocompleteEntryMap autocompleteTypeNames(const Module& module, Position position, const std::vector& ancestry) { AutocompleteEntryMap result; ScopePtr startScope = findScopeAtPosition(module, position); for (ScopePtr scope = startScope; scope; scope = scope->parent) { for (const auto& [name, ty] : scope->exportedTypeBindings) { if (!result.count(name)) result[name] = AutocompleteEntry{AutocompleteEntryKind::Type, ty.type, false, false, TypeCorrectKind::None, std::nullopt, std::nullopt, ty.type->documentationSymbol}; } for (const auto& [name, ty] : scope->privateTypeBindings) { if (!result.count(name)) result[name] = AutocompleteEntry{AutocompleteEntryKind::Type, ty.type, false, false, TypeCorrectKind::None, std::nullopt, std::nullopt, ty.type->documentationSymbol}; } for (const auto& [name, _] : scope->importedTypeBindings) { if (auto binding = scope->linearSearchForBinding(name, true)) { if (!result.count(name)) result[name] = AutocompleteEntry{AutocompleteEntryKind::Module, binding->typeId}; } } } AstNode* parent = nullptr; AstType* topType = nullptr; for (auto it = ancestry.rbegin(), e = ancestry.rend(); it != e; ++it) { if (AstType* asType = (*it)->asType()) { topType = asType; } else { parent = *it; break; } } if (!parent) return result; if (AstStatLocal* node = parent->as()) // Try to provide inferred type of the local { // Look at which of the variable types we are defining for (size_t i = 0; i < node->vars.size; i++) { AstLocal* var = node->vars.data[i]; if (var->annotation && var->annotation->location.containsClosed(position)) { if (node->values.size == 0) break; unsigned tailPos = 0; // For multiple return values we will try to unpack last function call return type pack if (i >= node->values.size) { tailPos = int(i) - int(node->values.size) + 1; i = int(node->values.size) - 1; } AstExpr* expr = node->values.data[i]->asExpr(); if (!expr) break; TypeId inferredType = nullptr; if (AstExprCall* exprCall = expr->as()) { if (auto it = module.astTypes.find(exprCall->func)) { if (const FunctionTypeVar* ftv = get(follow(*it))) { if (auto ty = tryGetTypePackTypeAt(ftv->retTypes, tailPos)) inferredType = *ty; } } } else { if (tailPos != 0) break; if (auto it = module.astTypes.find(expr)) inferredType = *it; } if (inferredType) tryAddTypeCorrectSuggestion(result, startScope, topType, inferredType, position); break; } } } else if (AstExprFunction* node = parent->as()) { // For lookup inside expected function type if that's available auto tryGetExpectedFunctionType = [](const Module& module, AstExpr* expr) -> const FunctionTypeVar* { auto it = module.astExpectedTypes.find(expr); if (!it) return nullptr; TypeId ty = follow(*it); if (const FunctionTypeVar* ftv = get(ty)) return ftv; // Handle optional function type if (const UnionTypeVar* utv = get(ty)) { return returnFirstNonnullOptionOfType(utv).value_or(nullptr); } return nullptr; }; // Find which argument type we are defining for (size_t i = 0; i < node->args.size; i++) { AstLocal* arg = node->args.data[i]; if (arg->annotation && arg->annotation->location.containsClosed(position)) { if (const FunctionTypeVar* ftv = tryGetExpectedFunctionType(module, node)) { if (auto ty = tryGetTypePackTypeAt(ftv->argTypes, i)) tryAddTypeCorrectSuggestion(result, startScope, topType, *ty, position); } // Otherwise, try to use the type inferred by typechecker else if (auto inferredType = getLocalTypeInScopeAt(module, position, arg)) { tryAddTypeCorrectSuggestion(result, startScope, topType, *inferredType, position); } break; } } if (AstTypePack* argTp = node->varargAnnotation) { if (auto variadic = argTp->as()) { if (variadic->location.containsClosed(position)) { if (const FunctionTypeVar* ftv = tryGetExpectedFunctionType(module, node)) { if (auto ty = tryGetTypePackTypeAt(ftv->argTypes, ~0u)) tryAddTypeCorrectSuggestion(result, startScope, topType, *ty, position); } } } } if (!node->returnAnnotation) return result; for (size_t i = 0; i < node->returnAnnotation->types.size; i++) { AstType* ret = node->returnAnnotation->types.data[i]; if (ret->location.containsClosed(position)) { if (const FunctionTypeVar* ftv = tryGetExpectedFunctionType(module, node)) { if (auto ty = tryGetTypePackTypeAt(ftv->retTypes, i)) tryAddTypeCorrectSuggestion(result, startScope, topType, *ty, position); } // TODO: with additional type information, we could suggest inferred return type here break; } } if (AstTypePack* retTp = node->returnAnnotation->tailType) { if (auto variadic = retTp->as()) { if (variadic->location.containsClosed(position)) { if (const FunctionTypeVar* ftv = tryGetExpectedFunctionType(module, node)) { if (auto ty = tryGetTypePackTypeAt(ftv->retTypes, ~0u)) tryAddTypeCorrectSuggestion(result, startScope, topType, *ty, position); } } } } } return result; } static bool isInLocalNames(const std::vector& ancestry, Position position) { for (auto iter = ancestry.rbegin(); iter != ancestry.rend(); iter++) { if (auto statLocal = (*iter)->as()) { for (auto var : statLocal->vars) { if (var->location.containsClosed(position)) { return true; } } } else if (auto funcExpr = (*iter)->as()) { if (funcExpr->argLocation && funcExpr->argLocation->contains(position)) { return true; } } else if (auto localFunc = (*iter)->as()) { return localFunc->name->location.containsClosed(position); } else if (auto block = (*iter)->as()) { if (block->body.size > 0) { return false; } } else if ((*iter)->asStat()) { return false; } } return false; } static bool isIdentifier(AstNode* node) { return node->is() || node->is(); } static bool isBeingDefined(const std::vector& ancestry, const Symbol& symbol) { // Current set of rules only check for local binding match if (!symbol.local) return false; for (auto iter = ancestry.rbegin(); iter != ancestry.rend(); iter++) { if (auto statLocal = (*iter)->as()) { for (auto var : statLocal->vars) { if (symbol.local == var) return true; } } } return false; } template T* extractStat(const std::vector& ancestry) { AstNode* node = ancestry.size() >= 1 ? ancestry.rbegin()[0] : nullptr; if (!node) return nullptr; if (T* t = node->as()) return t; AstNode* parent = ancestry.size() >= 2 ? ancestry.rbegin()[1] : nullptr; if (!parent) return nullptr; if (T* t = parent->as(); t && parent->is()) return t; AstNode* grandParent = ancestry.size() >= 3 ? ancestry.rbegin()[2] : nullptr; AstNode* greatGrandParent = ancestry.size() >= 4 ? ancestry.rbegin()[3] : nullptr; if (!grandParent || !greatGrandParent) return nullptr; if (T* t = greatGrandParent->as(); t && grandParent->is() && parent->is() && isIdentifier(node)) return t; return nullptr; } static bool isBindingLegalAtCurrentPosition(const Binding& binding, Position pos) { // Default Location used for global bindings, which are always legal. return binding.location == Location() || binding.location.end < pos; } static AutocompleteEntryMap autocompleteStatement( const SourceModule& sourceModule, const Module& module, const std::vector& ancestry, Position position) { // This is inefficient. :( ScopePtr scope = findScopeAtPosition(module, position); AutocompleteEntryMap result; if (isInLocalNames(ancestry, position)) { autocompleteKeywords(sourceModule, ancestry, position, result); return result; } while (scope) { for (const auto& [name, binding] : scope->bindings) { if (!isBindingLegalAtCurrentPosition(binding, position)) continue; std::string n = toString(name); if (!result.count(n)) result[n] = {AutocompleteEntryKind::Binding, binding.typeId, binding.deprecated, false, TypeCorrectKind::None, std::nullopt, std::nullopt, binding.documentationSymbol, {}, getParenRecommendation(binding.typeId, ancestry, TypeCorrectKind::None)}; } scope = scope->parent; } for (const auto& kw : kStatementStartingKeywords) result.emplace(kw, AutocompleteEntry{AutocompleteEntryKind::Keyword}); for (auto it = ancestry.rbegin(); it != ancestry.rend(); ++it) { if (AstStatForIn* statForIn = (*it)->as(); statForIn && !statForIn->hasEnd) result.emplace("end", AutocompleteEntry{AutocompleteEntryKind::Keyword}); if (AstStatFor* statFor = (*it)->as(); statFor && !statFor->hasEnd) result.emplace("end", AutocompleteEntry{AutocompleteEntryKind::Keyword}); if (AstStatIf* statIf = (*it)->as(); statIf && !statIf->hasEnd) result.emplace("end", AutocompleteEntry{AutocompleteEntryKind::Keyword}); if (AstStatWhile* statWhile = (*it)->as(); statWhile && !statWhile->hasEnd) result.emplace("end", AutocompleteEntry{AutocompleteEntryKind::Keyword}); if (AstExprFunction* exprFunction = (*it)->as(); exprFunction && !exprFunction->hasEnd) result.emplace("end", AutocompleteEntry{AutocompleteEntryKind::Keyword}); } if (ancestry.size() >= 2) { AstNode* parent = ancestry.rbegin()[1]; if (AstStatIf* statIf = parent->as()) { if (!statIf->elsebody || (statIf->elseLocation && statIf->elseLocation->containsClosed(position))) { result.emplace("else", AutocompleteEntry{AutocompleteEntryKind::Keyword}); result.emplace("elseif", AutocompleteEntry{AutocompleteEntryKind::Keyword}); } } if (AstStatRepeat* statRepeat = parent->as(); statRepeat && !statRepeat->hasUntil) result.emplace("until", AutocompleteEntry{AutocompleteEntryKind::Keyword}); } if (ancestry.size() >= 4) { auto iter = ancestry.rbegin(); if (AstStatIf* statIf = iter[3]->as(); statIf != nullptr && !statIf->elsebody && iter[2]->is() && iter[1]->is() && isIdentifier(iter[0])) { result.emplace("else", AutocompleteEntry{AutocompleteEntryKind::Keyword}); result.emplace("elseif", AutocompleteEntry{AutocompleteEntryKind::Keyword}); } } if (AstStatRepeat* statRepeat = extractStat(ancestry); statRepeat && !statRepeat->hasUntil) result.emplace("until", AutocompleteEntry{AutocompleteEntryKind::Keyword}); return result; } // Returns true iff `node` was handled by this function (completions, if any, are returned in `outResult`) static bool autocompleteIfElseExpression( const AstNode* node, const std::vector& ancestry, const Position& position, AutocompleteEntryMap& outResult) { AstNode* parent = ancestry.size() >= 2 ? ancestry.rbegin()[1] : nullptr; if (!parent) return false; if (node->is()) { // Don't try to complete when the current node is an if-else expression (i.e. only try to complete when the node is a child of an if-else // expression. return true; } AstExprIfElse* ifElseExpr = parent->as(); if (!ifElseExpr || ifElseExpr->condition->location.containsClosed(position)) { return false; } else if (!ifElseExpr->hasThen) { outResult["then"] = {AutocompleteEntryKind::Keyword}; return true; } else if (ifElseExpr->trueExpr->location.containsClosed(position)) { return false; } else if (!ifElseExpr->hasElse) { outResult["else"] = {AutocompleteEntryKind::Keyword}; outResult["elseif"] = {AutocompleteEntryKind::Keyword}; return true; } else { return false; } } static void autocompleteExpression(const SourceModule& sourceModule, const Module& module, const TypeChecker& typeChecker, TypeArena* typeArena, const std::vector& ancestry, Position position, AutocompleteEntryMap& result) { LUAU_ASSERT(!ancestry.empty()); AstNode* node = ancestry.rbegin()[0]; if (node->is()) { if (auto it = module.astTypes.find(node->asExpr())) autocompleteProps(module, typeArena, *it, PropIndexType::Point, ancestry, result); } else if (autocompleteIfElseExpression(node, ancestry, position, result)) return; else if (node->is()) return; else { // This is inefficient. :( ScopePtr scope = findScopeAtPosition(module, position); while (scope) { for (const auto& [name, binding] : scope->bindings) { if (!isBindingLegalAtCurrentPosition(binding, position)) continue; if (isBeingDefined(ancestry, name)) continue; std::string n = toString(name); if (!result.count(n)) { TypeCorrectKind typeCorrect = checkTypeCorrectKind(module, typeArena, node, position, binding.typeId); result[n] = {AutocompleteEntryKind::Binding, binding.typeId, binding.deprecated, false, typeCorrect, std::nullopt, std::nullopt, binding.documentationSymbol, {}, getParenRecommendation(binding.typeId, ancestry, typeCorrect)}; } } scope = scope->parent; } TypeCorrectKind correctForNil = checkTypeCorrectKind(module, typeArena, node, position, typeChecker.nilType); TypeCorrectKind correctForTrue = checkTypeCorrectKind(module, typeArena, node, position, getSingletonTypes().trueType); TypeCorrectKind correctForFalse = checkTypeCorrectKind(module, typeArena, node, position, getSingletonTypes().falseType); TypeCorrectKind correctForFunction = functionIsExpectedAt(module, node, position).value_or(false) ? TypeCorrectKind::Correct : TypeCorrectKind::None; result["if"] = {AutocompleteEntryKind::Keyword, std::nullopt, false, false}; result["true"] = {AutocompleteEntryKind::Keyword, typeChecker.booleanType, false, false, correctForTrue}; result["false"] = {AutocompleteEntryKind::Keyword, typeChecker.booleanType, false, false, correctForFalse}; result["nil"] = {AutocompleteEntryKind::Keyword, typeChecker.nilType, false, false, correctForNil}; result["not"] = {AutocompleteEntryKind::Keyword}; result["function"] = {AutocompleteEntryKind::Keyword, std::nullopt, false, false, correctForFunction}; if (auto ty = findExpectedTypeAt(module, node, position)) autocompleteStringSingleton(*ty, true, result); } } static AutocompleteEntryMap autocompleteExpression(const SourceModule& sourceModule, const Module& module, const TypeChecker& typeChecker, TypeArena* typeArena, const std::vector& ancestry, Position position) { AutocompleteEntryMap result; autocompleteExpression(sourceModule, module, typeChecker, typeArena, ancestry, position, result); return result; } static std::optional getMethodContainingClass(const ModulePtr& module, AstExpr* funcExpr) { AstExpr* parentExpr = nullptr; if (auto indexName = funcExpr->as()) { parentExpr = indexName->expr; } else if (auto indexExpr = funcExpr->as()) { parentExpr = indexExpr->expr; } else { return std::nullopt; } auto parentIt = module->astTypes.find(parentExpr); if (!parentIt) { return std::nullopt; } Luau::TypeId parentType = Luau::follow(*parentIt); if (auto parentClass = Luau::get(parentType)) { return parentClass; } if (auto parentUnion = Luau::get(parentType)) { return returnFirstNonnullOptionOfType(parentUnion); } return std::nullopt; } static std::optional autocompleteStringParams(const SourceModule& sourceModule, const ModulePtr& module, const std::vector& nodes, Position position, StringCompletionCallback callback) { if (nodes.size() < 2) { return std::nullopt; } if (!nodes.back()->is() && !nodes.back()->is()) { return std::nullopt; } AstExprCall* candidate = nodes.at(nodes.size() - 2)->as(); if (!candidate) { return std::nullopt; } // HACK: All current instances of 'magic string' params are the first parameter of their functions, // so we encode that here rather than putting a useless member on the FunctionTypeVar struct. if (candidate->args.size > 1 && !candidate->args.data[0]->location.contains(position)) { return std::nullopt; } auto it = module->astTypes.find(candidate->func); if (!it) { return std::nullopt; } auto performCallback = [&](const FunctionTypeVar* funcType) -> std::optional { for (const std::string& tag : funcType->tags) { if (std::optional ret = callback(tag, getMethodContainingClass(module, candidate->func))) { return