// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details #include "Luau/Compiler.h" #include "Luau/BytecodeBuilder.h" #include "Luau/StringUtils.h" #include "ScopedFlags.h" #include "doctest.h" #include #include namespace Luau { std::string rep(const std::string& s, size_t n); } using namespace Luau; static std::string compileFunction(const char* source, uint32_t id, int optimizationLevel = 1) { Luau::BytecodeBuilder bcb; bcb.setDumpFlags(Luau::BytecodeBuilder::Dump_Code); Luau::CompileOptions options; options.optimizationLevel = optimizationLevel; Luau::compileOrThrow(bcb, source, options); return bcb.dumpFunction(id); } static std::string compileFunction0(const char* source) { Luau::BytecodeBuilder bcb; bcb.setDumpFlags(Luau::BytecodeBuilder::Dump_Code); Luau::compileOrThrow(bcb, source); return bcb.dumpFunction(0); } static std::string compileFunction0Coverage(const char* source, int level) { Luau::BytecodeBuilder bcb; bcb.setDumpFlags(Luau::BytecodeBuilder::Dump_Code | Luau::BytecodeBuilder::Dump_Lines); Luau::CompileOptions opts; opts.coverageLevel = level; Luau::compileOrThrow(bcb, source, opts); return bcb.dumpFunction(0); } static std::string compileFunction0TypeTable(const char* source) { Luau::BytecodeBuilder bcb; bcb.setDumpFlags(Luau::BytecodeBuilder::Dump_Code); Luau::compileOrThrow(bcb, source); return bcb.dumpTypeInfo(); } TEST_SUITE_BEGIN("Compiler"); TEST_CASE("CompileToBytecode") { Luau::BytecodeBuilder bcb; bcb.setDumpFlags(Luau::BytecodeBuilder::Dump_Code); Luau::compileOrThrow(bcb, "return 5, 6.5"); CHECK_EQ("\n" + bcb.dumpFunction(0), R"( LOADN R0 5 LOADK R1 K0 [6.5] RETURN R0 2 )"); CHECK_EQ("\n" + bcb.dumpEverything(), R"( Function 0 (??): LOADN R0 5 LOADK R1 K0 [6.5] RETURN R0 2 )"); } TEST_CASE("CompileError") { std::string source = "local " + rep("a,", 300) + "a = ..."; // fails to parse std::string bc1 = Luau::compile(source + " !#*$!#$^&!*#&$^*"); // parses, but fails to compile (too many locals) std::string bc2 = Luau::compile(source); // 0 acts as a special marker for error bytecode CHECK_EQ(bc1[0], 0); CHECK_EQ(bc2[0], 0); } TEST_CASE("LocalsDirectReference") { CHECK_EQ("\n" + compileFunction0("local a return a"), R"( LOADNIL R0 RETURN R0 1 )"); } TEST_CASE("BasicFunction") { Luau::BytecodeBuilder bcb; bcb.setDumpFlags(Luau::BytecodeBuilder::Dump_Code); Luau::compileOrThrow(bcb, "local function foo(a, b) return b end"); CHECK_EQ("\n" + bcb.dumpFunction(1), R"( DUPCLOSURE R0 K0 ['foo'] RETURN R0 0 )"); CHECK_EQ("\n" + bcb.dumpFunction(0), R"( RETURN R1 1 )"); } TEST_CASE("BasicFunctionCall") { Luau::BytecodeBuilder bcb; bcb.setDumpFlags(Luau::BytecodeBuilder::Dump_Code); Luau::compileOrThrow(bcb, "local function foo(a, b) return b end function test() return foo(2) end"); CHECK_EQ("\n" + bcb.dumpFunction(1), R"( GETUPVAL R0 0 LOADN R1 2 CALL R0 1 -1 RETURN R0 -1 )"); } TEST_CASE("FunctionCallOptimization") { // direct call into local CHECK_EQ("\n" + compileFunction0("local foo = math.foo()"), R"( GETIMPORT R0 2 [math.foo] CALL R0 0 1 RETURN R0 0 )"); // direct call into temp CHECK_EQ("\n" + compileFunction0("local foo = math.foo(math.bar())"), R"( GETIMPORT R0 2 [math.foo] GETIMPORT R1 4 [math.bar] CALL R1 0 -1 CALL R0 -1 1 RETURN R0 0 )"); // can't directly call into local since foo might be used as arguments of caller CHECK_EQ("\n" + compileFunction0("local foo foo = math.foo(foo)"), R"( LOADNIL R0 GETIMPORT R1 2 [math.foo] MOVE R2 R0 CALL R1 1 1 MOVE R0 R1 RETURN R0 0 )"); } TEST_CASE("ReflectionBytecode") { CHECK_EQ("\n" + compileFunction0(R"( local part = Instance.new('Part', workspace) part.Size = Vector3.new(1, 2, 3) return part.Size.Z * part:GetMass() )"), R"( GETIMPORT R0 2 [Instance.new] LOADK R1 K3 ['Part'] GETIMPORT R2 5 [workspace] CALL R0 2 1 GETIMPORT R1 7 [Vector3.new] LOADN R2 1 LOADN R3 2 LOADN R4 3 CALL R1 3 1 SETTABLEKS R1 R0 K8 ['Size'] GETTABLEKS R3 R0 K8 ['Size'] GETTABLEKS R2 R3 K9 ['Z'] NAMECALL R3 R0 K10 ['GetMass'] CALL R3 1 1 MUL R1 R2 R3 RETURN R1 1 )"); } TEST_CASE("ImportCall") { CHECK_EQ("\n" + compileFunction0("return math.max(1, 2)"), R"( LOADN R1 1 FASTCALL2K 18 R1 K0 L0 [2] LOADK R2 K0 [2] GETIMPORT R0 3 [math.max] CALL R0 2 -1 L0: RETURN R0 -1 )"); } TEST_CASE("FakeImportCall") { const char* source = "math = {} function math.max() return 0 end function test() return math.max(1, 2) end"; CHECK_EQ("\n" + compileFunction(source, 1), R"( GETGLOBAL R1 K0 ['math'] GETTABLEKS R0 R1 K1 ['max'] LOADN R1 1 LOADN R2 2 CALL R0 2 -1 RETURN R0 -1 )"); } TEST_CASE("AssignmentLocal") { CHECK_EQ("\n" + compileFunction0("local a a = 2"), R"( LOADNIL R0 LOADN R0 2 RETURN R0 0 )"); } TEST_CASE("AssignmentGlobal") { CHECK_EQ("\n" + compileFunction0("a = 2"), R"( LOADN R0 2 SETGLOBAL R0 K0 ['a'] RETURN R0 0 )"); } TEST_CASE("AssignmentTable") { const char* source = "local c = ... local a = {} a.b = 2 a.b = c"; CHECK_EQ("\n" + compileFunction0(source), R"( GETVARARGS R0 1 NEWTABLE R1 1 0 LOADN R2 2 SETTABLEKS R2 R1 K0 ['b'] SETTABLEKS R0 R1 K0 ['b'] RETURN R0 0 )"); } TEST_CASE("ConcatChainOptimization") { CHECK_EQ("\n" + compileFunction0("return '1' .. '2'"), R"( LOADK R1 K0 ['1'] LOADK R2 K1 ['2'] CONCAT R0 R1 R2 RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction0("return '1' .. '2' .. '3'"), R"( LOADK R1 K0 ['1'] LOADK R2 K1 ['2'] LOADK R3 K2 ['3'] CONCAT R0 R1 R3 RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction0("return ('1' .. '2') .. '3'"), R"( LOADK R3 K0 ['1'] LOADK R4 K1 ['2'] CONCAT R1 R3 R4 LOADK R2 K2 ['3'] CONCAT R0 R1 R2 RETURN R0 1 )"); } TEST_CASE("RepeatLocals") { CHECK_EQ("\n" + compileFunction0("repeat local a a = 5 until a - 4 < 0 or a - 4 >= 0"), R"( L0: LOADNIL R0 LOADN R0 5 SUBK R1 R0 K0 [4] LOADN R2 0 JUMPIFLT R1 R2 L1 SUBK R1 R0 K0 [4] LOADN R2 0 JUMPIFLE R2 R1 L1 JUMPBACK L0 L1: RETURN R0 0 )"); } TEST_CASE("ForBytecode") { // basic for loop: variable directly refers to internal iteration index (R2) CHECK_EQ("\n" + compileFunction0("for i=1,5 do print(i) end"), R"( LOADN R2 1 LOADN R0 5 LOADN R1 1 FORNPREP R0 L1 L0: GETIMPORT R3 1 [print] MOVE R4 R2 CALL R3 1 0 FORNLOOP R0 L0 L1: RETURN R0 0 )"); // when you assign the variable internally, we freak out and copy the variable so that you aren't changing the loop behavior CHECK_EQ("\n" + compileFunction0("for i=1,5 do i = 7 print(i) end"), R"( LOADN R2 1 LOADN R0 5 LOADN R1 1 FORNPREP R0 L1 L0: MOVE R3 R2 LOADN R3 7 GETIMPORT R4 1 [print] MOVE R5 R3 CALL R4 1 0 FORNLOOP R0 L0 L1: RETURN R0 0 )"); // basic for-in loop, generic version CHECK_EQ("\n" + compileFunction0("for word in string.gmatch(\"Hello Lua user\", \"%a+\") do print(word) end"), R"( GETIMPORT R0 2 [string.gmatch] LOADK R1 K3 ['Hello Lua user'] LOADK R2 K4 ['%a+'] CALL R0 2 3 FORGPREP R0 L1 L0: GETIMPORT R5 6 [print] MOVE R6 R3 CALL R5 1 0 L1: FORGLOOP R0 L0 1 RETURN R0 0 )"); // basic for-in loop, using inext specialization CHECK_EQ("\n" + compileFunction0("for k,v in ipairs({}) do print(k,v) end"), R"( GETIMPORT R0 1 [ipairs] NEWTABLE R1 0 0 CALL R0 1 3 FORGPREP_INEXT R0 L1 L0: GETIMPORT R5 3 [print] MOVE R6 R3 MOVE R7 R4 CALL R5 2 0 L1: FORGLOOP R0 L0 2 [inext] RETURN R0 0 )"); // basic for-in loop, using next specialization CHECK_EQ("\n" + compileFunction0("for k,v in pairs({}) do print(k,v) end"), R"( GETIMPORT R0 1 [pairs] NEWTABLE R1 0 0 CALL R0 1 3 FORGPREP_NEXT R0 L1 L0: GETIMPORT R5 3 [print] MOVE R6 R3 MOVE R7 R4 CALL R5 2 0 L1: FORGLOOP R0 L0 2 RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("for k,v in next,{} do print(k,v) end"), R"( GETIMPORT R0 1 [next] NEWTABLE R1 0 0 LOADNIL R2 FORGPREP_NEXT R0 L1 L0: GETIMPORT R5 3 [print] MOVE R6 R3 MOVE R7 R4 CALL R5 2 0 L1: FORGLOOP R0 L0 2 RETURN R0 0 )"); } TEST_CASE("ForBytecodeBuiltin") { // we generally recognize builtins like pairs/ipairs and emit special opcodes CHECK_EQ("\n" + compileFunction0("for k,v in ipairs({}) do end"), R"( GETIMPORT R0 1 [ipairs] NEWTABLE R1 0 0 CALL R0 1 3 FORGPREP_INEXT R0 L0 L0: FORGLOOP R0 L0 2 [inext] RETURN R0 0 )"); // ... even if they are using a local variable CHECK_EQ("\n" + compileFunction0("local ip = ipairs for k,v in ip({}) do end"), R"( GETIMPORT R0 1 [ipairs] MOVE R1 R0 NEWTABLE R2 0 0 CALL R1 1 3 FORGPREP_INEXT R1 L0 L0: FORGLOOP R1 L0 2 [inext] RETURN R0 0 )"); // ... even when it's an upvalue CHECK_EQ("\n" + compileFunction0("local ip = ipairs function foo() for k,v in ip({}) do end end"), R"( GETUPVAL R0 0 NEWTABLE R1 0 0 CALL R0 1 3 FORGPREP_INEXT R0 L0 L0: FORGLOOP R0 L0 2 [inext] RETURN R0 0 )"); // but if it's reassigned then all bets are off CHECK_EQ("\n" + compileFunction0("local ip = ipairs ip = pairs for k,v in ip({}) do end"), R"( GETIMPORT R0 1 [ipairs] GETIMPORT R0 3 [pairs] MOVE R1 R0 NEWTABLE R2 0 0 CALL R1 1 3 FORGPREP R1 L0 L0: FORGLOOP R1 L0 2 RETURN R0 0 )"); // or if the global is hijacked CHECK_EQ("\n" + compileFunction0("ipairs = pairs for k,v in ipairs({}) do end"), R"( GETIMPORT R0 1 [pairs] SETGLOBAL R0 K2 ['ipairs'] GETGLOBAL R0 K2 ['ipairs'] NEWTABLE R1 0 0 CALL R0 1 3 FORGPREP R0 L0 L0: FORGLOOP R0 L0 2 RETURN R0 0 )"); // or if we don't even know the global to begin with CHECK_EQ("\n" + compileFunction0("for k,v in unknown({}) do end"), R"( GETIMPORT R0 1 [unknown] NEWTABLE R1 0 0 CALL R0 1 3 FORGPREP R0 L0 L0: FORGLOOP R0 L0 2 RETURN R0 0 )"); } TEST_CASE("TableLiterals") { // empty table, note it's computed directly to target CHECK_EQ("\n" + compileFunction0("return {}"), R"( NEWTABLE R0 0 0 RETURN R0 1 )"); // we can't compute directly to target since that'd overwrite the local CHECK_EQ("\n" + compileFunction0("local a a = {a} return a"), R"( LOADNIL R0 NEWTABLE R1 0 1 MOVE R2 R0 SETLIST R1 R2 1 [1] MOVE R0 R1 RETURN R0 1 )"); // short list CHECK_EQ("\n" + compileFunction0("return {1,2,3}"), R"( NEWTABLE R0 0 3 LOADN R1 1 LOADN R2 2 LOADN R3 3 SETLIST R0 R1 3 [1] RETURN R0 1 )"); // long list, split into two chunks CHECK_EQ("\n" + compileFunction0("return {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17}"), R"( NEWTABLE R0 0 17 LOADN R1 1 LOADN R2 2 LOADN R3 3 LOADN R4 4 LOADN R5 5 LOADN R6 6 LOADN R7 7 LOADN R8 8 LOADN R9 9 LOADN R10 10 LOADN R11 11 LOADN R12 12 LOADN R13 13 LOADN R14 14 LOADN R15 15 LOADN R16 16 SETLIST R0 R1 16 [1] LOADN R1 17 SETLIST R0 R1 1 [17] RETURN R0 1 )"); // varargs; -1 indicates multret treatment; note that we don't allocate space for the ... CHECK_EQ("\n" + compileFunction0("return {...}"), R"( NEWTABLE R0 0 0 GETVARARGS R1 -1 SETLIST R0 R1 -1 [1] RETURN R0 1 )"); // varargs with other elements; -1 indicates multret treatment; note that we don't allocate space for the ... CHECK_EQ("\n" + compileFunction0("return {1,2,3,...