{-# OPTIONS --rewriting #-} module Properties.Subtyping where open import Agda.Builtin.Equality using (_≡_; refl) open import FFI.Data.Either using (Either; Left; Right; mapLR; swapLR; cond) open import FFI.Data.Maybe using (Maybe; just; nothing) open import Luau.Subtyping using (_<:_; _≮:_; Tree; Language; ¬Language; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-function-tgt; scalar-scalar; function-scalar; function-ok; function-ok₁; function-ok₂; function-err; function-tgt; left; right; _,_) open import Luau.Type using (Type; Scalar; nil; number; string; boolean; never; unknown; _⇒_; _∪_; _∩_; skalar) open import Properties.Contradiction using (CONTRADICTION; ¬; ⊥) open import Properties.Equality using (_≢_) open import Properties.Functions using (_∘_) open import Properties.Product using (_×_; _,_) -- Language membership is decidable dec-language : ∀ T t → Either (¬Language T t) (Language T t) dec-language nil (scalar number) = Left (scalar-scalar number nil (λ ())) dec-language nil (scalar boolean) = Left (scalar-scalar boolean nil (λ ())) dec-language nil (scalar string) = Left (scalar-scalar string nil (λ ())) dec-language nil (scalar nil) = Right (scalar nil) dec-language nil function = Left (scalar-function nil) dec-language nil (function-ok s t) = Left (scalar-function-ok nil) dec-language nil (function-err t) = Left (scalar-function-err nil) dec-language boolean (scalar number) = Left (scalar-scalar number boolean (λ ())) dec-language boolean (scalar boolean) = Right (scalar boolean) dec-language boolean (scalar string) = Left (scalar-scalar string boolean (λ ())) dec-language boolean (scalar nil) = Left (scalar-scalar nil boolean (λ ())) dec-language boolean function = Left (scalar-function boolean) dec-language boolean (function-ok s t) = Left (scalar-function-ok boolean) dec-language boolean (function-err t) = Left (scalar-function-err boolean) dec-language number (scalar number) = Right (scalar number) dec-language number (scalar boolean) = Left (scalar-scalar boolean number (λ ())) dec-language number (scalar string) = Left (scalar-scalar string number (λ ())) dec-language number (scalar nil) = Left (scalar-scalar nil number (λ ())) dec-language number function = Left (scalar-function number) dec-language number (function-ok s t) = Left (scalar-function-ok number) dec-language number (function-err t) = Left (scalar-function-err number) dec-language string (scalar number) = Left (scalar-scalar number string (λ ())) dec-language string (scalar boolean) = Left (scalar-scalar boolean string (λ ())) dec-language string (scalar string) = Right (scalar string) dec-language string (scalar nil) = Left (scalar-scalar nil string (λ ())) dec-language string function = Left (scalar-function string) dec-language string (function-ok s t) = Left (scalar-function-ok string) dec-language string (function-err t) = Left (scalar-function-err string) dec-language (T₁ ⇒ T₂) (scalar s) = Left (function-scalar s) dec-language (T₁ ⇒ T₂) function = Right function dec-language (T₁ ⇒ T₂) (function-ok s t) = cond (Right ∘ function-ok₁) (λ p → mapLR (function-ok p) function-ok₂ (dec-language T₂ t)) (dec-language T₁ s) dec-language (T₁ ⇒ T₂) (function-err t) = mapLR function-err function-err (swapLR (dec-language T₁ t)) dec-language never t = Left never dec-language unknown t = Right unknown dec-language (T₁ ∪ T₂) t = cond (λ p → cond (Left ∘ _,_ p) (Right ∘ right) (dec-language T₂ t)) (Right ∘ left) (dec-language T₁ t) dec-language (T₁ ∩ T₂) t = cond (Left ∘ left) (λ p → cond (Left ∘ right) (Right ∘ _,_ p) (dec-language T₂ t)) (dec-language T₁ t) dec-language nil (function-tgt t) = Left (scalar-function-tgt nil) dec-language (T₁ ⇒ T₂) (function-tgt t) = mapLR function-tgt function-tgt (dec-language T₂ t) dec-language boolean (function-tgt t) = Left (scalar-function-tgt boolean) dec-language number (function-tgt t) = Left (scalar-function-tgt number) dec-language string (function-tgt t) = Left (scalar-function-tgt string) -- ¬Language T is the complement of Language T language-comp : ∀ {T} t → ¬Language T t → ¬(Language T t) language-comp t (p₁ , p₂) (left q) = language-comp t p₁ q language-comp t (p₁ , p₂) (right q) = language-comp t p₂ q language-comp t (left p) (q₁ , q₂) = language-comp t p q₁ language-comp t (right p) (q₁ , q₂) = language-comp t p q₂ language-comp (scalar s) (scalar-scalar s p₁ p₂) (scalar s) = p₂ refl language-comp (scalar s) (function-scalar s) (scalar s) = language-comp function (scalar-function s) function language-comp (scalar s) never (scalar ()) language-comp function (scalar-function ()) function language-comp (function-ok s t) (scalar-function-ok ()) (function-ok₁ p) language-comp (function-ok s t) (function-ok p₁ p₂) (function-ok₁ q) = language-comp s q p₁ language-comp (function-ok s t) (function-ok p₁ p₂) (function-ok₂ q) = language-comp t p₂ q language-comp (function-err t) (function-err p) (function-err q) = language-comp t q p language-comp (function-tgt t) (scalar-function-tgt ()) (function-tgt q) language-comp (function-tgt t) (function-tgt p) (function-tgt q) = language-comp t p q -- ≮: is the complement of <: ¬≮:-impl-<: : ∀ {T U} → ¬(T ≮: U) → (T <: U) ¬≮:-impl-<: {T} {U} p t q with dec-language U t ¬≮:-impl-<: {T} {U} p t q | Left r = CONTRADICTION (p (witness t q r)) ¬≮:-impl-<: {T} {U} p t q | Right r = r <:-impl-¬≮: : ∀ {T U} → (T <: U) → ¬(T ≮: U) <:-impl-¬≮: p (witness t q r) = language-comp t r (p t q) <:-impl-⊇ : ∀ {T U} → (T <: U) → ∀ t → ¬Language U t → ¬Language T t <:-impl-⊇ {T} p t q with dec-language T t <:-impl-⊇ {_} p t q | Left r = r <:-impl-⊇ {_} p t q | Right r = CONTRADICTION (language-comp t q (p t r)) -- reflexivity ≮:-refl : ∀ {T} → ¬(T ≮: T) ≮:-refl (witness t p q) = language-comp t q p <:-refl : ∀ {T} → (T <: T) <:-refl = ¬≮:-impl-<: ≮:-refl -- transititivity ≮:-trans-≡ : ∀ {S T U} → (S ≮: T) → (T ≡ U) → (S ≮: U) ≮:-trans-≡ p refl = p <:-trans-≡ : ∀ {S T U} → (S <: T) → (T ≡ U) → (S <: U) <:-trans-≡ p refl = p ≡-impl-<: : ∀ {T U} → (T ≡ U) → (T <: U) ≡-impl-<: refl = <:-refl ≡-trans-≮: : ∀ {S T U} → (S ≡ T) → (T ≮: U) → (S ≮: U) ≡-trans-≮: refl p = p ≡-trans-<: : ∀ {S T U} → (S ≡ T) → (T <: U) → (S <: U) ≡-trans-<: refl p = p ≮:-trans : ∀ {S T U} → (S ≮: U) → Either (S ≮: T) (T ≮: U) ≮:-trans {T = T} (witness t p q) = mapLR (witness t p) (λ z → witness t z q) (dec-language T t) <:-trans : ∀ {S T U} → (S <: T) → (T <: U) → (S <: U) <:-trans p q t r = q t (p t r) <:-trans-≮: : ∀ {S T U} → (S <: T) → (S ≮: U) → (T ≮: U) <:-trans-≮: p (witness t q r) = witness t (p t q) r ≮:-trans-<: : ∀ {S T U} → (S ≮: U) → (T <: U) → (S ≮: T) ≮:-trans-<: (witness t p q) r = witness t p (<:-impl-⊇ r t q) -- Properties of union <:-union : ∀ {R S T U} → (R <: T) → (S <: U) → ((R ∪ S) <: (T ∪ U)) <:-union p q t (left r) = left (p t r) <:-union p q t (right r) = right (q t r) <:-∪-left : ∀ {S T} → S <: (S ∪ T) <:-∪-left t p = left p <:-∪-right : ∀ {S T} → T <: (S ∪ T) <:-∪-right t p = right p <:-∪-lub : ∀ {S T U} → (S <: U) → (T <: U) → ((S ∪ T) <: U) <:-∪-lub p q t (left r) = p t r <:-∪-lub p q t (right r) = q t r <:-∪-symm : ∀ {T U} → (T ∪ U) <: (U ∪ T) <:-∪-symm t (left p) = right p <:-∪-symm t (right p) = left p <:-∪-assocl : ∀ {S T U} → (S ∪ (T ∪ U)) <: ((S ∪ T) ∪ U) <:-∪-assocl t (left p) = left (left p) <:-∪-assocl t (right (left p)) = left (right p) <:-∪-assocl t (right (right p)) = right p <:-∪-assocr : ∀ {S T U} → ((S ∪ T) ∪ U) <: (S ∪ (T ∪ U)) <:-∪-assocr t (left (left p)) = left p <:-∪-assocr t (left (right p)) = right (left p) <:-∪-assocr t (right p) = right (right p) ≮:-∪-left : ∀ {S T U} → (S ≮: U) → ((S ∪ T) ≮: U) ≮:-∪-left (witness t p q) = witness t (left p) q ≮:-∪-right : ∀ {S T U} → (T ≮: U) → ((S ∪ T) ≮: U) ≮:-∪-right (witness t p q) = witness t (right p) q ≮:-left-∪ : ∀ {S T U} → (S ≮: (T ∪ U)) → (S ≮: T) ≮:-left-∪ (witness t p (q₁ , q₂)) = witness t p q₁ ≮:-right-∪ : ∀ {S T U} → (S ≮: (T ∪ U)) → (S ≮: U) ≮:-right-∪ (witness t p (q₁ , q₂)) = witness t p q₂ -- Properties of intersection <:-intersect : ∀ {R S T U} → (R <: T) → (S <: U) → ((R ∩ S) <: (T ∩ U)) <:-intersect p q t (r₁ , r₂) = (p t r₁ , q t r₂) <:-∩-left : ∀ {S T} → (S ∩ T) <: S <:-∩-left t (p , _) = p <:-∩-right : ∀ {S T} → (S ∩ T) <: T <:-∩-right t (_ , p) = p <:-∩-glb : ∀ {S T U} → (S <: T) → (S <: U) → (S <: (T ∩ U)) <:-∩-glb p q t r = (p t r , q t r) <:-∩-symm : ∀ {T U} → (T ∩ U) <: (U ∩ T) <:-∩-symm t (p₁ , p₂) = (p₂ , p₁) <:-∩-assocl : ∀ {S T U} → (S ∩ (T ∩ U)) <: ((S ∩ T) ∩ U) <:-∩-assocl t (p , (p₁ , p₂)) = (p , p₁) , p₂ <:-∩-assocr : ∀ {S T U} → ((S ∩ T) ∩ U) <: (S ∩ (T ∩ U)) <:-∩-assocr t ((p , p₁) , p₂) = p , (p₁ , p₂) ≮:-∩-left : ∀ {S T U} → (S ≮: T) → (S ≮: (T ∩ U)) ≮:-∩-left (witness t p q) = witness t p (left q) ≮:-∩-right : ∀ {S T U} → (S ≮: U) → (S ≮: (T ∩ U)) ≮:-∩-right (witness t p q) = witness t p (right q) -- Distribution properties <:-∩-distl-∪ : ∀ {S T U} → (S ∩ (T ∪ U)) <: ((S ∩ T) ∪ (S ∩ U)) <:-∩-distl-∪ t (p₁ , left p₂) = left (p₁ , p₂) <:-∩-distl-∪ t (p₁ , right p₂) = right (p₁ , p₂) ∩-distl-∪-<: : ∀ {S T U} → ((S ∩ T) ∪ (S ∩ U)) <: (S ∩ (T ∪ U)) ∩-distl-∪-<: t (left (p₁ , p₂)) = (p₁ , left p₂) ∩-distl-∪-<: t (right (p₁ , p₂)) = (p₁ , right p₂) <:-∩-distr-∪ : ∀ {S T U} → ((S ∪ T) ∩ U) <: ((S ∩ U) ∪ (T ∩ U)) <:-∩-distr-∪ t (left p₁ , p₂) = left (p₁ , p₂) <:-∩-distr-∪ t (right p₁ , p₂) = right (p₁ , p₂) ∩-distr-∪-<: : ∀ {S T U} → ((S ∩ U) ∪ (T ∩ U)) <: ((S ∪ T) ∩ U) ∩-distr-∪-<: t (left (p₁ , p₂)) = (left p₁ , p₂) ∩-distr-∪-<: t (right (p₁ , p₂)) = (right p₁ , p₂) <:-∪-distl-∩ : ∀ {S T U} → (S ∪ (T ∩ U)) <: ((S ∪ T) ∩ (S ∪ U)) <:-∪-distl-∩ t (left p) = (left p , left p) <:-∪-distl-∩ t (right (p₁ , p₂)) = (right p₁ , right p₂) ∪-distl-∩-<: : ∀ {S T U} → ((S ∪ T) ∩ (S ∪ U)) <: (S ∪ (T ∩ U)) ∪-distl-∩-<: t (left p₁ , p₂) = left p₁ ∪-distl-∩-<: t (right p₁ , left p₂) = left p₂ ∪-distl-∩-<: t (right p₁ , right p₂) = right (p₁ , p₂) <:-∪-distr-∩ : ∀ {S T U} → ((S ∩ T) ∪ U) <: ((S ∪ U) ∩ (T ∪ U)) <:-∪-distr-∩ t (left (p₁ , p₂)) = left p₁ , left p₂ <:-∪-distr-∩ t (right p) = (right p , right p) ∪-distr-∩-<: : ∀ {S T U} → ((S ∪ U) ∩ (T ∪ U)) <: ((S ∩ T) ∪ U) ∪-distr-∩-<: t (left p₁ , left p₂) = left (p₁ , p₂) ∪-distr-∩-<: t (left p₁ , right p₂) = right p₂ ∪-distr-∩-<: t (right p₁ , p₂) = right p₁ ∩-<:-∪ : ∀ {S T} → (S ∩ T) <: (S ∪ T) ∩-<:-∪ t (p , _) = left p -- Properties of functions <:-function : ∀ {R S T U} → (R <: S) → (T <: U) → (S ⇒ T) <: (R ⇒ U) <:-function p q function function = function <:-function p q (function-ok s t) (function-ok₁ r) = function-ok₁ (<:-impl-⊇ p s r) <:-function p q (function-ok s t) (function-ok₂ r) = function-ok₂ (q t r) <:-function p q (function-err s) (function-err r) = function-err (<:-impl-⊇ p s r) <:-function p q (function-tgt t) (function-tgt r) = function-tgt (q t r) <:-function-∩-∩ : ∀ {R S T U} → ((R ⇒ T) ∩ (S ⇒ U)) <: ((R ∩ S) ⇒ (T ∩ U)) <:-function-∩-∩ function (function , function) = function <:-function-∩-∩ (function-ok s t) (function-ok₁ p , q) = function-ok₁ (left p) <:-function-∩-∩ (function-ok s t) (function-ok₂ p , function-ok₁ q) = function-ok₁ (right q) <:-function-∩-∩ (function-ok s t) (function-ok₂ p , function-ok₂ q) = function-ok₂ (p , q) <:-function-∩-∩ (function-err s) (function-err p , q) = function-err (left p) <:-function-∩-∩ (function-tgt s) (function-tgt p , function-tgt q) = function-tgt (p , q) <:-function-∩-∪ : ∀ {R S T U} → ((R ⇒ T) ∩ (S ⇒ U)) <: ((R ∪ S) ⇒ (T ∪ U)) <:-function-∩-∪ function (function , function) = function <:-function-∩-∪ (function-ok s t) (function-ok₁ p₁ , function-ok₁ p₂) = function-ok₁ (p₁ , p₂) <:-function-∩-∪ (function-ok s t) (p₁ , function-ok₂ p₂) = function-ok₂ (right p₂) <:-function-∩-∪ (function-ok s t) (function-ok₂ p₁ , p₂) = function-ok₂ (left p₁) <:-function-∩-∪ (function-err s) (function-err p₁ , function-err q₂) = function-err (p₁ , q₂) <:-function-∩-∪ (function-tgt t) (function-tgt p , q) = function-tgt (left p) <:-function-∩ : ∀ {S T U} → ((S ⇒ T) ∩ (S ⇒ U)) <: (S ⇒ (T ∩ U)) <:-function-∩ function (function , function) = function <:-function-∩ (function-ok s t) (p₁ , function-ok₁ p₂) = function-ok₁ p₂ <:-function-∩ (function-ok s t) (function-ok₁ p₁ , p₂) = function-ok₁ p₁ <:-function-∩ (function-ok s t) (function-ok₂ p₁ , function-ok₂ p₂) = function-ok₂ (p₁ , p₂) <:-function-∩ (function-err s) (function-err p₁ , function-err p₂) = function-err p₂ <:-function-∩ (function-tgt t) (function-tgt p₁ , function-tgt p₂) = function-tgt (p₁ , p₂) <:-function-∪ : ∀ {R S T U} → ((R ⇒ S) ∪ (T ⇒ U)) <: ((R ∩ T) ⇒ (S ∪ U)) <:-function-∪ function (left function) = function <:-function-∪ (function-ok s t) (left (function-ok₁ p)) = function-ok₁ (left p) <:-function-∪ (function-ok s t) (left (function-ok₂ p)) = function-ok₂ (left p) <:-function-∪ (function-err s) (left (function-err p)) = function-err (left p) <:-function-∪ (scalar s) (left (scalar ())) <:-function-∪ function (right function) = function <:-function-∪ (function-ok s t) (right (function-ok₁ p)) = function-ok₁ (right p) <:-function-∪ (function-ok s t) (right (function-ok₂ p)) = function-ok₂ (right p) <:-function-∪ (function-err s) (right (function-err x)) = function-err (right x) <:-function-∪ (scalar s) (right (scalar ())) <:-function-∪ (function-tgt t) (left (function-tgt p)) = function-tgt (left p) <:-function-∪ (function-tgt t) (right (function-tgt p)) = function-tgt (right p) <:-function-∪-∩ : ∀ {R S T U} → ((R ∩ S) ⇒ (T ∪ U)) <: ((R ⇒ T) ∪ (S ⇒ U)) <:-function-∪-∩ function function = left function <:-function-∪-∩ (function-ok s t) (function-ok₁ (left p)) = left (function-ok₁ p) <:-function-∪-∩ (function-ok s t) (function-ok₂ (left p)) = left (function-ok₂ p) <:-function-∪-∩ (function-ok s t) (function-ok₁ (right p)) = right (function-ok₁ p) <:-function-∪-∩ (function-ok s t) (function-ok₂ (right p)) = right (function-ok₂ p) <:-function-∪-∩ (function-err s) (function-err (left p)) = left (function-err p) <:-function-∪-∩ (function-err s) (function-err (right p)) = right (function-err p) <:-function-∪-∩ (function-tgt t) (function-tgt (left p)) = left (function-tgt p) <:-function-∪-∩ (function-tgt t) (function-tgt (right p)) = right (function-tgt p) <:-function-left : ∀ {R S T U} → (S ⇒ T) <: (R ⇒ U) → (R <: S) <:-function-left {R} {S} p s Rs with dec-language S s <:-function-left p s Rs | Right Ss = Ss <:-function-left p s Rs | Left ¬Ss with p (function-err s) (function-err ¬Ss) <:-function-left p s Rs | Left ¬Ss | function-err ¬Rs = CONTRADICTION (language-comp