ret; } } return std::nullopt; }; auto followedId = Luau::follow(*it); if (auto functionType = Luau::get(followedId)) { return performCallback(functionType); } if (auto intersect = Luau::get(followedId)) { for (TypeId part : intersect->parts) { if (auto candidateFunctionType = Luau::get(part)) { if (std::optional ret = performCallback(candidateFunctionType)) { return ret; } } } } return std::nullopt; } static AutocompleteResult autocomplete(const SourceModule& sourceModule, const ModulePtr& module, const TypeChecker& typeChecker, TypeArena* typeArena, Position position, StringCompletionCallback callback) { if (isWithinComment(sourceModule, position)) return {}; NodeFinder finder{position, sourceModule.root}; sourceModule.root->visit(&finder); LUAU_ASSERT(!finder.ancestry.empty()); AstNode* node = finder.ancestry.back(); AstExprConstantNil dummy{Location{}}; AstNode* parent = finder.ancestry.size() >= 2 ? finder.ancestry.rbegin()[1] : &dummy; // If we are inside a body of a function that doesn't have a completed argument list, ignore the body node if (auto exprFunction = parent->as(); exprFunction && !exprFunction->argLocation && node == exprFunction->body) { finder.ancestry.pop_back(); node = finder.ancestry.back(); parent = finder.ancestry.size() >= 2 ? finder.ancestry.rbegin()[1] : &dummy; } if (auto indexName = node->as()) { auto it = module->astTypes.find(indexName->expr); if (!it) return {}; TypeId ty = follow(*it); PropIndexType indexType = indexName->op == ':' ? PropIndexType::Colon : PropIndexType::Point; if (!FFlag::LuauSelfCallAutocompleteFix2 && isString(ty)) return {autocompleteProps(*module, typeArena, typeChecker.globalScope->bindings[AstName{"string"}].typeId, indexType, finder.ancestry), finder.ancestry}; else return {autocompleteProps(*module, typeArena, ty, indexType, finder.ancestry), finder.ancestry}; } else if (auto typeReference = node->as()) { if (typeReference->prefix) return {autocompleteModuleTypes(*module, position, typeReference->prefix->value), finder.ancestry}; else return {autocompleteTypeNames(*module, position, finder.ancestry), finder.ancestry}; } else if (node->is()) { return {autocompleteTypeNames(*module, position, finder.ancestry), finder.ancestry}; } else if (AstStatLocal* statLocal = node->as()) { if (statLocal->vars.size == 1 && (!statLocal->equalsSignLocation || position < statLocal->equalsSignLocation->begin)) return {{{"function", AutocompleteEntry{AutocompleteEntryKind::Keyword}}}, finder.ancestry}; else if (statLocal->equalsSignLocation && position >= statLocal->equalsSignLocation->end) return {autocompleteExpression(sourceModule, *module, typeChecker, typeArena, finder.ancestry, position), finder.ancestry}; else return {}; } else if (AstStatFor* statFor = extractStat(finder.ancestry)) { if (!statFor->hasDo || position < statFor->doLocation.begin) { if (!statFor->from->is() && !statFor->to->is() && (!statFor->step || !statFor->step->is())) return {{{"do", AutocompleteEntry{AutocompleteEntryKind::Keyword}}}, finder.ancestry}; if (statFor->from->location.containsClosed(position) || statFor->to->location.containsClosed(position) || (statFor->step && statFor->step->location.containsClosed(position))) return {autocompleteExpression(sourceModule, *module, typeChecker, typeArena, finder.ancestry, position), finder.ancestry}; return {}; } return {autocompleteStatement(sourceModule, *module, finder.ancestry, position), finder.ancestry}; } else if (AstStatForIn* statForIn = parent->as(); statForIn && (node->is() || isIdentifier(node))) { if (!statForIn->hasIn || position <= statForIn->inLocation.begin) { AstLocal* lastName = statForIn->vars.data[statForIn->vars.size - 1]; if (lastName->name == kParseNameError || lastName->location.containsClosed(position)) { // Here