}"), R"( NEWTABLE R0 0 3 LOADN R1 1 LOADN R2 2 LOADN R3 3 GETVARARGS R4 -1 SETLIST R0 R1 -1 [1] RETURN R0 1 )"); // basic literals; note that we use DUPTABLE instead of NEWTABLE CHECK_EQ("\n" + compileFunction0("return {a=1,b=2,c=3}"), R"( DUPTABLE R0 3 LOADN R1 1 SETTABLEKS R1 R0 K0 ['a'] LOADN R1 2 SETTABLEKS R1 R0 K1 ['b'] LOADN R1 3 SETTABLEKS R1 R0 K2 ['c'] RETURN R0 1 )"); // literals+array CHECK_EQ("\n" + compileFunction0("return {a=1,b=2,3,4}"), R"( NEWTABLE R0 2 2 LOADN R3 1 SETTABLEKS R3 R0 K0 ['a'] LOADN R3 2 SETTABLEKS R3 R0 K1 ['b'] LOADN R1 3 LOADN R2 4 SETLIST R0 R1 2 [1] RETURN R0 1 )"); // expression assignment CHECK_EQ("\n" + compileFunction0("a = 7 return {[a]=42}"), R"( LOADN R0 7 SETGLOBAL R0 K0 ['a'] NEWTABLE R0 1 0 GETGLOBAL R1 K0 ['a'] LOADN R2 42 SETTABLE R2 R0 R1 RETURN R0 1 )"); // table template caching; two DUPTABLES out of three use the same slot. Note that caching is order dependent CHECK_EQ("\n" + compileFunction0("return {a=1,b=2},{b=3,a=4},{a=5,b=6}"), R"( DUPTABLE R0 2 LOADN R1 1 SETTABLEKS R1 R0 K0 ['a'] LOADN R1 2 SETTABLEKS R1 R0 K1 ['b'] DUPTABLE R1 3 LOADN R2 3 SETTABLEKS R2 R1 K1 ['b'] LOADN R2 4 SETTABLEKS R2 R1 K0 ['a'] DUPTABLE R2 2 LOADN R3 5 SETTABLEKS R3 R2 K0 ['a'] LOADN R3 6 SETTABLEKS R3 R2 K1 ['b'] RETURN R0 3 )"); } TEST_CASE("TableLiteralsNumberIndex") { // tables with [x] compile to SETTABLEN if the index is short CHECK_EQ("\n" + compileFunction0("return {[2] = 2, [256] = 256, [0] = 0, [257] = 257}"), R"( NEWTABLE R0 4 0 LOADN R1 2 SETTABLEN R1 R0 2 LOADN R1 256 SETTABLEN R1 R0 256 LOADN R1 0 LOADN R2 0 SETTABLE R2 R0 R1 LOADN R1 257 LOADN R2 257 SETTABLE R2 R0 R1 RETURN R0 1 )"); // tables with [x] where x is sequential compile to correctly sized array + SETTABLEN CHECK_EQ("\n" + compileFunction0("return {[1] = 1, [2] = 2}"), R"( NEWTABLE R0 0 2 LOADN R1 1 SETTABLEN R1 R0 1 LOADN R1 2 SETTABLEN R1 R0 2 RETURN R0 1 )"); // when index chain starts with 0, or isn't sequential, we disable the optimization CHECK_EQ("\n" + compileFunction0("return {[0] = 0, [1] = 1, [2] = 2, [42] = 42}"), R"( NEWTABLE R0 4 0 LOADN R1 0 LOADN R2 0 SETTABLE R2 R0 R1 LOADN R1 1 SETTABLEN R1 R0 1 LOADN R1 2 SETTABLEN R1 R0 2 LOADN R1 42 SETTABLEN R1 R0 42 RETURN R0 1 )"); // we disable this optimization when the table has list elements for simplicity CHECK_EQ("\n" + compileFunction0("return {[1] = 1, [2] = 2, 3}"), R"( NEWTABLE R0 2 1 LOADN R2 1 SETTABLEN R2 R0 1 LOADN R2 2 SETTABLEN R2 R0 2 LOADN R1 3 SETLIST R0 R1 1 [1] RETURN R0 1 )"); // we can also correctly predict the array length for mixed tables CHECK_EQ("\n" + compileFunction0("return {key = 1, value = 2, [1] = 42}"), R"( NEWTABLE R0 2 1 LOADN R1 1 SETTABLEKS R1 R0 K0 ['key'] LOADN R1 2 SETTABLEKS R1 R0 K1 ['value'] LOADN R1 42 SETTABLEN R1 R0 1 RETURN R0 1 )"); } TEST_CASE("TableLiteralsIndexConstant") { // validate that we use SETTTABLEKS for constant variable keys CHECK_EQ("\n" + compileFunction0(R"( local a, b = "key", "value" return {[a] = 42, [b] = 0} )"), R"( NEWTABLE R0 2 0 LOADN R1 42 SETTABLEKS R1 R0 K0 ['key'] LOADN R1 0 SETTABLEKS R1 R0 K1 ['value'] RETURN R0 1 )"); // validate that we use SETTABLEN for constant variable keys *and* that we predict array size CHECK_EQ("\n" + compileFunction0(R"( local a, b = 1, 2 return {[a] = 42, [b] = 0} )"), R"( NEWTABLE R0 0 2 LOADN R1 42 SETTABLEN R1 R0 1 LOADN R1 0 SETTABLEN R1 R0 2 RETURN R0 1 )"); } TEST_CASE("TableSizePredictionBasic") { CHECK_EQ("\n" + compileFunction0(R"( local t = {} t.a = 1 t.b = 1 t.c = 1 t.d = 1 t.e = 1 t.f = 1 t.g = 1 t.h = 1 t.i = 1 )"), R"( NEWTABLE R0 16 0 LOADN R1 1 SETTABLEKS R1 R0 K0 ['a'] LOADN R1 1 SETTABLEKS R1 R0 K1 ['b'] LOADN R1 1 SETTABLEKS R1 R0 K2 ['c'] LOADN R1 1 SETTABLEKS R1 R0 K3 ['d'] LOADN R1 1 SETTABLEKS R1 R0 K4 ['e'] LOADN R1 1 SETTABLEKS R1 R0 K5 ['f'] LOADN R1 1 SETTABLEKS R1 R0 K6 ['g'] LOADN R1 1 SETTABLEKS R1 R0 K7 ['h'] LOADN R1 1 SETTABLEKS R1 R0 K8 ['i'] RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0(R"( local t = {} t.x = 1 t.x = 2 t.x = 3 t.x = 4 t.x = 5 t.x = 6 t.x = 7 t.x = 8 t.x = 9 )"), R"( NEWTABLE R0 1 0 LOADN R1 1 SETTABLEKS R1 R0 K0 ['x'] LOADN R1 2 SETTABLEKS R1 R0 K0 ['x'] LOADN R1 3 SETTABLEKS R1 R0 K0 ['x'] LOADN R1 4 SETTABLEKS R1 R0 K0 ['x'] LOADN R1 5 SETTABLEKS R1 R0 K0 ['x'] LOADN R1 6 SETTABLEKS R1 R0 K0 ['x'] LOADN R1 7 SETTABLEKS R1 R0 K0 ['x'] LOADN R1 8 SETTABLEKS R1 R0 K0 ['x'] LOADN R1 9 SETTABLEKS R1 R0 K0 ['x'] RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0(R"( local t = {} t[1] = 1 t[2] = 1 t[3] = 1 t[4] = 1 t[5] = 1 t[6] = 1 t[7] = 1 t[8] = 1 t[9] = 1 t[10] = 1 )"), R"( NEWTABLE R0 0 10 LOADN R1 1 SETTABLEN R1 R0 1 LOADN R1 1 SETTABLEN R1 R0 2 LOADN R1 1 SETTABLEN R1 R0 3 LOADN R1 1 SETTABLEN R1 R0 4 LOADN R1 1 SETTABLEN R1 R0 5 LOADN R1 1 SETTABLEN R1 R0 6 LOADN R1 1 SETTABLEN R1 R0 7 LOADN R1 1 SETTABLEN R1 R0 8 LOADN R1 1 SETTABLEN R1 R0 9 LOADN R1 1 SETTABLEN R1 R0 10 RETURN R0 0 )"); } TEST_CASE("TableSizePredictionObject") { CHECK_EQ("\n" + compileFunction(R"( local t = {} t.field = 1 function t:getfield() return self.field end return t )", 1), R"( NEWTABLE R0 2 0 LOADN R1 1 SETTABLEKS R1 R0 K0 ['field'] DUPCLOSURE R1 K1 ['getfield'] SETTABLEKS R1 R0 K2 ['getfield'] RETURN R0 1 )"); } TEST_CASE("TableSizePredictionSetMetatable") { CHECK_EQ("\n" + compileFunction0(R"( local t = setmetatable({}, nil) t.field1 = 1 t.field2 = 2 return t )"), R"( NEWTABLE R1 2 0 FASTCALL2K 61 R1 K0 L0 [nil] LOADK R2 K0 [nil] GETIMPORT R0 2 [setmetatable] CALL R0 2 1 L0: LOADN R1 1 SETTABLEKS R1 R0 K3 ['field1'] LOADN R1 2 SETTABLEKS R1 R0 K4 ['field2'] RETURN R0 1 )"); } TEST_CASE("TableSizePredictionLoop") { CHECK_EQ("\n" + compileFunction0(R"( local t = {} for i=1,4 do t[i] = 0 end return t )"), R"( NEWTABLE R0 0 4 LOADN R3 1 LOADN R1 4 LOADN R2 1 FORNPREP R1 L1 L0: LOADN R4 0 SETTABLE R4 R0 R3 FORNLOOP R1 L0 L1: RETURN R0 1 )"); } TEST_CASE("ReflectionEnums") { CHECK_EQ("\n" + compileFunction0("return Enum.EasingStyle.Linear"), R"( GETIMPORT R0 3 [Enum.EasingStyle.Linear] RETURN R0 1 )"); } TEST_CASE("CaptureSelf") { Luau::BytecodeBuilder bcb; bcb.setDumpFlags(Luau::BytecodeBuilder::Dump_Code); Luau::compileOrThrow(bcb, R"( local MaterialsListClass = {} function MaterialsListClass:_MakeToolTip(guiElement, text) local function updateTooltipPosition() self._tweakingTooltipFrame = 5 end updateTooltipPosition() end return MaterialsListClass )"); CHECK_EQ("\n" + bcb.dumpFunction(1), R"( NEWCLOSURE R3 P0 CAPTURE VAL R0 MOVE R4 R3 CALL R4 0 0 RETURN R0 0 )"); CHECK_EQ("\n" + bcb.dumpFunction(0), R"( GETUPVAL R0 0 LOADN R1 5 SETTABLEKS R1 R0 K0 ['_tweakingTooltipFrame'] RETURN R0 0 )"); } TEST_CASE("ConditionalBasic") { CHECK_EQ("\n" + compileFunction0("local a = ... if a then return 5 end"), R"( GETVARARGS R0 1 JUMPIFNOT R0 L0 LOADN R1 5 RETURN R1 1 L0: RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("local a = ... if not a then return 5 end"), R"( GETVARARGS R0 1 JUMPIF R0 L0 LOADN R1 5 RETURN R1 1 L0: RETURN R0 0 )"); } TEST_CASE("ConditionalCompare") { CHECK_EQ("\n" + compileFunction0("local a, b = ... if a < b then return 5 end"), R"( GETVARARGS R0 2 JUMPIFNOTLT R0 R1 L0 LOADN R2 5 RETURN R2 1 L0: RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("local a, b = ... if a <= b then return 5 end"), R"( GETVARARGS R0 2 JUMPIFNOTLE R0 R1 L0 LOADN R2 5 RETURN R2 1 L0: RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("local a, b = ... if a > b then return 5 end"), R"( GETVARARGS R0 2 JUMPIFNOTLT R1 R0 L0 LOADN R2 5 RETURN R2 1 L0: RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("local a, b = ... if a >= b then return 5 end"), R"( GETVARARGS R0 2 JUMPIFNOTLE R1 R0 L0 LOADN R2 5 RETURN R2 1 L0: RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("local a, b = ... if a == b then return 5 end"), R"( GETVARARGS R0 2 JUMPIFNOTEQ R0 R1 L0 LOADN R2 5 RETURN R2 1 L0: RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("local a, b = ... if a ~= b then return 5 end"), R"( GETVARARGS R0 2 JUMPIFEQ R0 R1 L0 LOADN R2 5 RETURN R2 1 L0: RETURN R0 0 )"); } TEST_CASE("ConditionalNot") { CHECK_EQ("\n" + compileFunction0("local a, b = ... if not (not (a < b)) then return 5 end"), R"( GETVARARGS R0 2 JUMPIFNOTLT R0 R1 L0 LOADN R2 5 RETURN R2 1 L0: RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("local a, b = ... if not (not (not (a < b))) then return 5 end"), R"( GETVARARGS R0 2 JUMPIFLT R0 R1 L0 LOADN R2 5 RETURN R2 1 L0: RETURN R0 0 )"); } TEST_CASE("ConditionalAndOr") { CHECK_EQ("\n" + compileFunction0("local a, b, c = ... if a < b and b < c then return 5 end"), R"( GETVARARGS R0 3 JUMPIFNOTLT R0 R1 L0 JUMPIFNOTLT R1 R2 L0 LOADN R3 5 RETURN R3 1 L0: RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("local a, b, c = ... if a < b or b < c then return 5 end"), R"( GETVARARGS R0 3 JUMPIFLT R0 R1 L0 JUMPIFNOTLT R1 R2 L1 L0: LOADN R3 5 RETURN R3 1 L1: RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("local a,b,c,d = ... if (a or b) and not (c and d) then return 5 end"), R"( GETVARARGS R0 4 JUMPIF R0 L0 JUMPIFNOT R1 L2 L0: JUMPIFNOT R2 L1 JUMPIF R3 L2 L1: LOADN R4 5 RETURN R4 1 L2: RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("local a,b,c = ... if a or not b or c then return 5 end"), R"( GETVARARGS R0 3 JUMPIF R0 L0 JUMPIFNOT R1 L0 JUMPIFNOT R2 L1 L0: LOADN R3 5 RETURN R3 1 L1: RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("local a,b,c = ... if a and not b and c then return 5 end"), R"( GETVARARGS R0 3 JUMPIFNOT R0 L0 JUMPIF R1 L0 JUMPIFNOT R2 L0 LOADN R3 5 RETURN R3 1 L0: RETURN R0 0 )"); } TEST_CASE("AndOr") { // codegen for constant, local, global for and CHECK_EQ("\n" + compileFunction0("local a = 1 a = a and 2 return a"), R"( LOADN R0 1 ANDK R0 R0 K0 [2] RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction0("local a = 1 local b = ... a = a and b return a"), R"( LOADN R0 1 GETVARARGS R1 1 AND R0 R0 R1 RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction0("local a = 1 b = 2 a = a and b return a"), R"( LOADN R0 1 LOADN R1 2 SETGLOBAL R1 K0 ['b'] MOVE R1 R0 JUMPIFNOT R1 L0 GETGLOBAL R1 K0 ['b'] L0: MOVE R0 R1 RETURN R0 1 )"); // codegen for constant, local, global for or CHECK_EQ("\n" + compileFunction0("local a = 1 a = a or 2 return a"), R"( LOADN R0 1 ORK R0 R0 K0 [2] RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction0("local a = 1 local b = ... a = a or b return a"), R"( LOADN R0 1 GETVARARGS R1 1 OR R0 R0 R1 RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction0("local a = 1 b = 2 a = a or b return a"), R"( LOADN R0 1 LOADN R1 2 SETGLOBAL R1 K0 ['b'] MOVE R1 R0 JUMPIF R1 L0 GETGLOBAL R1 K0 ['b'] L0: MOVE R0 R1 RETURN R0 1 )"); // codegen without a temp variable for and/or when we know we can assign directly into the target register // note: `a = a` assignment is to disable constant folding for testing purposes CHECK_EQ("\n" + compileFunction0("local a = 1 a = a b = 2 local c = a and b return c"), R"( LOADN R0 1 LOADN R1 2 SETGLOBAL R1 K0 ['b'] MOVE R1 R0 JUMPIFNOT R1 L0 GETGLOBAL R1 K0 ['b'] L0: RETURN R1 1 )"); CHECK_EQ("\n" + compileFunction0("local a = 1 a = a b = 2 local c = a or b return c"), R"( LOADN R0 1 LOADN R1 2 SETGLOBAL R1 K0 ['b'] MOVE R1 R0 JUMPIF R1 L0 GETGLOBAL R1 K0 ['b'] L0: RETURN R1 1 )"); } TEST_CASE("AndOrFoldLeft") { // constant folding and/or expression is possible even if just the left hand is constant CHECK_EQ("\n" + compileFunction0("local a = false if a and b then b() end"), R"( RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("local a = true if a or b then b() end"), R"( GETIMPORT R0 1 [b] CALL R0 0 0 RETURN R0 0 )"); // however, if right hand side is constant we can't constant fold the entire expression // (note that we don't need to evaluate the right hand side, but we do need a branch) CHECK_EQ("\n" + compileFunction0("local a = false if b and a then b() end"), R"( GETIMPORT R0 1 [b] JUMPIFNOT R0 L0 RETURN R0 0 GETIMPORT R0 1 [b] CALL R0 0 0 L0: RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("local a = true if b or a then b() end"), R"( GETIMPORT R0 1 [b] JUMPIF R0 L0 L0: GETIMPORT R0 1 [b] CALL R0 0 0 RETURN R0 0 )"); } TEST_CASE("AndOrChainCodegen") { const char* source = R"( return (1 - verticalGradientTurbulence < waterLevel + .015 and Enum.Material.Sand) or (sandbank>0 and sandbank<1 and Enum.Material.Sand)--this for canyonbase sandbanks or Enum.Material.Sandstone )"; CHECK_EQ("\n" + compileFunction0(source), R"( LOADN R2 1 GETIMPORT R3 1 [verticalGradientTurbulence] SUB R1 R2 R3 GETIMPORT R3 4 [waterLevel] ADDK R2 R3 K2 [0.014999999999999999] JUMPIFNOTLT R1 R2 L0 GETIMPORT R0 8 [Enum.Material.Sand] JUMPIF R0 L2 L0: GETIMPORT R1 10 [sandbank] LOADN R2 0 JUMPIFNOTLT R2 R1 L1 GETIMPORT R1 10 [sandbank] LOADN R2 1 JUMPIFNOTLT R1 R2 L1 GETIMPORT R0 8 [Enum.Material.Sand] JUMPIF R0 L2 L1: GETIMPORT R0 12 [Enum.Material.Sandstone] L2: RETURN R0 1 )"); } TEST_CASE("IfElseExpression") { // codegen for a true constant condition CHECK_EQ("\n" + compileFunction0("return if true then 10 else 20"), R"( LOADN R0 10 RETURN R0 1 )"); // codegen for a false constant condition CHECK_EQ("\n" + compileFunction0("return if false then 10 else 20"), R"( LOADN R0 20 RETURN R0 1 )"); // codegen for a true constant condition with non-constant expressions CHECK_EQ("\n" + compileFunction0("return if true then {} else error()"), R"( NEWTABLE R0 0 0 RETURN R0 1 )"); // codegen for a false constant condition with non-constant expressions CHECK_EQ("\n" + compileFunction0("return if false then error() else {}"), R"( NEWTABLE R0 0 0 RETURN R0 1 )"); // codegen for a false (in this case 'nil') constant condition CHECK_EQ("\n" + compileFunction0("return if nil then 10 else 20"), R"( LOADN R0 20 RETURN R0 1 )"); // codegen constant if-else expression used with a binary operation involving another constant // The test verifies that everything constant folds down to a single constant CHECK_EQ("\n" + compileFunction0("return 7 + if true then 10 else 20"), R"( LOADN R0 17 RETURN R0 1 )"); // codegen for a non-constant condition CHECK_EQ("\n" + compileFunction0("return if condition then 10 else 20"), R"( GETIMPORT R1 1 [condition] JUMPIFNOT R1 L0 LOADN R0 10 RETURN R0 1 L0: LOADN R0 20 RETURN R0 1 )"); // codegen for a non-constant condition using an assignment CHECK_EQ("\n" + compileFunction0("result = if condition then 10 else 20"), R"( GETIMPORT R1 1 [condition] JUMPIFNOT R1 L0 LOADN R0 10 JUMP L1 L0: LOADN R0 20 L1: SETGLOBAL R0 K2 ['result'] RETURN R0 0 )"); // codegen for a non-constant condition using an assignment to a local variable CHECK_EQ("\n" + compileFunction0("local result = if condition then 10 else 20"), R"( GETIMPORT R1 1 [condition] JUMPIFNOT R1 L0 LOADN R0 10 RETURN R0 0 L0: LOADN R0 20 RETURN R0 0 )"); // codegen for an if-else expression with multiple elseif's CHECK_EQ("\n" + compileFunction0("result = if condition1 then 10 elseif condition2 then 20 elseif condition3 then 30 else 40"), R"( GETIMPORT R1 1 [condition1] JUMPIFNOT R1 L0 LOADN R0 10 JUMP L3 L0: GETIMPORT R1 3 [condition2] JUMPIFNOT R1 L1 LOADN R0 20 JUMP L3 L1: GETIMPORT R1 5 [condition3] JUMPIFNOT R1 L2 LOADN R0 30 JUMP L3 L2: LOADN R0 40 L3: SETGLOBAL R0 K6 ['result'] RETURN R0 0 )"); } TEST_CASE("UnaryBasic") { CHECK_EQ("\n" + compileFunction0("local a = ... return not a"), R"( GETVARARGS R0 1 NOT R1 R0 RETURN R1 1 )"); CHECK_EQ("\n" + compileFunction0("local a = ... return -a"), R"( GETVARARGS R0 1 MINUS R1 R0 RETURN R1 1 )"); CHECK_EQ("\n" + compileFunction0("local a = ... return #a"), R"( GETVARARGS R0 1 LENGTH R1 R0 RETURN R1 1 )"); } TEST_CASE("InterpStringWithNoExpressions") { CHECK_EQ(compileFunction0(R"(return "hello")"), compileFunction0("return `hello`")); } TEST_CASE("InterpStringZeroCost") { CHECK_EQ("\n" + compileFunction0(R"(local _ = `hello, {"world"}!`)"), R"( LOADK R1 K0 ['hello, %*!'] LOADK R3 K1 ['world'] NAMECALL R1 R1 K2 ['format'] CALL R1 2 1 MOVE R0 R1 RETURN R0 0 )"); } TEST_CASE("InterpStringRegisterCleanup") { CHECK_EQ("\n" + compileFunction0(R"( local a, b, c = nil, "um", "uh oh" a = `foo{"bar"}` print(a) )"), R"( LOADNIL R0 LOADK R1 K0 ['um'] LOADK R2 K1 ['uh oh'] LOADK R3 K2 ['foo%*'] LOADK R5 K3 ['bar'] NAMECALL R3 R3 K4 ['format'] CALL R3 2 1 MOVE R0 R3 GETIMPORT R3 6 [print] MOVE R4 R0 CALL R3 1 0 RETURN R0 0 )"); } TEST_CASE("InterpStringRegisterLimit") { CHECK_THROWS_AS(compileFunction0(("local a = `" + rep("{1}", 254) + "`").c_str()), std::exception); CHECK_THROWS_AS(compileFunction0(("local a = `" + rep("{1}", 253) + "`").c_str()), std::exception); } TEST_CASE("ConstantFoldArith") { CHECK_EQ("\n" + compileFunction0("return 10 + 2"), R"( LOADN R0 12 RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction0("return 10 - 2"), R"( LOADN R0 8 RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction0("return 10 * 2"), R"( LOADN R0 20 RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction0("return 10 / 2"), R"( LOADN R0 5 RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction0("return 10 % 2"), R"( LOADN R0 0 RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction0("return 10 ^ 2"), R"( LOADN R0 100 RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction0("return -(2 - 5)"), R"( LOADN R0 3 RETURN R0 1 )"); // nested arith expression with groups CHECK_EQ("\n" + compileFunction0("return (2 + 2) * 2"), R"( LOADN R0 8 RETURN R0 1 )"); } TEST_CASE("ConstantFoldStringLen") { CHECK_EQ("\n" + compileFunction0("return #'string', #'', #'a', #('b')"), R"( LOADN R0 6 LOADN R1 0 LOADN R2 1 LOADN R3 1 RETURN R0 4 )"); } TEST_CASE("ConstantFoldCompare") { // ordered comparisons CHECK_EQ("\n" + compileFunction0("return 1 < 1, 1 < 2"), R"( LOADB R0 0 LOADB R1 1 RETURN R0 2 )"); CHECK_EQ("\n" + compileFunction0("return 1 <= 1, 1 <= 2"), R"( LOADB R0 1 LOADB R1 1 RETURN R0 2 )"); CHECK_EQ("\n" + compileFunction0("return 1 > 1, 1 > 2"), R"( LOADB R0 0 LOADB R1 0 RETURN R0 2 )"); CHECK_EQ("\n" + compileFunction0("return 1 >= 1, 1 >= 2"), R"( LOADB R0 1 LOADB R1 0 RETURN R0 2 )"); // equality comparisons CHECK_EQ("\n" + compileFunction0("return nil == 1, nil ~= 1, nil == nil, nil ~= nil"), R"( LOADB R0 0 LOADB R1 1 LOADB R2 1 LOADB R3 0 RETURN R0 4 )"); CHECK_EQ("\n" + compileFunction0("return 2 == 1, 2 ~= 1, 1 == 1, 1 ~= 1"), R"( LOADB R0 0 LOADB R1 1 LOADB R2 1 LOADB R3 0 RETURN R0 4 )"); CHECK_EQ("\n" + compileFunction0("return true == false, true ~= false, true == true, true ~= true"), R"( LOADB R0 0 LOADB R1 1 LOADB R2 1 LOADB R3 0 RETURN R0 4 )"); CHECK_EQ("\n" + compileFunction0("return 'a' == 'b', 'a' ~= 'b', 'a' == 'a', 'a' ~= 'a'"), R"( LOADB R0 0 LOADB R1 1 LOADB R2 1 LOADB R3 0 RETURN R0 4 )"); } TEST_CASE("ConstantFoldLocal") { // local constant propagation, including upvalues, and no propagation for mutated locals CHECK_EQ("\n" + compileFunction0("local a = 1 return a + a"), R"( LOADN R0 2 RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction0("local a = 1 a = a + a return a"), R"( LOADN R0 1 ADD R0 R0 R0 RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction("local a = 1 function foo() return a + a end", 0), R"( LOADN R0 2 RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction("local a = 1 function foo() return a + a end function bar() a = 5 end", 0), R"( GETUPVAL R1 0 GETUPVAL R2 0 ADD R0 R1 R2 RETURN R0 1 )"); // local values for multiple assignments CHECK_EQ("\n" + compileFunction0("local a return a"), R"( LOADNIL R0 RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction0("local a, b = 1, 3 return a + 1, b"), R"( LOADN R0 2 LOADN R1 3 RETURN R0 2 )"); CHECK_EQ("\n" + compileFunction0("local a, b = 1 return a + 1, b"), R"( LOADN R0 2 LOADNIL R1 RETURN R0 2 )"); // local values for multiple assignments w/multret CHECK_EQ("\n" + compileFunction0("local a, b = ... return a + 1, b"), R"( GETVARARGS R0 2 ADDK R2 R0 K0 [1] MOVE R3 R1 RETURN R2 2 )"); CHECK_EQ("\n" + compileFunction0("local a, b = 1, ... return a + 1, b"), R"( LOADN R0 1 GETVARARGS R1 1 LOADN R2 2 MOVE R3 R1 RETURN R2 2 )"); } TEST_CASE("ConstantFoldAndOr") { // and/or constant folding when both sides are constant CHECK_EQ("\n" + compileFunction0("return true and 2"), R"( LOADN R0 2 RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction0("return false and 2"), R"( LOADB R0 0 RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction0("return nil and 2"), R"( LOADNIL R0 RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction0("return true or 2"), R"( LOADB R0 1 RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction0("return false or 2"), R"( LOADN R0 2 RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction0("return nil or 2"), R"( LOADN R0 2 RETURN R0 1 )"); // and/or constant folding when left hand side is constant CHECK_EQ("\n" + compileFunction0("return true and a"), R"( GETIMPORT R0 1 [a] RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction0("return false and a"), R"( LOADB R0 0 RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction0("return true or a"), R"( LOADB R0 1 RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction0("return false or a"), R"( GETIMPORT R0 1 [a] RETURN R0 1 )"); // constant fold parts in chains of and/or statements CHECK_EQ("\n" + compileFunction0("return a and true and b"), R"( GETIMPORT R0 1 [a] JUMPIFNOT R0 L0 GETIMPORT R0 3 [b] L0: RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction0("return a or false or b"), R"( GETIMPORT R0 1 [a] JUMPIF R0 L0 GETIMPORT R0 3 [b] L0: RETURN R0 1 )"); } TEST_CASE("ConstantFoldConditionalAndOr") { CHECK_EQ("\n" + compileFunction0("local a = ... if false or a then print(1) end"), R"( GETVARARGS R0 1 JUMPIFNOT R0 L0 GETIMPORT R1 1 [print] LOADN R2 1 CALL R1 1 0 L0: RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("local a = ... if not (false or a) then print(1) end"), R"( GETVARARGS R0 1 JUMPIF R0 L0 GETIMPORT R1 1 [print] LOADN R2 1 CALL R1 1 0 L0: RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("local a = ... if true and a then print(1) end"), R"( GETVARARGS R0 1 JUMPIFNOT R0 L0 GETIMPORT R1 1 [print] LOADN R2 1 CALL R1 1 0 L0: RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("local a = ... if not (true and a) then print(1) end"), R"( GETVARARGS R0 1 JUMPIF R0 L0 GETIMPORT R1 1 [print] LOADN R2 1 CALL R1 1 0 L0: RETURN R0 0 )"); } TEST_CASE("ConstantFoldFlowControl") { // if CHECK_EQ("\n" + compileFunction0("if true then print(1) end"), R"( GETIMPORT R0 1 [print] LOADN R1 1 CALL R0 1 0 RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("if false then print(1) end"), R"( RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("if true then print(1) else print(2) end"), R"( GETIMPORT R0 1 [print] LOADN R1 1 CALL R0 1 0 RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("if false then print(1) else print(2) end"), R"( GETIMPORT R0 1 [print] LOADN R1 2 CALL R0 1 0 RETURN R0 0 )"); // while CHECK_EQ("\n" + compileFunction0("while true do print(1) end"), R"( L0: GETIMPORT R0 1 [print] LOADN R1 1 CALL R0 1 0 JUMPBACK L0 RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("while false do print(1) end"), R"( RETURN R0 0 )"); // repeat CHECK_EQ("\n" + compileFunction0("repeat print(1) until true"), R"( GETIMPORT R0 1 [print] LOADN R1 1 CALL R0 1 0 RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("repeat print(1) until false"), R"( L0: GETIMPORT R0 1 [print] LOADN R1 1 CALL R0 1 0 JUMPBACK L0 RETURN R0 0 )"); // there's an odd case in repeat..until compilation where we evaluate the expression that is always false for side-effects of the left hand side CHECK_EQ("\n" + compileFunction0("repeat print(1) until five and false"), R"( L0: GETIMPORT R0 1 [print] LOADN R1 1 CALL R0 1 0 GETIMPORT R0 3 [five] JUMPIFNOT R0 L1 L1: JUMPBACK L0 RETURN R0 0 )"); } TEST_CASE("LoopBreak") { // default codegen: compile breaks as unconditional jumps CHECK_EQ("\n" + compileFunction0("while true do if math.random() < 0.5 then break else end end"), R"( L0: GETIMPORT R0 2 [math.random] CALL R0 0 1 LOADK R1 K3 [0.5] JUMPIFNOTLT R0 R1 L1 RETURN R0 0 L1: JUMPBACK L0 RETURN R0 0 )"); // optimization: if then body is a break statement, flip the branches CHECK_EQ("\n" + compileFunction0("while true do if math.random() < 0.5 then break end end"), R"( L0: GETIMPORT R0 2 [math.random] CALL R0 0 1 LOADK R1 K3 [0.5] JUMPIFLT R0 R1 L1 JUMPBACK L0 L1: RETURN R0 0 )"); } TEST_CASE("LoopContinue") { // default codegen: compile continue as unconditional jumps CHECK_EQ("\n" + compileFunction0("repeat if math.random() < 0.5 then continue else end break until false error()"), R"( L0: GETIMPORT