s ¬Rs Rs) <:-function-right : ∀ {R S T U} → (S ⇒ T) <: (R ⇒ U) → (T <: U) <:-function-right p t Tt with p (function-tgt t) (function-tgt Tt) <:-function-right p t Tt | function-tgt St = St ≮:-function-left : ∀ {R S T U} → (R ≮: S) → (S ⇒ T) ≮: (R ⇒ U) ≮:-function-left (witness t p q) = witness (function-err t) (function-err q) (function-err p) ≮:-function-right : ∀ {R S T U} → (T ≮: U) → (S ⇒ T) ≮: (R ⇒ U) ≮:-function-right (witness t p q) = witness (function-tgt t) (function-tgt p) (function-tgt q) -- Properties of scalars skalar-function-ok : ∀ {s t} → (¬Language skalar (function-ok s t)) skalar-function-ok = (scalar-function-ok number , (scalar-function-ok string , (scalar-function-ok nil , scalar-function-ok boolean))) scalar-<: : ∀ {S T} → (s : Scalar S) → Language T (scalar s) → (S <: T) scalar-<: number p (scalar number) (scalar number) = p scalar-<: boolean p (scalar boolean) (scalar boolean) = p scalar-<: string p (scalar string) (scalar string) = p scalar-<: nil p (scalar nil) (scalar nil) = p scalar-∩-function-<:-never : ∀ {S T U} → (Scalar S) → ((T ⇒ U) ∩ S) <: never scalar-∩-function-<:-never number .(scalar number) (() , scalar number) scalar-∩-function-<:-never boolean .(scalar boolean) (() , scalar boolean) scalar-∩-function-<:-never string .(scalar string) (() , scalar string) scalar-∩-function-<:-never nil .(scalar nil) (() , scalar nil) function-≮:-scalar : ∀ {S T U} → (Scalar U) → ((S ⇒ T) ≮: U) function-≮:-scalar s = witness function function (scalar-function s) scalar-≮:-function : ∀ {S T U} → (Scalar U) → (U ≮: (S ⇒ T)) scalar-≮:-function s = witness (scalar s) (scalar s) (function-scalar s) unknown-≮:-scalar : ∀ {U} → (Scalar U) → (unknown ≮: U) unknown-≮:-scalar s = witness function unknown (scalar-function s) scalar-≮:-never : ∀ {U} → (Scalar U) → (U ≮: never) scalar-≮:-never s = witness (scalar s) (scalar s) never scalar-≢-impl-≮: : ∀ {T U} → (Scalar T) → (Scalar U) → (T ≢ U) → (T ≮: U) scalar-≢-impl-≮: s₁ s₂ p = witness (scalar s₁) (scalar s₁) (scalar-scalar s₁ s₂ p) scalar-≢-∩-<:-never : ∀ {T U V} → (Scalar T) → (Scalar U) → (T ≢ U) → (T ∩ U) <: V scalar-≢-∩-<:-never s t p u (scalar s₁ , scalar s₂) = CONTRADICTION (p refl) skalar-scalar : ∀ {T} (s : Scalar T) → (Language skalar (scalar s)) skalar-scalar number = left (scalar number) skalar-scalar boolean = right (right (right (scalar boolean))) skalar-scalar string = right (left (scalar string)) skalar-scalar nil = right (right (left (scalar nil))) -- Properties of unknown and never unknown-≮: : ∀ {T U} → (T ≮: U) → (unknown ≮: U) unknown-≮: (witness t p q) = witness t unknown q never-≮: : ∀ {T U} → (T ≮: U) → (T ≮: never) never-≮: (witness t p q) = witness t p never unknown-≮:-never : (unknown ≮: never) unknown-≮:-never = witness (scalar nil) unknown never unknown-≮:-function : ∀ {S T} → (unknown ≮: (S ⇒ T)) unknown-≮:-function = witness (scalar