we are either working with a missing binding (as would be the case in a bare "for" keyword) or // the cursor is still touching a binding name. The user is still typing a new name, so we should not offer // any suggestions. return {}; } return {{{"in", AutocompleteEntry{AutocompleteEntryKind::Keyword}}}, finder.ancestry}; } if (!statForIn->hasDo || position <= statForIn->doLocation.begin) { LUAU_ASSERT(statForIn->values.size > 0); AstExpr* lastExpr = statForIn->values.data[statForIn->values.size - 1]; if (lastExpr->location.containsClosed(position)) return {autocompleteExpression(sourceModule, *module, typeChecker, typeArena, finder.ancestry, position), finder.ancestry}; if (position > lastExpr->location.end) return {{{"do", AutocompleteEntry{AutocompleteEntryKind::Keyword}}}, finder.ancestry}; return {}; // Not sure what this means } } else if (AstStatForIn* statForIn = extractStat(finder.ancestry)) { // The AST looks a bit differently if the cursor is at a position where only the "do" keyword is allowed. // ex "for f in f do" if (!statForIn->hasDo) return {{{"do", AutocompleteEntry{AutocompleteEntryKind::Keyword}}}, finder.ancestry}; return {autocompleteStatement(sourceModule, *module, finder.ancestry, position), finder.ancestry}; } else if (AstStatWhile* statWhile = parent->as(); node->is() && statWhile) { if (!statWhile->hasDo && !statWhile->condition->is() && position > statWhile->condition->location.end) return {{{"do", AutocompleteEntry{AutocompleteEntryKind::Keyword}}}, finder.ancestry}; if (!statWhile->hasDo || position < statWhile->doLocation.begin) return {autocompleteExpression(sourceModule, *module, typeChecker, typeArena, finder.ancestry, position), finder.ancestry}; if (statWhile->hasDo && position > statWhile->doLocation.end) return {autocompleteStatement(sourceModule, *module, finder.ancestry, position), finder.ancestry}; } else if (AstStatWhile* statWhile = extractStat(finder.ancestry); statWhile && !statWhile->hasDo) return {{{"do", AutocompleteEntry{AutocompleteEntryKind::Keyword}}}, finder.ancestry}; else if (AstStatIf* statIf = node->as(); statIf && !statIf->elseLocation.has_value()) { return {{{"else", AutocompleteEntry{AutocompleteEntryKind::Keyword}}, {"elseif", AutocompleteEntry{AutocompleteEntryKind::Keyword}}}, finder.ancestry}; } else if (AstStatIf* statIf = parent->as(); statIf && node->is()) { if (statIf->condition->is()) return {autocompleteExpression(sourceModule, *module, typeChecker, typeArena, finder.ancestry, position), finder.ancestry}; else if (!statIf->thenLocation || statIf->thenLocation->containsClosed(position)) return {{{"then", AutocompleteEntry{AutocompleteEntryKind::Keyword}}}, finder.ancestry}; } else if (AstStatIf* statIf = extractStat(finder.ancestry); statIf && (!statIf->thenLocation || statIf->thenLocation->containsClosed(position))) return {{{"then", AutocompleteEntry{AutocompleteEntryKind::Keyword}}}, finder.ancestry}; else if (AstStatRepeat* statRepeat = node->as(); statRepeat && statRepeat->condition->is()) return {autocompleteExpression(sourceModule, *module, typeChecker, typeArena, finder.ancestry, position), finder.ancestry}; else if (AstStatRepeat* statRepeat = extractStat(finder.ancestry); statRepeat) return {autocompleteStatement(sourceModule, *module, finder.ancestry, position), finder.ancestry}; else if (AstExprTable* exprTable = parent->as(); exprTable && (node->is() || node->is())) { for (const auto& [kind, key, value] : exprTable->items) { // If item doesn't have a key, maybe the value is actually the key if (key ? key == node : node->is() && value == node) { if (auto it = module->astExpectedTypes.find(exprTable)) { auto result = autocompleteProps(*module, typeArena, *it, PropIndexType::Key, finder.ancestry); // Remove keys that are already