R0 2 [math.random] CALL R0 0 1 LOADK R1 K3 [0.5] JUMPIFNOTLT R0 R1 L2 JUMP L1 JUMP L2 L1: JUMPBACK L0 L2: GETIMPORT R0 5 [error] CALL R0 0 0 RETURN R0 0 )"); // optimization: if then body is a continue statement, flip the branches CHECK_EQ("\n" + compileFunction0("repeat if math.random() < 0.5 then continue end break until false error()"), R"( L0: GETIMPORT R0 2 [math.random] CALL R0 0 1 LOADK R1 K3 [0.5] JUMPIFLT R0 R1 L1 JUMP L2 L1: JUMPBACK L0 L2: GETIMPORT R0 5 [error] CALL R0 0 0 RETURN R0 0 )"); } TEST_CASE("LoopContinueUntil") { // it's valid to use locals defined inside the loop in until expression if they're defined before continue CHECK_EQ("\n" + compileFunction0("repeat local r = math.random() if r > 0.5 then continue end r = r + 0.3 until r < 0.5"), R"( L0: GETIMPORT R0 2 [math.random] CALL R0 0 1 LOADK R1 K3 [0.5] JUMPIFLT R1 R0 L1 ADDK R0 R0 K4 [0.29999999999999999] L1: LOADK R1 K3 [0.5] JUMPIFLT R0 R1 L2 JUMPBACK L0 L2: RETURN R0 0 )"); // it's however invalid to use locals if they are defined after continue try { Luau::BytecodeBuilder bcb; Luau::compileOrThrow(bcb, R"( repeat local r = math.random() if r > 0.5 then continue end local rr = r + 0.3 until rr < 0.5 )"); CHECK(!"Expected CompileError"); } catch (Luau::CompileError& e) { CHECK_EQ(e.getLocation().begin.line + 1, 8); CHECK_EQ( std::string(e.what()), "Local rr used in the repeat..until condition is undefined because continue statement on line 5 jumps over it"); } // but it's okay if continue is inside a non-repeat..until loop, or inside a loop that doesn't use the local (here `continue` just terminates // inner loop) CHECK_EQ("\n" + compileFunction0( "repeat local r = math.random() repeat if r > 0.5 then continue end r = r - 0.1 until true r = r + 0.3 until r < 0.5"), R"( L0: GETIMPORT R0 2 [math.random] CALL R0 0 1 LOADK R1 K3 [0.5] JUMPIFLT R1 R0 L1 SUBK R0 R0 K4 [0.10000000000000001] L1: ADDK R0 R0 K5 [0.29999999999999999] LOADK R1 K3 [0.5] JUMPIFLT R0 R1 L2 JUMPBACK L0 L2: RETURN R0 0 )"); // and it's also okay to use a local defined in the until expression as long as it's inside a function! CHECK_EQ( "\n" + compileFunction( "repeat local r = math.random() if r > 0.5 then continue end r = r + 0.3 until (function() local a = r return a < 0.5 end)()", 1), R"( L0: GETIMPORT R0 2 [math.random] CALL R0 0 1 LOADK R1 K3 [0.5] JUMPIFNOTLT R1 R0 L1 CLOSEUPVALS R0 JUMP L2 L1: ADDK R0 R0 K4 [0.29999999999999999] L2: NEWCLOSURE R1 P0 CAPTURE REF R0 CALL R1 0 1 JUMPIF R1 L3 CLOSEUPVALS R0 JUMPBACK L0 L3: CLOSEUPVALS R0 RETURN R0 0 )"); // but not if the function just refers to an upvalue try { Luau::BytecodeBuilder bcb; Luau::compileOrThrow(bcb, R"( repeat local r = math.random() if r > 0.5 then continue end local rr = r + 0.3 until (function() return rr end)() < 0.5 )"); CHECK(!"Expected CompileError"); } catch (Luau::CompileError& e) { CHECK_EQ(e.getLocation().begin.line + 1, 8); CHECK_EQ( std::string(e.what()), "Local rr used in the repeat..until condition is undefined because continue statement on line 5 jumps over it"); } // unless that upvalue is from an outer scope CHECK_EQ("\n" + compileFunction0("local stop = false stop = true function test() repeat local r = math.random() if r > 0.5 then " "continue end r = r + 0.3 until stop or r < 0.5 end"), R"( L0: GETIMPORT R0 2 [math.random] CALL R0 0 1 LOADK R1 K3 [0.5] JUMPIFLT R1 R0 L1 ADDK R0 R0 K4 [0.29999999999999999] L1: GETUPVAL R1 0 JUMPIF R1 L2 LOADK R1 K3 [0.5] JUMPIFLT R0 R1 L2 JUMPBACK L0 L2: RETURN R0 0 )"); // including upvalue references from a function expression CHECK_EQ("\n" + compileFunction("local stop = false stop = true function test() repeat local r = math.random() if r > 0.5 then continue " "end r = r + 0.3 until (function() return stop or r < 0.5 end)() end", 1), R"( L0: GETIMPORT R0 2 [math.random] CALL R0 0 1 LOADK R1 K3 [0.5] JUMPIFNOTLT R1 R0 L1 CLOSEUPVALS R0 JUMP L2 L1: ADDK R0 R0 K4 [0.29999999999999999] L2: NEWCLOSURE R1 P0 CAPTURE UPVAL U0 CAPTURE REF R0 CALL R1 0 1 JUMPIF R1 L3 CLOSEUPVALS R0 JUMPBACK L0 L3: CLOSEUPVALS R0 RETURN R0 0 )"); } TEST_CASE("LoopContinueUntilOops") { // this used to crash the compiler :( try { Luau::BytecodeBuilder bcb; Luau::compileOrThrow(bcb, R"( local _ repeat continue until not _ )"); } catch (Luau::CompileError& e) { CHECK_EQ( std::string(e.what()), "Local _ used in the repeat..until condition is undefined because continue statement on line 4 jumps over it"); } } TEST_CASE("AndOrOptimizations") { // the OR/ORK optimization triggers for cutoff since lhs is simple CHECK_EQ("\n" + compileFunction(R"( local function advancedRidgedFilter(value, cutoff) local cutoff = cutoff or .5 value = value - cutoff return 1 - (value < 0 and -value or value) * 1 / (1 - cutoff) end )", 0), R"( ORK R2 R1 K0 [0.5] SUB R0 R0 R2 LOADN R4 1 LOADN R8 0 JUMPIFNOTLT R0 R8 L0 MINUS R7 R0 JUMPIF R7 L1 L0: MOVE R7 R0 L1: MULK R6 R7 K1 [1] LOADN R8 1 SUB R7 R8 R2 DIV R5 R6 R7 SUB R3 R4 R5 RETURN R3 1 )"); // sometimes we need to compute a boolean; this uses LOADB with an offset CHECK_EQ("\n" + compileFunction(R"( function thinSurface(surfaceGradient, surfaceThickness) return surfaceGradient > .5 - surfaceThickness*.4 and surfaceGradient < .5 + surfaceThickness*.4 end )", 0), R"( LOADB R2 0 LOADK R4 K0 [0.5] MULK R5 R1 K1 [0.40000000000000002] SUB R3 R4 R5 JUMPIFNOTLT R3 R0 L1 LOADK R4 K0 [0.5] MULK R5 R1 K1 [0.40000000000000002] ADD R3 R4 R5 JUMPIFLT R0 R3 L0 LOADB R2 0 +1 L0: LOADB R2 1 L1: RETURN R2 1 )"); // sometimes we need to compute a boolean; this uses LOADB with an offset for the last op, note that first op is compiled better CHECK_EQ("\n" + compileFunction(R"( function thickSurface(surfaceGradient, surfaceThickness) return surfaceGradient < .5 - surfaceThickness*.4 or surfaceGradient > .5 + surfaceThickness*.4 end )", 0), R"( LOADB R2 1 LOADK R4 K0 [0.5] MULK R5 R1 K1 [0.40000000000000002] SUB R3 R4 R5 JUMPIFLT R0 R3 L1 LOADK R4 K0 [0.5] MULK R5 R1 K1 [0.40000000000000002] ADD R3 R4 R5 JUMPIFLT R3 R0 L0 LOADB R2 0 +1 L0: LOADB R2 1 L1: RETURN R2 1 )"); // trivial ternary if with constants CHECK_EQ("\n" + compileFunction(R"( function testSurface(surface) return surface and 1 or 0 end )", 0), R"( JUMPIFNOT R0 L0 LOADN R1 1 RETURN R1 1 L0: LOADN R1 0 RETURN R1 1 )"); // canonical saturate CHECK_EQ("\n" + compileFunction(R"( function saturate(x) return x < 0 and 0 or x > 1 and 1 or x end )", 0), R"( LOADN R2 0 JUMPIFNOTLT R0 R2 L0 LOADN R1 0 RETURN R1 1 L0: LOADN R2 1 JUMPIFNOTLT R2 R0 L1 LOADN R1 1 RETURN R1 1 L1: MOVE R1 R0 RETURN R1 1 )"); } TEST_CASE("JumpFold") { // jump-to-return folding to return CHECK_EQ("\n" + compileFunction0("return a and 1 or 0"), R"( GETIMPORT R1 1 [a] JUMPIFNOT R1 L0 LOADN R0 1 RETURN R0 1 L0: LOADN R0 0 RETURN R0 1 )"); // conditional jump in the inner if() folding to jump out of the expression (JUMPIFNOT+5 skips over all jumps, JUMP+1 skips over JUMP+0) CHECK_EQ("\n" + compileFunction0("if a then if b then b() else end else end d()"), R"( GETIMPORT R0 1 [a] JUMPIFNOT R0 L0 GETIMPORT R0 3 [b] JUMPIFNOT R0 L0 GETIMPORT R0 3 [b] CALL R0 0 0 JUMP L0 JUMP L0 L0: GETIMPORT R0 5 [d] CALL R0 0 0 RETURN R0 0 )"); // same as example before but the unconditional jumps are folded with RETURN CHECK_EQ("\n" + compileFunction0("if a then if b then b() else end else end"), R"( GETIMPORT R0 1 [a] JUMPIFNOT R0 L0 GETIMPORT R0 3 [b] JUMPIFNOT R0 L0 GETIMPORT R0 3 [b] CALL R0 0 0 RETURN R0 0 RETURN R0 0 L0: RETURN R0 0 )"); // in this example, we do *not* have a JUMP after RETURN in the if branch // this is important since, even though this jump is never reached, jump folding needs to be able to analyze it CHECK_EQ("\n" + compileFunction(R"( local function getPerlin(x, y, z, seed, scale, raw) local seed = seed or 0 local scale = scale or 1 if not raw then return math.noise(x / scale + (seed * 17) + masterSeed, y / scale - masterSeed, z / scale - seed*seed)*.5 + .5 --accounts for bleeding from interpolated line else return math.noise(x / scale + (seed * 17) + masterSeed, y / scale - masterSeed, z / scale - seed*seed) end end )", 0), R"( ORK R6 R3 K0 [0] ORK R7 R4 K1 [1] JUMPIF R5 L0 GETIMPORT R10 5 [math.noise] DIV R13 R0 R7 MULK R14 R6 K6 [17] ADD R12 R13 R14 GETIMPORT R13 8 [masterSeed] ADD R11 R12 R13 DIV R13 R1 R7 GETIMPORT R14 8 [masterSeed] SUB R12 R13 R14 DIV R14 R2 R7 MUL R15 R6 R6 SUB R13 R14 R15 CALL R10 3 1 MULK R9 R10 K2 [0.5] ADDK R8 R9 K2 [0.5] RETURN R8 1 L0: GETIMPORT R8 5 [math.noise] DIV R11 R0 R7 MULK R12 R6 K6 [17] ADD R10 R11 R12 GETIMPORT R11 8 [masterSeed] ADD R9 R10 R11 DIV R11 R1 R7 GETIMPORT R12 8 [masterSeed] SUB R10 R11 R12 DIV R12 R2 R7 MUL R13 R6 R6 SUB R11 R12 R13 CALL R8 3 -1 RETURN R8 -1 )"); } TEST_CASE("RecursionParse") { // The test forcibly pushes the stack limit during compilation; in NoOpt, the stack consumption is much larger so we need to reduce the limit to // not overflow the C stack. When ASAN is enabled, stack consumption increases even more. #if defined(LUAU_ENABLE_ASAN) ScopedFastInt flag("LuauRecursionLimit", 200); #elif defined(_NOOPT) || defined(_DEBUG) ScopedFastInt flag("LuauRecursionLimit", 300); #endif Luau::BytecodeBuilder bcb; try { Luau::compileOrThrow(bcb, "a=" + rep("{", 1500) + rep("}", 1500)); CHECK(!"Expected exception"); } catch (std::exception& e) { CHECK_EQ(std::string(e.what()), "Exceeded allowed recursion depth; simplify your expression to make the code compile"); } try { Luau::compileOrThrow(bcb, "function a" + rep(".a", 1500) + "() end"); CHECK(!"Expected exception"); } catch (std::exception& e) { CHECK_EQ(std::string(e.what()), "Exceeded allowed recursion depth; simplify your function name to make the code compile"); } try { Luau::compileOrThrow(bcb, "a=1" + rep("+1", 1500)); CHECK(!"Expected exception"); } catch (std::exception& e) { CHECK_EQ(std::string(e.what()), "Exceeded allowed recursion depth; simplify your expression to make the code compile"); } try { Luau::compileOrThrow(bcb, "a=" + rep("(", 1500) + "1" + rep(")", 1500)); CHECK(!"Expected exception"); } catch (std::exception& e) { CHECK_EQ(std::string(e.what()), "Exceeded allowed recursion depth; simplify your expression to make the code compile"); } try { Luau::compileOrThrow(bcb, rep("do ", 1500) + "print()" + rep(" end", 1500)); CHECK(!"Expected exception"); } catch (std::exception& e) { CHECK_EQ(std::string(e.what()), "Exceeded allowed recursion depth; simplify your block to make the code compile"); } try { Luau::compileOrThrow(bcb, rep("a(", 1500) + "42" + rep(")", 1500)); CHECK(!"Expected exception"); } catch (std::exception& e) { CHECK_EQ(std::string(e.what()), "Exceeded allowed recursion depth; simplify your expression to make the code compile"); } try { Luau::compileOrThrow(bcb, "return " + rep("{", 1500) + "42" + rep("}", 1500)); CHECK(!"Expected exception"); } catch (std::exception& e) { CHECK_EQ(std::string(e.what()), "Exceeded allowed recursion depth; simplify your expression to make the code compile"); } try { Luau::compileOrThrow(bcb, rep("while true do ", 1500) + "print()" + rep(" end", 1500)); CHECK(!"Expected exception"); } catch (std::exception& e) { CHECK_EQ(std::string(e.what()), "Exceeded allowed recursion depth; simplify your expression to make the code compile"); } try { Luau::compileOrThrow(bcb, rep("for i=1,1 do ", 1500) + "print()" + rep(" end", 1500)); CHECK(!"Expected exception"); } catch (std::exception& e) { CHECK_EQ(std::string(e.what()), "Exceeded allowed recursion depth; simplify your expression to make the code compile"); } try { Luau::compileOrThrow(bcb, rep("function a() ", 1500) + "print()" + rep(" end", 1500)); CHECK(!"Expected exception"); } catch (std::exception& e) { CHECK_EQ(std::string(e.what()), "Exceeded allowed recursion