nil) unknown (function-scalar nil) function-≮:-never : ∀ {T U} → ((T ⇒ U) ≮: never) function-≮:-never = witness function function never <:-never : ∀ {T} → (never <: T) <:-never t (scalar ()) ≮:-never-left : ∀ {S T U} → (S <: (T ∪ U)) → (S ≮: T) → (S ∩ U) ≮: never ≮:-never-left p (witness t q₁ q₂) with p t q₁ ≮:-never-left p (witness t q₁ q₂) | left r = CONTRADICTION (language-comp t q₂ r) ≮:-never-left p (witness t q₁ q₂) | right r = witness t (q₁ , r) never ≮:-never-right : ∀ {S T U} → (S <: (T ∪ U)) → (S ≮: U) → (S ∩ T) ≮: never ≮:-never-right p (witness t q₁ q₂) with p t q₁ ≮:-never-right p (witness t q₁ q₂) | left r = witness t (q₁ , r) never ≮:-never-right p (witness t q₁ q₂) | right r = CONTRADICTION (language-comp t q₂ r) <:-unknown : ∀ {T} → (T <: unknown) <:-unknown t p = unknown <:-everything : unknown <: ((never ⇒ unknown) ∪ skalar) <:-everything (scalar s) p = right (skalar-scalar s) <:-everything function p = left function <:-everything (function-ok s t) p = left (function-ok₁ never) <:-everything (function-err s) p = left (function-err never) <:-everything (function-tgt t) p = left (function-tgt unknown) -- A Gentle Introduction To Semantic Subtyping (https://www.cduce.org/papers/gentle.pdf) -- defines a "set-theoretic" model (sec 2.5) -- Unfortunately we don't quite have this property, due to uninhabited types, -- for example (never -> T) is equivalent to (never -> U) -- when types are interpreted as sets of syntactic values. _⊆_ : ∀ {A : Set} → (A → Set) → (A → Set) → Set (P ⊆ Q) = ∀ a → (P a) → (Q a) _⊗_ : ∀ {A B : Set} → (A → Set) → (B → Set) → ((A × B) → Set) (P ⊗ Q) (a , b) = (P a) × (Q b) Comp : ∀ {A : Set} → (A → Set) → (A → Set) Comp P a = ¬(P a) Lift : ∀ {A : Set} → (A → Set) → (Maybe A → Set) Lift P nothing = ⊥ Lift P (just a) = P a set-theoretic-if : ∀ {S₁ T₁ S₂ T₂} → -- This is the "if" part of being a set-theoretic model -- though it uses the definition from Frisch's thesis -- rather than from the Gentle Introduction. The difference -- being the presence of Lift, (written D_Ω in Defn 4.2 of -- https://www.cduce.org/papers/frisch_phd.pdf). (Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂)) → (∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Lift(Language T₁))) → Q ⊆ Comp((Language S₂) ⊗ Comp(Lift(Language T₂)))) set-theoretic-if {S₁} {T₁} {S₂} {T₂} p Q q (t , just u) Qtu (S₂t , ¬T₂u) = q (t , just u) Qtu (S₁t , ¬T₁u) where S₁t : Language S₁ t S₁t with dec-language S₁ t S₁t | Left ¬S₁t with p (function-err t) (function-err ¬S₁t) S₁t | Left ¬S₁t | function-err ¬S₂t = CONTRADICTION (language-comp t ¬S₂t S₂t) S₁t | Right r = r ¬T₁u : ¬(Language T₁ u) ¬T₁u T₁u with p (function-ok t u) (function-ok₂ T₁u) ¬T₁u T₁u | function-ok₁ ¬S₂t = language-comp t ¬S₂t S₂t ¬T₁u T₁u | function-ok₂ T₂u = ¬T₂u T₂u set-theoretic-if {S₁} {T₁} {S₂} {T₂} p Q q (t , nothing) Qt- (S₂t , _) = q (t , nothing) Qt- (S₁t , λ ()) where