completed for (const auto& item : exprTable->items) { if (!item.key) continue; if (auto stringKey = item.key->as()) result.erase(std::string(stringKey->value.data, stringKey->value.size)); } // If we know for sure that a key is being written, do not offer general expression suggestions if (!key) autocompleteExpression(sourceModule, *module, typeChecker, typeArena, finder.ancestry, position, result); return {result, finder.ancestry}; } break; } } } else if (isIdentifier(node) && (parent->is() || parent->is())) return {autocompleteStatement(sourceModule, *module, finder.ancestry, position), finder.ancestry}; if (std::optional ret = autocompleteStringParams(sourceModule, module, finder.ancestry, position, callback)) { return {*ret, finder.ancestry}; } else if (node->is()) { AutocompleteEntryMap result; if (auto it = module->astExpectedTypes.find(node->asExpr())) autocompleteStringSingleton(*it, false, result); if (finder.ancestry.size() >= 2) { if (auto idxExpr = finder.ancestry.at(finder.ancestry.size() - 2)->as()) { if (auto it = module->astTypes.find(idxExpr->expr)) autocompleteProps(*module, typeArena, follow(*it), PropIndexType::Point, finder.ancestry, result); } else if (auto binExpr = finder.ancestry.at(finder.ancestry.size() - 2)->as()) { if (binExpr->op == AstExprBinary::CompareEq || binExpr->op == AstExprBinary::CompareNe) { if (auto it = module->astTypes.find(node == binExpr->left ? binExpr->right : binExpr->left)) autocompleteStringSingleton(*it, false, result); } } } return {result, finder.ancestry}; } if (node->is()) { return {}; } if (node->asExpr()) return {autocompleteExpression(sourceModule, *module, typeChecker, typeArena, finder.ancestry, position), finder.ancestry}; else if (node->asStat()) return {autocompleteStatement(sourceModule, *module, finder.ancestry, position), finder.ancestry}; return {}; } AutocompleteResult autocomplete(Frontend& frontend, const ModuleName& moduleName, Position position, StringCompletionCallback callback) { // FIXME: We can improve performance here by parsing without checking. // The old type graph is probably fine. (famous last words!) FrontendOptions opts; opts.forAutocomplete = true; frontend.check(moduleName, opts); const SourceModule* sourceModule = frontend.getSourceModule(moduleName); if (!sourceModule) return {}; TypeChecker& typeChecker = frontend.typeCheckerForAutocomplete; ModulePtr module = frontend.moduleResolverForAutocomplete.getModule(moduleName); if (!module) return {}; AutocompleteResult autocompleteResult = autocomplete(*sourceModule, module, typeChecker, &frontend.arenaForAutocomplete, position, callback); frontend.arenaForAutocomplete.clear(); return autocompleteResult; } OwningAutocompleteResult autocompleteSource(Frontend& frontend, std::string_view source, Position position, StringCompletionCallback callback) { // TODO: Remove #include "Luau/Parser.h" with this function auto sourceModule = std::make_unique(); ParseOptions parseOptions; parseOptions.captureComments = true; ParseResult result = Parser::parse(source.data(), source.size(), *sourceModule->names, *sourceModule->allocator, parseOptions); if (!result.root) return {AutocompleteResult{}, {}, nullptr}; sourceModule->name = "FRAGMENT_SCRIPT"; sourceModule->root = result.root; sourceModule->mode = Mode::Strict; sourceModule->commentLocations = std::move(result.commentLocations); TypeChecker& typeChecker = frontend.typeCheckerForAutocomplete; ModulePtr module = typeChecker.check(*sourceModule, Mode::Strict); OwningAutocompleteResult autocompleteResult = { autocomplete(*sourceModule, module, typeChecker, &frontend.arenaForAutocomplete, position, callback), std::move(module), std::move(sourceModule)}; frontend.arenaForAutocomplete.clear(); return autocompleteResult; } } // namespace Luau