depth; simplify your block to make the code compile"); } try { Luau::compileOrThrow(bcb, "return " + rep("function() return ", 1500) + "42" + rep(" end", 1500)); CHECK(!"Expected exception"); } catch (std::exception& e) { CHECK_EQ(std::string(e.what()), "Exceeded allowed recursion depth; simplify your block to make the code compile"); } try { Luau::compileOrThrow(bcb, "local f: " + rep("(", 1500) + "nil" + rep(")", 1500)); CHECK(!"Expected exception"); } catch (std::exception& e) { CHECK_EQ(std::string(e.what()), "Exceeded allowed recursion depth; simplify your type annotation to make the code compile"); } try { Luau::compileOrThrow(bcb, "local f: () " + rep("-> ()", 1500)); CHECK(!"Expected exception"); } catch (std::exception& e) { CHECK_EQ(std::string(e.what()), "Exceeded allowed recursion depth; simplify your type annotation to make the code compile"); } try { Luau::compileOrThrow(bcb, "local f: " + rep("{x:", 1500) + "nil" + rep("}", 1500)); CHECK(!"Expected exception"); } catch (std::exception& e) { CHECK_EQ(std::string(e.what()), "Exceeded allowed recursion depth; simplify your type annotation to make the code compile"); } try { Luau::compileOrThrow(bcb, "local f: " + rep("(nil & ", 1500) + "nil" + rep(")", 1500)); CHECK(!"Expected exception"); } catch (std::exception& e) { CHECK_EQ(std::string(e.what()), "Exceeded allowed recursion depth; simplify your type annotation to make the code compile"); } } TEST_CASE("ArrayIndexLiteral") { CHECK_EQ("\n" + compileFunction0("local arr = {} return arr[0], arr[1], arr[256], arr[257]"), R"( NEWTABLE R0 0 0 LOADN R2 0 GETTABLE R1 R0 R2 GETTABLEN R2 R0 1 GETTABLEN R3 R0 256 LOADN R5 257 GETTABLE R4 R0 R5 RETURN R1 4 )"); CHECK_EQ("\n" + compileFunction0("local arr = {} local b = ... arr[0] = b arr[1] = b arr[256] = b arr[257] = b"), R"( NEWTABLE R0 0 1 GETVARARGS R1 1 LOADN R2 0 SETTABLE R1 R0 R2 SETTABLEN R1 R0 1 SETTABLEN R1 R0 256 LOADN R2 257 SETTABLE R1 R0 R2 RETURN R0 0 )"); } TEST_CASE("NestedFunctionCalls") { CHECK_EQ("\n" + compileFunction0("function clamp(t,a,b) return math.min(math.max(t,a),b) end"), R"( FASTCALL2 18 R0 R1 L0 MOVE R5 R0 MOVE R6 R1 GETIMPORT R4 2 [math.max] CALL R4 2 1 L0: FASTCALL2 19 R4 R2 L1 MOVE R5 R2 GETIMPORT R3 4 [math.min] CALL R3 2 -1 L1: RETURN R3 -1 )"); } TEST_CASE("UpvaluesLoopsBytecode") { CHECK_EQ("\n" + compileFunction(R"( function test() for i=1,10 do i = i foo(function() return i end) if bar then break end end return 0 end )", 1), R"( LOADN R2 1 LOADN R0 10 LOADN R1 1 FORNPREP R0 L2 L0: MOVE R3 R2 GETIMPORT R4 1 [foo] NEWCLOSURE R5 P0 CAPTURE REF R3 CALL R4 1 0 GETIMPORT R4 3 [bar] JUMPIFNOT R4 L1 CLOSEUPVALS R3 JUMP L2 L1: CLOSEUPVALS R3 FORNLOOP R0 L0 L2: LOADN R0 0 RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction(R"( function test() for i in ipairs(data) do i = i foo(function() return i end) if bar then break end end return 0 end )", 1), R"( GETIMPORT R0 1 [ipairs] GETIMPORT R1 3 [data] CALL R0 1 3 FORGPREP_INEXT R0 L2 L0: GETIMPORT R5 5 [foo] NEWCLOSURE R6 P0 CAPTURE REF R3 CALL R5 1 0 GETIMPORT R5 7 [bar] JUMPIFNOT R5 L1 CLOSEUPVALS R3 JUMP L3 L1: CLOSEUPVALS R3 L2: FORGLOOP R0 L0 1 [inext] L3: LOADN R0 0 RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction(R"( function test() local i = 0 while i < 5 do local j j = i foo(function() return j end) i = i + 1 if bar then break end end return 0 end )", 1), R"( LOADN R0 0 L0: LOADN R1 5 JUMPIFNOTLT R0 R1 L2 LOADNIL R1 MOVE R1 R0 GETIMPORT R2 1 [foo] NEWCLOSURE R3 P0 CAPTURE REF R1 CALL R2 1 0 ADDK R0 R0 K2 [1] GETIMPORT R2 4 [bar] JUMPIFNOT R2 L1 CLOSEUPVALS R1 JUMP L2 L1: CLOSEUPVALS R1 JUMPBACK L0 L2: LOADN R1 0 RETURN R1 1 )"); CHECK_EQ("\n" + compileFunction(R"( function test() local i = 0 repeat local j j = i foo(function() return j end) i = i + 1 if bar then break end until i < 5 return 0 end )", 1), R"( LOADN R0 0 L0: LOADNIL R1 MOVE R1 R0 GETIMPORT R2 1 [foo] NEWCLOSURE R3 P0 CAPTURE REF R1 CALL R2 1 0 ADDK R0 R0 K2 [1] GETIMPORT R2 4 [bar] JUMPIFNOT R2 L1 CLOSEUPVALS R1 JUMP L3 L1: LOADN R2 5 JUMPIFLT R0 R2 L2 CLOSEUPVALS R1 JUMPBACK L0 L2: CLOSEUPVALS R1 L3: LOADN R1 0 RETURN R1 1 )"); } TEST_CASE("TypeAliasing") { Luau::BytecodeBuilder bcb; Luau::CompileOptions options; Luau::ParseOptions parseOptions; CHECK_NOTHROW(Luau::compileOrThrow(bcb, "type A = number local a: A = 1", options, parseOptions)); } TEST_CASE("DebugLineInfo") { Luau::BytecodeBuilder bcb; bcb.setDumpFlags(Luau::BytecodeBuilder::Dump_Code | Luau::BytecodeBuilder::Dump_Lines); Luau::compileOrThrow(bcb, R"( local kSelectedBiomes = { ['Mountains'] = true, ['Canyons'] = true, ['Dunes'] = true, ['Arctic'] = true, ['Lavaflow'] = true, ['Hills'] = true, ['Plains'] = true, ['Marsh'] = true, ['Water'] = true, } local result = "" for k in pairs(kSelectedBiomes) do result = result .. k end return result )"); CHECK_EQ("\n" + bcb.dumpFunction(0), R"( 2: NEWTABLE R0 16 0 3: LOADB R1 1 3: SETTABLEKS R1 R0 K0 ['Mountains'] 4: LOADB R1 1 4: SETTABLEKS R1 R0 K1 ['Canyons'] 5: LOADB R1 1 5: SETTABLEKS R1 R0 K2 ['Dunes'] 6: LOADB R1 1 6: SETTABLEKS R1 R0 K3 ['Arctic'] 7: LOADB R1 1 7: SETTABLEKS R1 R0 K4 ['Lavaflow'] 8: LOADB R1 1 8: SETTABLEKS R1 R0 K5 ['Hills'] 9: LOADB R1 1 9: SETTABLEKS R1 R0 K6 ['Plains'] 10: LOADB R1 1 10: SETTABLEKS R1 R0 K7 ['Marsh'] 11: LOADB R1 1 11: SETTABLEKS R1 R0 K8 ['Water'] 13: LOADK R1 K9 [''] 14: GETIMPORT R2 11 [pairs] 14: MOVE R3 R0 14: CALL R2 1 3 14: FORGPREP_NEXT R2 L1 15: L0: MOVE R7 R1 15: MOVE R8 R5 15: CONCAT R1 R7 R8 14: L1: FORGLOOP R2 L0 1 17: RETURN R1 1 )"); } TEST_CASE("DebugLineInfoFor") { Luau::BytecodeBuilder bcb; bcb.setDumpFlags(Luau::BytecodeBuilder::Dump_Code | Luau::BytecodeBuilder::Dump_Lines); Luau::compileOrThrow(bcb, R"( for i in 1 , 2 , 3 do print(i) end )"); CHECK_EQ("\n" + bcb.dumpFunction(0), R"( 5: LOADN R0 1 7: LOADN R1 2 9: LOADN R2 3 9: FORGPREP R0 L1 11: L0: GETIMPORT R5 1 [print] 11: MOVE R6 R3 11: CALL R5 1 0 2: L1: FORGLOOP R0 L0 1 13: RETURN R0 0 )"); } TEST_CASE("DebugLineInfoWhile") { Luau::BytecodeBuilder bcb; bcb.setDumpFlags(Luau::BytecodeBuilder::Dump_Code | Luau::BytecodeBuilder::Dump_Lines); Luau::compileOrThrow(bcb, R"( local count = 0 while true do count += 1 if count > 1 then print("done!") break end end )"); CHECK_EQ("\n" + bcb.dumpFunction(0), R"( 2: LOADN R0 0 4: L0: ADDK R0 R0 K0 [1] 5: LOADN R1 1 5: JUMPIFNOTLT R1 R0 L1 6: GETIMPORT R1 2 [print] 6: LOADK R2 K3 ['done!'] 6: CALL R1 1 0 10: RETURN R0 0 3: L1: JUMPBACK L0 10: RETURN R0 0 )"); } TEST_CASE("DebugLineInfoRepeatUntil") { CHECK_EQ("\n" + compileFunction0Coverage(R"( local f = 0 repeat f += 1 if f == 1 then print(f) else f = 0 end until f == 0 )", 0), R"( 2: LOADN R0 0 4: L0: ADDK R0 R0 K0 [1] 5: JUMPXEQKN R0 K0 L1 NOT [1] 6: GETIMPORT R1 2 [print] 6: MOVE R2 R0 6: CALL R1 1 0 6: JUMP L2 8: L1: LOADN R0 0 10: L2: JUMPXEQKN R0 K3 L3 [0] 10: JUMPBACK L0 11: L3: RETURN R0 0 )"); } TEST_CASE("DebugLineInfoSubTable") { Luau::BytecodeBuilder bcb; bcb.setDumpFlags(Luau::BytecodeBuilder::Dump_Code | Luau::BytecodeBuilder::Dump_Lines); Luau::compileOrThrow(bcb, R"( local Value1, Value2, Value3 = ... local Table = {} Table.SubTable["Key"] = { Key1 = Value1, Key2 = Value2, Key3 = Value3, Key4 = true, } )"); CHECK_EQ("\n" + bcb.dumpFunction(0), R"( 2: GETVARARGS R0 3 3: NEWTABLE R3 0 0 5: GETTABLEKS R4 R3 K0 ['SubTable'] 5: DUPTABLE R5 5 6: SETTABLEKS R0 R5 K1 ['Key1'] 7: SETTABLEKS R1 R5 K2 ['Key2'] 8: SETTABLEKS R2 R5 K3 ['Key3'] 9: LOADB R6 1 9: SETTABLEKS R6 R5 K4 ['Key4'] 5: SETTABLEKS R5 R4 K6 ['Key'] 11: RETURN R0 0 )"); } TEST_CASE("DebugLineInfoCall") { Luau::BytecodeBuilder bcb; bcb.setDumpFlags(Luau::BytecodeBuilder::Dump_Code | Luau::BytecodeBuilder::Dump_Lines); Luau::compileOrThrow(bcb, R"( local Foo = ... Foo:Bar( 1, 2, 3) )"); CHECK_EQ("\n" + bcb.dumpFunction(0), R"( 2: GETVARARGS R0 1 5: LOADN R3 1 6: LOADN R4 2 7: LOADN R5 3 4: NAMECALL R1 R0 K0 ['Bar'] 4: CALL R1 4 0 8: RETURN R0 0 )"); } TEST_CASE("DebugLineInfoCallChain") { Luau::BytecodeBuilder bcb; bcb.setDumpFlags(Luau::BytecodeBuilder::Dump_Code | Luau::BytecodeBuilder::Dump_Lines); Luau::compileOrThrow(bcb, R"( local Foo = ... Foo :Bar(1) :Baz(2) .Qux(3) )"); CHECK_EQ("\n" + bcb.dumpFunction(0), R"( 2: GETVARARGS R0 1 5: LOADN R4 1 5: NAMECALL R2 R0 K0 ['Bar'] 5: CALL R2 2 1 6: LOADN R4 2 6: NAMECALL R2 R2 K1 ['Baz'] 6: CALL R2 2 1 7: GETTABLEKS R1 R2 K2 ['Qux'] 7: LOADN R2 3 7: CALL R1 1 0 8: RETURN R0 0 )"); } TEST_CASE("DebugLineInfoFastCall") { Luau::BytecodeBuilder bcb; bcb.setDumpFlags(Luau::BytecodeBuilder::Dump_Code | Luau::BytecodeBuilder::Dump_Lines); Luau::compileOrThrow(bcb, R"( local Foo, Bar = ... return math.max( Foo, Bar) )"); CHECK_EQ("\n" + bcb.dumpFunction(0), R"( 2: GETVARARGS R0 2 5: FASTCALL2 18 R0 R1 L0 5: MOVE R3 R0 5: MOVE R4 R1 5: GETIMPORT R2 2 [math.max] 5: CALL R2 2 -1 5: L0: RETURN R2 -1 )"); } TEST_CASE("DebugLineInfoAssignment") { Luau::BytecodeBuilder bcb; bcb.setDumpFlags(Luau::BytecodeBuilder::Dump_Code | Luau::BytecodeBuilder::Dump_Lines); Luau::compileOrThrow(bcb, R"( local a = { b = { c = { d = 3 } } } a ["b"] ["c"] ["d"] = 4 )"); CHECK_EQ("\n" + bcb.dumpFunction(0), R"( 2: DUPTABLE R0 1 2: DUPTABLE R1 3 2: DUPTABLE R2 5 2: LOADN R3 3 2: SETTABLEKS R3 R2 K4 ['d'] 2: SETTABLEKS R2 R1 K2 ['c'] 2: SETTABLEKS R1 R0 K0 ['b'] 5: GETTABLEKS R2 R0 K0 ['b'] 6: GETTABLEKS R1 R2 K2 ['c'] 7: LOADN R2 4 7: SETTABLEKS R2 R1 K4 ['d'] 8: RETURN R0 0 )"); } TEST_CASE("DebugSource") { const char* source = R"( local kSelectedBiomes = { ['Mountains'] = true, ['Canyons'] = true, ['Dunes'] = true, ['Arctic'] = true, ['Lavaflow'] = true, ['Hills'] = true, ['Plains'] = true, ['Marsh'] = true, ['Water'] = true, } local result = "" for k in pairs(kSelectedBiomes) do result = result .. k end return result )"; Luau::BytecodeBuilder bcb; bcb.setDumpFlags(Luau::BytecodeBuilder::Dump_Code | Luau::BytecodeBuilder::Dump_Source); bcb.setDumpSource(source); Luau::compileOrThrow(bcb, source); CHECK_EQ("\n" + bcb.dumpFunction(0), R"( 2: local kSelectedBiomes = { NEWTABLE R0 16 0 3: ['Mountains'] = true, LOADB R1 1 SETTABLEKS R1 R0 K0 ['Mountains'] 4: ['Canyons'] = true, LOADB R1 1 SETTABLEKS R1 R0 K1 ['Canyons'] 5: ['Dunes'] = true, LOADB R1 1 SETTABLEKS R1 R0 K2 ['Dunes'] 6: ['Arctic'] = true, LOADB R1 1 SETTABLEKS R1 R0 K3 ['Arctic'] 7: ['Lavaflow'] = true, LOADB R1 1 SETTABLEKS R1 R0 K4 ['Lavaflow'] 8: ['Hills'] = true, LOADB R1 1 SETTABLEKS R1 R0 K5 ['Hills'] 9: ['Plains'] = true, LOADB R1 1 SETTABLEKS R1 R0 K6 ['Plains'] 10: ['Marsh'] = true, LOADB R1 1 SETTABLEKS R1 R0 K7 ['Marsh'] 11: ['Water'] = true, LOADB R1 1 SETTABLEKS R1 R0 K8 ['Water'] 13: local result = "" LOADK R1 K9 [''] 14: for k in pairs(kSelectedBiomes) do GETIMPORT R2 11 [pairs] MOVE R3 R0 CALL R2 1 3 FORGPREP_NEXT R2 L1 15: result = result .. k L0: MOVE R7 R1 MOVE R8 R5 CONCAT R1 R7 R8 14: for k in pairs(kSelectedBiomes) do L1: FORGLOOP R2 L0 1 17: return result RETURN R1 1 )"); } TEST_CASE("DebugLocals") { const char* source = R"( function foo(e, f) local a = 1 for i=1,3 do print(i) end for k,v in pairs() do print(k, v) end do local b = 2 print(b) end do local c = 2 print(b) end local function inner() return inner, a end return a end )"; Luau::BytecodeBuilder bcb; bcb.setDumpFlags(Luau::BytecodeBuilder::Dump_Code | Luau::BytecodeBuilder::Dump_Lines | Luau::BytecodeBuilder::Dump_Locals); bcb.setDumpSource(source); Luau::CompileOptions options; options.debugLevel = 2; Luau::compileOrThrow(bcb, source, options); CHECK_EQ("\n" + bcb.dumpFunction(1), R"( local 0: reg 5, start pc 5 line 5, end pc 8 line 5 local 1: reg 6, start pc 14 line 8, end pc 18 line 8 local 2: reg 7, start pc 14 line 8, end pc 18 line 8 local 3: reg 3, start pc 22 line 12, end pc 25 line 12 local 4: reg 3, start pc 