S₁t : Language S₁ t S₁t with dec-language S₁ t S₁t | Left ¬S₁t with p (function-err t) (function-err ¬S₁t) S₁t | Left ¬S₁t | function-err ¬S₂t = CONTRADICTION (language-comp t ¬S₂t S₂t) S₁t | Right r = r not-quite-set-theoretic-only-if : ∀ {S₁ T₁ S₂ T₂} → -- We don't quite have that this is a set-theoretic model -- it's only true when Language S₂ is inhabited -- in particular it's not true when S₂ is never, ∀ s₂ → Language S₂ s₂ → -- This is the "only if" part of being a set-theoretic model (∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Lift(Language T₁))) → Q ⊆ Comp((Language S₂) ⊗ Comp(Lift(Language T₂)))) → (Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂)) not-quite-set-theoretic-only-if {S₁} {T₁} {S₂} {T₂} s₂ S₂s₂ p = r where Q : (Tree × Maybe Tree) → Set Q (t , just u) = Either (¬Language S₁ t) (Language T₁ u) Q (t , nothing) = ¬Language S₁ t q : Q ⊆ Comp(Language S₁ ⊗ Comp(Lift(Language T₁))) q (t , just u) (Left ¬S₁t) (S₁t , ¬T₁u) = language-comp t ¬S₁t S₁t q (t , just u) (Right T₂u) (S₁t , ¬T₁u) = ¬T₁u T₂u q (t , nothing) ¬S₁t (S₁t , _) = language-comp t ¬S₁t S₁t r : Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂) r function function = function r (function-err s) (function-err ¬S₁s) with dec-language S₂ s r (function-err s) (function-err ¬S₁s) | Left ¬S₂s = function-err ¬S₂s r (function-err s) (function-err ¬S₁s) | Right S₂s = CONTRADICTION (p Q q (s , nothing) ¬S₁s (S₂s , λ ())) r (function-ok s t) (function-ok₁ ¬S₁s) with dec-language S₂ s r (function-ok s t) (function-ok₁ ¬S₁s) | Left ¬S₂s = function-ok₁ ¬S₂s r (function-ok s t) (function-ok₁ ¬S₁s) | Right S₂s = CONTRADICTION (p Q q (s , nothing) ¬S₁s (S₂s , λ ())) r (function-ok s t) (function-ok₂ T₁t) with dec-language T₂ t r (function-ok s t) (function-ok₂ T₁t) | Left ¬T₂t with dec-language S₂ s r (function-ok s t) (function-ok₂ T₁t) | Left ¬T₂t | Left ¬S₂s = function-ok₁ ¬S₂s r (function-ok s t) (function-ok₂ T₁t) | Left ¬T₂t | Right S₂s = CONTRADICTION (p Q q (s , just t) (Right T₁t) (S₂s , language-comp t ¬T₂t)) r (function-ok s t) (function-ok₂ T₁t) | Right T₂t = function-ok₂ T₂t r (function-tgt t) (function-tgt T₁t) with dec-language T₂ t r (function-tgt t) (function-tgt T₁t) | Left ¬T₂t = CONTRADICTION (p Q q (s₂ , just t) (Right T₁t) (S₂s₂ , language-comp t ¬T₂t)) r (function-tgt t) (function-tgt T₁t) | Right T₂t = function-tgt T₂t -- A counterexample when the argument type is empty. set-theoretic-counterexample-one : (∀ Q → Q ⊆ Comp((Language never) ⊗ Comp(Lift(Language number))) → Q ⊆ Comp((Language never) ⊗ Comp(Lift(Language string)))) set-theoretic-counterexample-one Q q ((scalar s) , u) Qtu (scalar () , p) set-theoretic-counterexample-two : (never ⇒ number) ≮: (never ⇒ string) set-theoretic-counterexample-two = witness (function-tgt (scalar number)) (function-tgt (scalar number)) (function-tgt (scalar-scalar number string (λ ())))