27 line 16, end pc 31 line 16 local 5: reg 0, start pc 0 line 3, end pc 35 line 21 local 6: reg 1, start pc 0 line 3, end pc 35 line 21 local 7: reg 2, start pc 1 line 4, end pc 35 line 21 local 8: reg 3, start pc 35 line 21, end pc 35 line 21 3: LOADN R2 1 4: LOADN R5 1 4: LOADN R3 3 4: LOADN R4 1 4: FORNPREP R3 L1 5: L0: GETIMPORT R6 1 [print] 5: MOVE R7 R5 5: CALL R6 1 0 4: FORNLOOP R3 L0 7: L1: GETIMPORT R3 3 [pairs] 7: CALL R3 0 3 7: FORGPREP_NEXT R3 L3 8: L2: GETIMPORT R8 1 [print] 8: MOVE R9 R6 8: MOVE R10 R7 8: CALL R8 2 0 7: L3: FORGLOOP R3 L2 2 11: LOADN R3 2 12: GETIMPORT R4 1 [print] 12: LOADN R5 2 12: CALL R4 1 0 15: LOADN R3 2 16: GETIMPORT R4 1 [print] 16: GETIMPORT R5 5 [b] 16: CALL R4 1 0 18: NEWCLOSURE R3 P0 18: CAPTURE VAL R3 18: CAPTURE VAL R2 21: RETURN R2 1 )"); } TEST_CASE("DebugRemarks") { Luau::BytecodeBuilder bcb; bcb.setDumpFlags(Luau::BytecodeBuilder::Dump_Code | Luau::BytecodeBuilder::Dump_Remarks); uint32_t fid = bcb.beginFunction(0); bcb.addDebugRemark("test remark #%d", 1); bcb.emitABC(LOP_LOADNIL, 0, 0, 0); bcb.addDebugRemark("test remark #%d", 2); bcb.addDebugRemark("test remark #%d", 3); bcb.emitABC(LOP_RETURN, 0, 1, 0); bcb.endFunction(1, 0); bcb.setMainFunction(fid); bcb.finalize(); CHECK_EQ("\n" + bcb.dumpFunction(0), R"( REMARK test remark #1 LOADNIL R0 REMARK test remark #2 REMARK test remark #3 RETURN R0 0 )"); } TEST_CASE("SourceRemarks") { const char* source = R"( local a, b = ... local function foo(x) return(math.abs(x)) end return foo(a) + foo(assert(b)) )"; Luau::BytecodeBuilder bcb; bcb.setDumpFlags(Luau::BytecodeBuilder::Dump_Source | Luau::BytecodeBuilder::Dump_Remarks); bcb.setDumpSource(source); Luau::CompileOptions options; options.optimizationLevel = 2; Luau::compileOrThrow(bcb, source, options); std::string remarks = bcb.dumpSourceRemarks(); CHECK_EQ(remarks, R"( local a, b = ... local function foo(x) -- remark: builtin math.abs/1 return(math.abs(x)) end -- remark: builtin assert/1 -- remark: inlining succeeded (cost 2, profit 2.50x, depth 0) return foo(a) + foo(assert(b)) )"); } TEST_CASE("AssignmentConflict") { // assignments are left to right CHECK_EQ("\n" + compileFunction0("local a, b a, b = 1, 2"), R"( LOADNIL R0 LOADNIL R1 LOADN R0 1 LOADN R1 2 RETURN R0 0 )"); // if assignment of a local invalidates a direct register reference in later assignments, the value is assigned to a temp register first CHECK_EQ("\n" + compileFunction0("local a a, a[1] = 1, 2"), R"( LOADNIL R0 LOADN R1 1 LOADN R2 2 SETTABLEN R2 R0 1 MOVE R0 R1 RETURN R0 0 )"); // note that this doesn't happen if the local assignment happens last naturally CHECK_EQ("\n" + compileFunction0("local a a[1], a = 1, 2"), R"( LOADNIL R0 LOADN R2 1 LOADN R1 2 SETTABLEN R2 R0 1 MOVE R0 R1 RETURN R0 0 )"); // this will happen if assigned register is used in any table expression, including as an object... CHECK_EQ("\n" + compileFunction0("local a a, a.foo = 1, 2"), R"( LOADNIL R0 LOADN R1 1 LOADN R2 2 SETTABLEKS R2 R0 K0 ['foo'] MOVE R0 R1 RETURN R0 0 )"); // ... or a table index ... CHECK_EQ("\n" + compileFunction0("local a a, foo[a] = 1, 2"), R"( LOADNIL R0 GETIMPORT R1 1 [foo] LOADN R2 1 LOADN R3 2 SETTABLE R3 R1 R0 MOVE R0 R2 RETURN R0 0 )"); // ... or both ... CHECK_EQ("\n" + compileFunction0("local a a, a[a] = 1, 2"), R"( LOADNIL R0 LOADN R1 1 LOADN R2 2 SETTABLE R2 R0 R0 MOVE R0 R1 RETURN R0 0 )"); // ... or both with two different locals ... CHECK_EQ("\n" + compileFunction0("local a, b a, b, a[b] = 1, 2, 3"), R"( LOADNIL R0 LOADNIL R1 LOADN R2 1 LOADN R3 2 LOADN R4 3 SETTABLE R4 R0 R1 MOVE R0 R2 MOVE R1 R3 RETURN R0 0 )"); // however note that if it participates in an expression on the left hand side, there's no point reassigning it since we'd compute the expr value // into a temp register CHECK_EQ("\n" + compileFunction0("local a a, foo[a + 1] = 1, 2"), R"( LOADNIL R0 GETIMPORT R1 1 [foo] ADDK R2 R0 K2 [1] LOADN R0 1 LOADN R3 2 SETTABLE R3 R1 R2 RETURN R0 0 )"); } TEST_CASE("FastcallBytecode") { // direct global call CHECK_EQ("\n" + compileFunction0("return math.abs(-5)"), R"( LOADN R1 -5 FASTCALL1 2 R1 L0 GETIMPORT R0 2 [math.abs] CALL R0 1 -1 L0: RETURN R0 -1 )"); // call through a local variable CHECK_EQ("\n" + compileFunction0("local abs = math.abs return abs(-5)"), R"( GETIMPORT R0 2 [math.abs] LOADN R2 -5 FASTCALL1 2 R2 L0 MOVE R1 R0 CALL R1 1 -1 L0: RETURN R1 -1 )"); // call through an upvalue CHECK_EQ("\n" + compileFunction0("local abs = math.abs function foo() return abs(-5) end return foo()"), R"( LOADN R1 -5 FASTCALL1 2 R1 L0 GETUPVAL R0 0 CALL R0 1 -1 L0: RETURN R0 -1 )"); // mutating the global in the script breaks the optimization CHECK_EQ("\n" + compileFunction0("math = {} return math.abs(-5)"), R"( NEWTABLE R0 0 0 SETGLOBAL R0 K0 ['math'] GETGLOBAL R1 K0 ['math'] GETTABLEKS R0 R1 K1 ['abs'] LOADN R1 -5 CALL R0 1 -1 RETURN R0 -1 )"); // mutating the local in the script breaks the optimization CHECK_EQ("\n" + compileFunction0("local abs = math.abs abs = nil return abs(-5)"), R"( GETIMPORT R0 2 [math.abs] LOADNIL R0 MOVE R1 R0 LOADN R2 -5 CALL R1 1 -1 RETURN R1 -1 )"); // mutating the global in the script breaks the optimization, even if you do this after computing the local (for simplicity) CHECK_EQ("\n" + compileFunction0("local abs = math.abs math = {} return abs(-5)"), R"( GETGLOBAL R1 K0 ['math'] GETTABLEKS R0 R1 K1 ['abs'] NEWTABLE R1 0 0 SETGLOBAL R1 K0 ['math'] MOVE R1 R0 LOADN R2 -5 CALL R1 1 -1 RETURN R1 -1 )"); } TEST_CASE("FastcallSelect") { // select(_, ...) compiles to a builtin call CHECK_EQ("\n" + compileFunction0("return (select('#', ...))"), R"( LOADK R1 K0 ['#'] FASTCALL1 57 R1 L0 GETIMPORT R0 2 [select] GETVARARGS R2 -1 CALL R0 -1 1 L0: RETURN R0 1 )"); // more complex example: select inside a for loop bound + select from a iterator CHECK_EQ("\n" + compileFunction0(R"( local sum = 0 for i=1, select('#', ...) do sum += select(i, ...) end return sum )"), R"( LOADN R0 0 LOADN R3 1 LOADK R5 K0 ['#'] FASTCALL1 57 R5 L0 GETIMPORT R4 2 [select] GETVARARGS R6 -1 CALL R4 -1 1 L0: MOVE R1 R4 LOADN R2 1 FORNPREP R1 L3 L1: FASTCALL1 57 R3 L2 GETIMPORT R4 2 [select] MOVE R5 R3 GETVARARGS R6 -1 CALL R4 -1 1 L2: ADD R0 R0 R4 FORNLOOP R1 L1 L3: RETURN R0 1 )"); // currently we assume a single value return to avoid dealing with stack resizing CHECK_EQ("\n" + compileFunction0("return select('#', ...)"), R"( GETIMPORT R0 1 [select] LOADK R1 K2 ['#'] GETVARARGS R2 -1 CALL R0 -1 -1 RETURN R0 -1 )"); // note that select with a non-variadic second argument doesn't get optimized CHECK_EQ("\n" + compileFunction0("return select('#')"), R"( GETIMPORT R0 1 [select] LOADK R1 K2 ['#'] CALL R0 1 -1 RETURN R0 -1 )"); // note that select with a non-variadic second argument doesn't get optimized CHECK_EQ("\n" + compileFunction0("return select('#', foo())"), R"( GETIMPORT R0 1 [select] LOADK R1 K2 ['#'] GETIMPORT R2 4 [foo] CALL R2 0 -1 CALL R0 -1 -1 RETURN R0 -1 )"); } TEST_CASE("LotsOfParameters") { const char* source = R"( select("#",1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) )"; try { Luau::BytecodeBuilder bcb; Luau::compileOrThrow(bcb, source); CHECK(!"Expected exception"); } catch (std::exception& e) { CHECK_EQ(std::string(e.what()), "Out of registers when trying to allocate 265 registers: exceeded limit 255"); } } TEST_CASE("LotsOfIndexers") { const char* source = R"( function u(t)for t in s(t.l.l.l.l.l.l.l.l.l.l.l.l.l.l.n.l.l.l.l.l.l.l.l.l.l.l.l.n.l.l.l.l.l.l.n.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.n.l.l.l.g.l.l.l.l.l.l.l.l.l.l.l.l.l.n.l.l.l.l.l.t.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.r.l.l.l.l.l.l.n.l.l.l.l.l.l.l.l.l.l.l.l.n.l.l.l.l.l.l.n.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.g.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.n.l.l.l.l.l.l.l.l.n.l.l.l.l.l.l.l.l.l.l.l.l.n.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.r.n.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.n.l.l.l.n.l.l.l.l.l.l.l.n.l.l.l.l.l.l.l.l.l.l..l,l)do end end )"; try { Luau::BytecodeBuilder bcb; Luau::compileOrThrow(bcb, source); CHECK(!"Expected exception"); } catch (std::exception& e) { CHECK_EQ(std::string(e.what()), "Out of registers when trying to allocate 1 registers: exceeded limit 255"); } } TEST_CASE("AsConstant") { const char* source = R"( --!strict return (1 + 2) :: number )"; Luau::CompileOptions options; Luau::ParseOptions parseOptions; Luau::BytecodeBuilder bcb; bcb.setDumpFlags(Luau::BytecodeBuilder::Dump_Code); Luau::compileOrThrow(bcb, source, options, parseOptions); CHECK_EQ("\n" + bcb.dumpFunction(0), R"( LOADN R0 3 RETURN R0 1 )"); } TEST_CASE("PreserveNegZero") { CHECK_EQ("\n" + compileFunction0("return 0"), R"( LOADN R0 0 RETURN R0 1 )"); CHECK_EQ("\n" + compileFunction0("return -0"), R"( LOADK R0 K0 [-0] RETURN R0 1 )"); } TEST_CASE("CaptureImmutable") { // capture argument: note capture by value CHECK_EQ("\n" + compileFunction("function foo(a, b) return function() return a end end", 1), R"( NEWCLOSURE R2 P0 CAPTURE VAL R0 RETURN R2 1 )"); // capture mutable argument: note capture by reference + close CHECK_EQ("\n" + compileFunction("function foo(a, b) a = 1 return function() return a end end", 1), R"( LOADN R0 1 NEWCLOSURE R2 P0 CAPTURE REF R0 CLOSEUPVALS R0 RETURN R2 1 )"); // capture two arguments, one mutable, one immutable CHECK_EQ("\n" + compileFunction("function foo(a, b) a = 1 return function() return a + b end end", 1), R"( LOADN R0 1 NEWCLOSURE R2 P0 CAPTURE REF R0 CAPTURE VAL R1 CLOSEUPVALS R0 RETURN R2 1 )"); // capture self CHECK_EQ("\n" + compileFunction("function bar:foo(a, b) return function() return self end end", 1), R"( NEWCLOSURE R3 P0 CAPTURE VAL R0 RETURN R3 1 )"); // capture mutable self (who mutates self?!?) CHECK_EQ("\n" + compileFunction("function bar:foo(a, b) self = 42 return function() return self end end", 1), R"( LOADN R0 42 NEWCLOSURE R3 P0 CAPTURE REF R0 CLOSEUPVALS R0 RETURN R3 1 )"); // capture upvalue: one mutable, one immutable CHECK_EQ("\n" + compileFunction("local a, b = math.rand() a = 42 function foo() return function() return a + b end end", 1), R"( NEWCLOSURE R0 P0 CAPTURE UPVAL U0 CAPTURE UPVAL U1 RETURN R0 1 )"); // recursive capture CHECK_EQ("\n" + compileFunction("local function foo() return foo() end", 1), R"( DUPCLOSURE R0 K0 ['foo'] CAPTURE VAL R0 RETURN R0 0 )"); // multi-level recursive capture CHECK_EQ("\n" + compileFunction("local function foo() return function() return foo() end end", 1), R"( DUPCLOSURE R0 K0 [] CAPTURE UPVAL U0 RETURN R0 1 )"); // multi-level recursive capture where function isn't top-level // note: this should probably be optimized to DUPCLOSURE but doing that requires a different upval tracking flow in the compiler CHECK_EQ("\n" + compileFunction(R"( local function foo() local function bar() return function() return bar() end end end )", 1), R"( NEWCLOSURE R0 P0 CAPTURE UPVAL U0 RETURN R0 1 )"); } TEST_CASE("OutOfLocals") { std::string source; for (int i = 0; i < 200; ++i) { formatAppend(source, "local foo%d\n", i); } source += "local bar\n"; Luau::CompileOptions options; options.debugLevel = 2; // make sure locals aren't elided by requesting their debug info try { Luau::BytecodeBuilder bcb; Luau::compileOrThrow(bcb, source, options); CHECK(!"Expected CompileError"); } catch (Luau::CompileError& e) { CHECK_EQ(e.getLocation().begin.line + 1, 201); CHECK_EQ(std::string(e.what()), "Out of local registers when trying to allocate bar: exceeded limit 200"); } } TEST_CASE("OutOfUpvalues") { std::string source; for (int i = 0; i < 150; ++i) { formatAppend(source, "local foo%d\n", i); formatAppend(source, "foo%d = 42\n", i); } source += "function foo()\n"; for (int i = 0; i < 150; ++i) { formatAppend(source, "local bar%d\n", i); formatAppend(source, "bar%d = 42\n", i); } source += "function bar()\n"; for (int i = 0; i < 150; ++i) { formatAppend(source, "print(foo%d, bar%d)\n", i, i); } source += "end\nend\n"; try { Luau::BytecodeBuilder bcb; Luau::compileOrThrow(bcb, source); CHECK(!"Expected CompileError"); } catch (Luau::CompileError& e) { CHECK_EQ(e.getLocation().begin.line + 1, 201); CHECK_EQ(std::string(e.what()), "Out of upvalue registers when trying to allocate foo100: exceeded limit 200"); } } TEST_CASE("OutOfRegisters") { std::string source; source += "print(\n"; for (int i = 0; i < 150; ++i) { formatAppend(source, "%d,\n", i); } source += "table.pack(\n"; for (int i = 0; i < 150; ++i) { formatAppend(source, "%d,\n", i); } source += "42))\n"; try { Luau::BytecodeBuilder bcb; Luau::compileOrThrow(bcb, source); CHECK(!"Expected CompileError"); } catch (Luau::CompileError& e) { CHECK_EQ(e.getLocation().begin.line + 1, 152); CHECK_EQ(std::string(e.what()), "Out of registers when trying to allocate 152 registers: exceeded limit 255"); } } TEST_CASE("FastCallImportFallback") { std::string source = "local t = {}\n"; // we need to exhaust the 10-bit constant space to block GETIMPORT from being emitted for (int i = 1; i <= 1024; ++i) { formatAppend(source, "t[%d] = \"%d\"\n", i, i); } source += "return math.abs(-1)\n"; std::string code = compileFunction0(source.c_str()); std::vector insns = Luau::split(code, '\n'); std::string fragment; for (size_t i = 9; i > 1; --i) { fragment += std::string(insns[insns.size() - i]); fragment += "\n"; } // note: it's important that GETGLOBAL below doesn't overwrite R2 CHECK_EQ("\n" + fragment, R"( LOADN R1 1024 LOADK R2 K1023 ['1024'] SETTABLE R2 R0 R1 LOADN R2 -1 FASTCALL1 2 R2 L0 GETGLOBAL R3 K1024 ['math'] GETTABLEKS R1 R3 K1025 ['abs'] CALL R1 1 -1 )"); } TEST_CASE("CompoundAssignment") { // globals vs constants CHECK_EQ("\n" + compileFunction0("a += 1"), R"( GETGLOBAL R0 K0 ['a'] ADDK R0 R0 K1 [1] SETGLOBAL R0 K0 ['a'] RETURN R0 0 )"); // globals vs expressions CHECK_EQ("\n" + compileFunction0("a -= a"), R"( GETGLOBAL R0 K0 ['a'] GETGLOBAL R1 K0 ['a'] SUB R0 R0 R1 SETGLOBAL R0 K0 ['a'] RETURN R0 0 )"); // locals vs constants CHECK_EQ("\n" + compileFunction0("local a = 1 a *= 2"), R"( LOADN R0 1 MULK R0 R0 K0 [2] RETURN R0 0 )"); // locals vs locals CHECK_EQ("\n" + compileFunction0("local a = 1 a /= a"), R"( LOADN R0 1 DIV R0 R0 R0 RETURN R0 0 )"); // locals vs expressions CHECK_EQ("\n" + compileFunction0("local a = 1 a /= a + 1"), R"( LOADN R0 1 ADDK R1 R0 K0 [1] DIV R0 R0 R1 RETURN R0 0 )"); // upvalues CHECK_EQ("\n" + compileFunction0("local a = 1 function foo() a += 4 end"), R"( GETUPVAL R0 0 ADDK R0 R0 K0 [4] SETUPVAL R0 0 RETURN R0 0 )"); // table variants (indexed by string, number, variable) CHECK_EQ("\n" + compileFunction0("local a = {} a.foo += 5"), R"( NEWTABLE R0 0 0 GETTABLEKS R1 R0 K0 ['foo'] ADDK R1 R1 K1 [5] SETTABLEKS R1 R0 K0 ['foo'] RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("local a = {} a[1] += 5"), R"( NEWTABLE R0 0 0 GETTABLEN R1 R0 1 ADDK R1 R1 K0 [5] SETTABLEN R1 R0 1 RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("local a = {} a[a] += 5"), R"( NEWTABLE R0 0 0 GETTABLE R1 R0 R0 ADDK R1 R1 K0 [5] SETTABLE R1 R0 R0 RETURN R0 0 )"); // left hand side is evaluated once CHECK_EQ("\n" + compileFunction0("foo()[bar()] += 5"), R"( GETIMPORT R0 1 [foo] CALL R0 0 1 GETIMPORT R1 3 [bar] CALL R1 0 1 GETTABLE R2 R0 R1 ADDK R2 R2 K4 [5] SETTABLE R2 R0 R1 RETURN R0 0 )"); } TEST_CASE("CompoundAssignmentConcat") { // basic concat CHECK_EQ("\n" + compileFunction0("local a = '' a ..= 'a'"), R"( LOADK R0 K0 [''] MOVE R1 R0 LOADK R2 K1 ['a'] CONCAT R0 R1 R2 RETURN R0 0 )"); // concat chains CHECK_EQ("\n" + compileFunction0("local a = '' a ..= 'a' .. 'b'"), R"( LOADK R0 K0 [''] MOVE R1 R0 LOADK R2 K1 ['a'] LOADK R3 K2 ['b'] CONCAT R0 R1 R3 RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("local a = '' a ..= 'a' .. 'b' .. 'c'"), R"( LOADK R0 K0 [''] MOVE R1 R0 LOADK R2 K1 ['a'] LOADK R3 K2 ['b'] LOADK R4 K3 ['c'] CONCAT R0 R1 R4 RETURN R0 0 )"); // concat on non-local CHECK_EQ("\n" + compileFunction0("_VERSION ..= 'a' .. 'b'"), R"( GETGLOBAL R1 K0 ['_VERSION'] LOADK R2 K1 ['a'] LOADK R3 K2 ['b'] CONCAT R0 R1 R3 SETGLOBAL R0 K0 ['_VERSION'] RETURN R0 0 )"); } TEST_CASE("JumpTrampoline") { std::string source; source += "local sum = 0\n"; source += "for i=1,3 do\n"; for (int i = 0; i < 10000; ++i) { source += "sum = sum + i\n"; source += "if sum > 150000 then break end\n"; } source += "end\n"; source += "return sum\n"; Luau::BytecodeBuilder bcb; bcb.setDumpFlags(Luau::BytecodeBuilder::Dump_Code); Luau::compileOrThrow(bcb, source.c_str()); std::stringstream bcs(bcb.dumpFunction(0)); std::vector insns; std::string insn; while ((std::getline)(bcs, insn)) insns.push_back(insn); // FORNPREP and early JUMPs (break) need to go through a trampoline std::string head; for (size_t i = 0; i < 16; ++i) head += insns[i] + "\n"; CHECK_EQ("\n" + head, R"( LOADN R0 0 LOADN R3 1 LOADN R1 3 LOADN R2 1 JUMP L1 L0: JUMPX L14543 L1: FORNPREP R1 L0 L2: ADD R0 R0 R3 LOADK R4 K0 [150000] JUMP L4 L3: JUMPX L14543 L4: JUMPIFLT R4 R0 L3 ADD R0 R0 R3 LOADK R4 K0 [150000] JUMP L6 L5: JUMPX L14543 )"); // FORNLOOP has to go through a trampoline since the jump is back to the beginning of the function // however, late JUMPs (break) don't need a trampoline since the loop end is really close by std::string tail; for (size_t i = 44539; i < insns.size(); ++i) tail += insns[i] + "\n"; CHECK_EQ("\n" + tail, R"( ADD R0 R0 R3 LOADK R4 K0 [150000] JUMPIFLT R4 R0 L14543 ADD R0 R0 R3 LOADK R4 K0 [150000] JUMPIFLT R4 R0 L14543 JUMP L14542 L14541: JUMPX L2 L14542: FORNLOOP R1 L14541 L14543: RETURN R0 1 )"); } TEST_CASE("CompileBytecode") { // This is a coverage test, it just exercises bytecode dumping for correct and malformed code Luau::compile("return 5"); Luau::compile("this is not valid lua, right?"); } TEST_CASE("NestedNamecall") { CHECK_EQ("\n" + compileFunction0(R"( local obj = ... return obj:Method(1):Method(2):Method(3) )"), R"( GETVARARGS R0 1 LOADN R3 1 NAMECALL R1 R0 K0 ['Method'] CALL R1 2 1 LOADN R3 2 NAMECALL R1 R1 K0 ['Method'] CALL R1 2 1 LOADN R3 3 NAMECALL R1 R1 K0 ['Method'] CALL R1 2 -1 RETURN R1 -1 )"); } TEST_CASE("ElideLocals") { // simple local elision: all locals are constant CHECK_EQ("\n" + compileFunction0(R"( local a, b = 1, 2 return a + b )"), R"( LOADN R0 3 RETURN R0 1 )"); // side effecting expressions block local elision CHECK_EQ("\n" + compileFunction0(R"( local a = g() return a )"), R"( GETIMPORT R0 1 [g] CALL R0 0 1 RETURN R0 1 )"); // ... even if they are not used CHECK_EQ("\n" + compileFunction0(R"( local a = 1, g() return a )"), R"( LOADN R0 1 GETIMPORT R1 1 [g] CALL R1 0 1 RETURN R0 1 )"); } TEST_CASE("ConstantJumpCompare") { CHECK_EQ("\n" + compileFunction0(R"( local obj = ... local b = obj == 1 )"), R"( GETVARARGS R0 1 JUMPXEQKN R0 K0 L0 [1] LOADB R1 0 +1 L0: LOADB R1 1 L1: RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0(R"( local obj = ... local b = 1 == obj )"), R"( GETVARARGS R0 1 JUMPXEQKN R0 K0 L0 [1] LOADB R1 0 +1 L0: LOADB R1 1 L1: RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0(R"( local obj = ... local b = "Hello, Sailor!" == obj )"), R"( GETVARARGS R0 1 JUMPXEQKS R0 K0 L0 ['Hello, Sailor!'] LOADB R1 0 +1 L0: LOADB R1 1 L1: RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0(R"( local obj = ... local b = nil == obj )"), R"( GETVARARGS R0 1 JUMPXEQKNIL R0 L0 LOADB R1 0 +1 L0: LOADB R1 1 L1: RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0(R"( local obj = ... local b = true == obj )"), R"( GETVARARGS R0 1 JUMPXEQKB R0 1 L0 LOADB R1 0 +1 L0: LOADB R1 1 L1: RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0(R"( local obj = ... local b = nil ~= obj )"), R"( GETVARARGS R0 1 JUMPXEQKNIL R0 L0 NOT LOADB R1 0 +1 L0: LOADB R1 1 L1: RETURN R0 0 )"); // table literals should not generate IFEQK variants CHECK_EQ("\n" + compileFunction0(R"( local obj = ... local b = obj == {} )"), R"( GETVARARGS R0 1 NEWTABLE R2 0 0 JUMPIFEQ R0 R2 L0 LOADB R1 0 +1 L0: LOADB R1 1 L1: RETURN R0 0 )"); } TEST_CASE("TableConstantStringIndex") { CHECK_EQ("\n" + compileFunction0(R"( local t = { a = 2 } return t['a'] )"), R"( DUPTABLE R0 1 LOADN R1 2 SETTABLEKS R1 R0 K0 ['a'] GETTABLEKS R1 R0 K0 ['a'] RETURN R1 1 )"); CHECK_EQ("\n" + compileFunction0(R"( local t = {} t['a'] = 2 )"), R"( NEWTABLE R0 0 0 LOADN R1 2 SETTABLEKS R1 R0 K0 ['a'] RETURN R0 0 )"); } TEST_CASE("Coverage") { // basic statement coverage CHECK_EQ("\n" + compileFunction0Coverage(R"( print(1) print(2) )", 1), R"( 2: COVERAGE 2: GETIMPORT R0 1 [print] 2: LOADN R1 1 2: CALL R0 1 0 3: COVERAGE 3: GETIMPORT R0 1 [print] 3: LOADN R1 2 3: CALL R0 1 0 4: RETURN R0 0 )"); // branching CHECK_EQ("\n" + compileFunction0Coverage(R"( if x then print(1) else print(2) end )", 1), R"( 2: COVERAGE 2: GETIMPORT R0 1 [x] 2: JUMPIFNOT R0 L0 3: COVERAGE 3: GETIMPORT R0 3 [print] 3: LOADN R1 1 3: CALL R0 1 0 7: RETURN R0 0 5: L0: COVERAGE 5: GETIMPORT R0 3 [print] 5: LOADN R1 2 5: CALL R0 1 0 7: RETURN R0 0 )"); // branching with comments // note that commented lines don't have COVERAGE insns! CHECK_EQ("\n" + compileFunction0Coverage(R"( if x then -- first print(1) else -- second print(2) end )", 1), R"( 2: COVERAGE 2: GETIMPORT R0 1 [x] 2: JUMPIFNOT R0 L0 4: COVERAGE 4: GETIMPORT R0 3 [print] 4: LOADN R1 1 4: CALL R0 1 0 9: RETURN R0 0 7: L0: COVERAGE 7: GETIMPORT R0 3 [print] 7: LOADN R1 2 7: CALL R0 1 0 9: RETURN R0 0 )"); // expression coverage for table literals // note: duplicate COVERAGE instructions are there since we don't deduplicate expr/stat CHECK_EQ("\n" + compileFunction0Coverage(R"( local c = ... local t = { a = 1, b = 2, c = c } )", 2), R"( 2: COVERAGE 2: COVERAGE 2: GETVARARGS R0 1 3: COVERAGE 3: COVERAGE 3: DUPTABLE R1 3 4: COVERAGE 4: COVERAGE 4: LOADN R2 1 4: SETTABLEKS R2 R1 K0 ['a'] 5: COVERAGE 5: COVERAGE 5: LOADN R2 2 5: SETTABLEKS R2 R1 K1 ['b'] 6: COVERAGE 6: SETTABLEKS R0 R1 K2 ['c'] 8: RETURN R0 0 )"); } TEST_CASE("ConstantClosure") { // closures without upvalues are created when bytecode is loaded CHECK_EQ("\n" + compileFunction(R"( return function() end )", 1), R"( DUPCLOSURE R0 K0 [] RETURN R0 1 )"); // they can access globals just fine CHECK_EQ("\n" + compileFunction(R"( return function() print("hi") end )", 1), R"( DUPCLOSURE R0 K0 [] RETURN R0 1 )"); // if they need upvalues, we can't create them before running the code (but see SharedClosure test) CHECK_EQ("\n" + compileFunction(R"( function test() local print = print return function() print("hi") end end )", 1), R"( GETIMPORT R0 1 [print] NEWCLOSURE R1 P0 CAPTURE VAL R0 RETURN R1 1 )"); // if they don't need upvalues but we sense that environment may be modified, we disable this to avoid fenv-related identity confusion CHECK_EQ("\n" + compileFunction(R"( setfenv(1, {}) return function() print("hi") end )", 1), R"( GETIMPORT R0 1 [setfenv] LOADN R1 1 NEWTABLE R2 0 0 CALL R0 2 0 NEWCLOSURE R0 P0 RETURN R0 1 )"); // note that fenv analysis isn't flow-sensitive right now, which is sort of a feature CHECK_EQ("\n" + compileFunction(R"( if false then setfenv(1, {}) end return function() print("hi") end )", 1), R"( NEWCLOSURE R0 P0 RETURN R0 1 )"); } TEST_CASE("SharedClosure") { // closures can be shared even if functions refer to upvalues, as long as upvalues are top-level CHECK_EQ("\n" + compileFunction(R"( local val = ... local function foo() return function() return val end end )", 1), R"( DUPCLOSURE R0 K0 [] CAPTURE UPVAL U0 RETURN R0 1 )"); // ... as long as the values aren't mutated. CHECK_EQ("\n" + compileFunction(R"( local val = ... local function foo() return function() return val end end val = 5 )", 1), R"( NEWCLOSURE R0 P0 CAPTURE UPVAL U0 RETURN R0 1 )"); // making the upvalue non-toplevel disables the optimization since it's likely that it will change CHECK_EQ("\n" + compileFunction(R"( local function foo(val) return function() return val end end )", 1), R"( NEWCLOSURE R1 P0 CAPTURE VAL R0 RETURN R1 1 )"); // the upvalue analysis is transitive through local functions, which allows for code reuse to not defeat the optimization CHECK_EQ("\n" + compileFunction(R"( local val = ... local function foo() local function bar() return val end return function() return bar() end end )", 2), R"( DUPCLOSURE R0 K0 ['bar'] CAPTURE UPVAL U0 DUPCLOSURE R1 K1 [] CAPTURE VAL R0 RETURN R1 1 )"); // as such, if the upvalue that we reach transitively isn't top-level we fall back to newclosure CHECK_EQ("\n" + compileFunction(R"( local function foo(val) local function bar() return val end return function() return bar() end end )", 2), R"( NEWCLOSURE R1 P0 CAPTURE VAL R0 NEWCLOSURE R2 P1 CAPTURE VAL R1 RETURN R2 1 )"); // we also allow recursive function captures to share the object, even when it's not top-level CHECK_EQ("\n" + compileFunction("function test() local function foo() return foo() end end", 1), R"( DUPCLOSURE R0 K0 ['foo'] CAPTURE VAL R0 RETURN R0 0 )"); // multi-level recursive capture where function isn't top-level fails however. // note: this should probably be optimized to DUPCLOSURE but doing that requires a different upval tracking flow in the compiler CHECK_EQ("\n" + compileFunction(R"( local function foo() local function bar() return function() return bar() end end end )", 1), R"( NEWCLOSURE R0 P0 CAPTURE UPVAL U0 RETURN R0 1 )"); // top level upvalues inside loops should not be shared -- note that the bytecode below only uses NEWCLOSURE CHECK_EQ("\n" + compileFunction(R"( for i=1,10 do print(function() return i end) end for k,v in pairs(...) do print(function() return k end) end for i=1,10 do local j = i print(function() return j end) end )", 3), R"( LOADN R2 1 LOADN R0 10 LOADN R1 1 FORNPREP R0 L1 L0: GETIMPORT R3 1 [print] NEWCLOSURE R4 P0 CAPTURE VAL R2 CALL R3 1 0 FORNLOOP R0 L0 L1: GETIMPORT R0 3 [pairs] GETVARARGS R1 -1 CALL R0 -1 3 FORGPREP_NEXT R0 L3 L2: GETIMPORT R5 1 [print] NEWCLOSURE R6 P1 CAPTURE VAL R3 CALL R5 1 0 L3: FORGLOOP R0 L2 2 LOADN R2 1 LOADN R0 10 LOADN R1 1 FORNPREP R0 L5 L4: GETIMPORT R3 1 [print] NEWCLOSURE R4 P2 CAPTURE VAL R2 CALL R3 1 0 FORNLOOP R0 L4 L5: RETURN R0 0 )"); } TEST_CASE("MutableGlobals") { const char* source = R"( print() Game.print() Workspace.print() _G.print() game.print() plugin.print() script.print() shared.print() workspace.print() )"; // Check Roblox globals are no longer here CHECK_EQ("\n" + compileFunction0(source), R"( GETIMPORT R0 1 [print] CALL R0 0 0 GETIMPORT R0 3 [Game.print] CALL R0 0 0 GETIMPORT R0 5 [Workspace.print] CALL R0 0 0 GETIMPORT R1 7 [_G] GETTABLEKS R0 R1 K0 ['print'] CALL R0 0 0 GETIMPORT R0 9 [game.print] CALL R0 0 0 GETIMPORT R0 11 [plugin.print] CALL R0 0 0 GETIMPORT R0 13 [script.print] CALL R0 0 0 GETIMPORT R0 15 [shared.print] CALL R0 0 0 GETIMPORT R0 17 [workspace.print] CALL R0 0 0 RETURN R0 0 )"); // Check we can add them back Luau::BytecodeBuilder bcb; bcb.setDumpFlags(Luau::BytecodeBuilder::Dump_Code); Luau::CompileOptions options; const char* mutableGlobals[] = {"Game", "Workspace", "game", "plugin", "script", "shared", "workspace", NULL}; options.mutableGlobals = &mutableGlobals[0]; Luau::compileOrThrow(bcb, source, options); CHECK_EQ("\n" + bcb.dumpFunction(0), R"( GETIMPORT R0 1 [print] CALL R0 0 0 GETIMPORT R1 3 [Game] GETTABLEKS R0 R1 K0 ['print'] CALL R0 0 0 GETIMPORT R1 5 [Workspace] GETTABLEKS R0 R1 K0 ['print'] CALL R0 0 0 GETIMPORT R1 7 [_G] GETTABLEKS R0 R1 K0 ['print'] CALL R0 0 0 GETIMPORT R1 9 [game] GETTABLEKS R0 R1 K0 ['print'] CALL R0 0 0 GETIMPORT R1 11 [plugin] GETTABLEKS R0 R1 K0 ['print'] CALL R0 0 0 GETIMPORT R1 13 [script] GETTABLEKS R0 R1 K0 ['print'] CALL R0 0 0 GETIMPORT R1 15 [shared] GETTABLEKS R0 R1 K0 ['print'] CALL R0 0 0 GETIMPORT R1 17 [workspace] GETTABLEKS R0 R1 K0 ['print'] CALL R0 0 0 RETURN R0 0 )"); } TEST_CASE("ConstantsNoFolding") { const char* source = "return nil, true, 42, 'hello'"; Luau::BytecodeBuilder bcb; bcb.setDumpFlags(Luau::BytecodeBuilder::Dump_Code); Luau::CompileOptions options; options.optimizationLevel = 0; Luau::compileOrThrow(bcb, source, options); CHECK_EQ("\n" + bcb.dumpFunction(0), R"( LOADNIL R0 LOADB R1 1 LOADK R2 K0 [42] LOADK R3 K1 ['hello'] RETURN R0 4 )"); } TEST_CASE("VectorFastCall") { const char* source = "return Vector3.new(1, 2, 3)"; Luau::BytecodeBuilder bcb; bcb.setDumpFlags(Luau::BytecodeBuilder::Dump_Code); Luau::CompileOptions options; options.vectorLib = "Vector3"; options.vectorCtor = "new"; Luau::compileOrThrow(bcb, source, options); CHECK_EQ("\n" + bcb.dumpFunction(0), R"( LOADN R1 1 LOADN R2 2 LOADN R3 3 FASTCALL 54 L0 GETIMPORT R0 2 [Vector3.new] CALL R0 3 -1 L0: RETURN R0 -1 )"); } TEST_CASE("TypeAssertion") { // validate that type assertions work with the compiler and that the code inside type assertion isn't evaluated CHECK_EQ("\n" + compileFunction0(R"( print(foo() :: typeof(error("compile time"))) )"), R"( GETIMPORT R0 1 [print] GETIMPORT R1 3 [foo] CALL R1 0 1 CALL R0 1 0 RETURN R0 0 )"); // note that above, foo() is treated as single-arg function; removing type assertion changes the bytecode CHECK_EQ("\n" + compileFunction0(R"( print(foo()) )"), R"( GETIMPORT R0 1 [print] GETIMPORT R1 3 [foo] CALL R1 0 -1 CALL R0 -1 0 RETURN R0 0 )"); } TEST_CASE("Arithmetics") { // basic arithmetics codegen with non-constants CHECK_EQ("\n" + compileFunction0(R"( local a, b = ... return a + b, a - b, a / b, a * b, a % b, a ^ b )"), R"( GETVARARGS R0 2 ADD R2 R0 R1 SUB R3 R0 R1 DIV R4 R0 R1 MUL R5 R0 R1 MOD R6 R0 R1 POW R7 R0 R1 RETURN R2 6 )"); // basic arithmetics codegen with constants on the right side // note that we don't simplify these expressions as we don't know the type of a CHECK_EQ("\n" + compileFunction0(R"( local a = ... return a + 1, a - 1, a / 1, a * 1, a % 1, a ^ 1 )"), R"( GETVARARGS R0 1 ADDK R1 R0 K0 [1] SUBK R2 R0 K0 [1] DIVK R3 R0 K0 [1] MULK R4 R0 K0 [1] MODK R5 R0 K0 [1] POWK R6 R0 K0 [1] RETURN R1 6 )"); } TEST_CASE("LoopUnrollBasic") { // forward loops CHECK_EQ("\n" + compileFunction(R"( local t = {} for i=1,2 do t[i] = i end return t )", 0, 2), R"( NEWTABLE R0 0 2 LOADN R1 1 SETTABLEN R1 R0 1 LOADN R1 2 SETTABLEN R1 R0 2 RETURN R0 1 )"); // backward loops CHECK_EQ("\n" + compileFunction(R"( local t = {} for i=2,1,-1 do t[i] = i end return t )", 0, 2), R"( NEWTABLE R0 0 0 LOADN R1 2 SETTABLEN R1 R0 2 LOADN R1 1 SETTABLEN R1 R0 1 RETURN R0 1 )"); // loops with step that doesn't divide to-from CHECK_EQ("\n" + compileFunction(R"( local t = {} for i=1,4,2 do t[i] = i end return t )", 0, 2), R"( NEWTABLE R0 0 0 LOADN R1 1 SETTABLEN R1 R0 1 LOADN R1 3 SETTABLEN R1 R0 3 RETURN R0 1 )"); // empty loops CHECK_EQ("\n" + compileFunction(R"( for i=2,1 do end )", 0, 2), R"( RETURN R0 0 )"); } TEST_CASE("LoopUnrollNested") { // we can unroll nested loops just fine CHECK_EQ("\n" + compileFunction(R"( local t = {} for i=0,1 do for j=0,1 do t[i*2+(j+1)] = 0 end end )", 0, 2), R"( NEWTABLE R0 0 0 LOADN R1 0 SETTABLEN R1 R0 1 LOADN R1 0 SETTABLEN R1 R0 2 LOADN R1 0 SETTABLEN R1 R0 3 LOADN R1 0 SETTABLEN R1 R0 4 RETURN R0 0 )"); // if the inner loop is too expensive, we won't unroll the outer loop though, but we'll still unroll the inner loop! CHECK_EQ("\n" + compileFunction(R"( local t = {} for i=0,3 do for j=0,3 do t[i*4+(j+1)] = 0 end end )", 0, 2), R"( NEWTABLE R0 0 0 LOADN R3 0 LOADN R1 3 LOADN R2 1 FORNPREP R1 L1 L0: MULK R5 R3 K1 [4] ADDK R4 R5 K0 [1] LOADN R5 0 SETTABLE R5 R0 R4 MULK R5 R3 K1 [4] ADDK R4 R5 K2 [2] LOADN R5 0 SETTABLE R5 R0 R4 MULK R5 R3 K1 [4] ADDK R4 R5 K3 [3] LOADN R5 0 SETTABLE R5 R0 R4 MULK R5 R3 K1 [4] ADDK R4 R5 K1 [4] LOADN R5 0 SETTABLE R5 R0 R4 FORNLOOP R1 L0 L1: RETURN R0 0 )"); // note, we sometimes can even unroll a loop with varying internal iterations CHECK_EQ("\n" + compileFunction(R"( local t = {} for i=0,1 do for j=0,i do t[i*2+(j+1)] = 0 end end )", 0, 2), R"( NEWTABLE R0 0 0 LOADN R1 0 SETTABLEN R1 R0 1 LOADN R1 0 SETTABLEN R1 R0 3 LOADN R1 0 SETTABLEN R1 R0 4 RETURN R0 0 )"); } TEST_CASE("LoopUnrollUnsupported") { // can't unroll loops with non-constant bounds CHECK_EQ("\n" + compileFunction(R"( for i=x,y,z do end )", 0, 2), R"( GETIMPORT R2 1 [x] GETIMPORT R0 3 [y] GETIMPORT R1 5 [z] FORNPREP R0 L1 L0: FORNLOOP R0 L0 L1: RETURN R0 0 )"); // can't unroll loops with bounds where we can't compute trip count CHECK_EQ("\n" + compileFunction(R"( for i=1,1,0 do end )", 0, 2), R"( LOADN R2 1 LOADN R0 1 LOADN R1 0 FORNPREP R0 L1 L0: FORNLOOP R0 L0 L1: RETURN R0 0 )"); // can't unroll loops with bounds that might be imprecise (non-integer) CHECK_EQ("\n" + compileFunction(R"( for i=1,2,0.1 do end )", 0, 2), R"( LOADN R2 1 LOADN R0 2 LOADK R1 K0 [0.10000000000000001] FORNPREP R0 L1 L0: FORNLOOP R0 L0 L1: RETURN R0 0 )"); // can't unroll loops if the bounds are too large, as it might overflow trip count math CHECK_EQ("\n" + compileFunction(R"( for i=4294967295,4294967296 do end )", 0, 2), R"( LOADK R2 K0 [4294967295] LOADK R0 K1 [4294967296] LOADN R1 1 FORNPREP R0 L1 L0: FORNLOOP R0 L0 L1: RETURN R0 0 )"); } TEST_CASE("LoopUnrollControlFlow") { ScopedFastInt sfis[] = { {"LuauCompileLoopUnrollThreshold", 50}, {"LuauCompileLoopUnrollThresholdMaxBoost", 300}, }; // break jumps to the end CHECK_EQ("\n" + compileFunction(R"( for i=1,3 do if math.random() < 0.5 then break end end )", 0, 2), R"( GETIMPORT R0 2 [math.random] CALL R0 0 1 LOADK R1 K3 [0.5] JUMPIFLT R0 R1 L0 GETIMPORT R0 2 [math.random] CALL R0 0 1 LOADK R1 K3 [0.5] JUMPIFLT R0 R1 L0 GETIMPORT R0 2 [math.random] CALL R0 0 1 LOADK R1 K3 [0.5] JUMPIFLT R0 R1 L0 L0: RETURN R0 0 )"); // continue jumps to the next iteration CHECK_EQ("\n" + compileFunction(R"( for i=1,3 do if math.random() < 0.5 then continue end print(i) end )", 0, 2), R"( GETIMPORT R0 2 [math.random] CALL R0 0 1 LOADK R1 K3 [0.5] JUMPIFLT R0 R1 L0 GETIMPORT R0 5 [print] LOADN R1 1 CALL R0 1 0 L0: GETIMPORT R0 2 [math.random] CALL R0 0 1 LOADK R1 K3 [0.5] JUMPIFLT R0 R1 L1 GETIMPORT R0 5 [print] LOADN R1 2 CALL R0 1 0 L1: GETIMPORT R0 2 [math.random] CALL R0 0 1 LOADK R1 K3 [0.5] JUMPIFLT R0 R1 L2 GETIMPORT R0 5 [print] LOADN R1 3 CALL R0 1 0 L2: RETURN R0 0 )"); // continue needs to properly close upvalues CHECK_EQ("\n" + compileFunction(R"( for i=1,1 do local j = global(i) print(function() return j end) if math.random() < 0.5 then continue end j += 1 end )", 1, 2), R"( GETIMPORT R0 1 [global] LOADN R1 1 CALL R0 1 1 GETIMPORT R1 3 [print] NEWCLOSURE R2 P0 CAPTURE REF R0 CALL R1 1 0 GETIMPORT R1 6 [math.random] CALL R1 0 1 LOADK R2 K7 [0.5] JUMPIFNOTLT R1 R2 L0 CLOSEUPVALS R0 RETURN R0 0 L0: ADDK R0 R0 K8 [1] CLOSEUPVALS R0 RETURN R0 0 )"); // this weird contraption just disappears CHECK_EQ("\n" + compileFunction(R"( for i=1,1 do for j=1,1 do if i == 1 then continue else break end end end )", 0, 2), R"( RETURN R0 0 RETURN R0 0 )"); } TEST_CASE("LoopUnrollNestedClosure") { // if the body has functions that refer to loop variables, we unroll the loop and use MOVE+CAPTURE for upvalues CHECK_EQ("\n" + compileFunction(R"( for i=1,2 do local x = function() return i end end )", 1, 2), R"( LOADN R1 1 NEWCLOSURE R0 P0 CAPTURE VAL R1 LOADN R1 2 NEWCLOSURE R0 P0 CAPTURE VAL R1 RETURN R0 0 )"); } TEST_CASE("LoopUnrollCost") { ScopedFastInt sfis[] = { {"LuauCompileLoopUnrollThreshold", 25}, {"LuauCompileLoopUnrollThresholdMaxBoost", 300}, }; // loops with short body CHECK_EQ("\n" + compileFunction(R"( local t = {} for i=1,10 do t[i] = i end return t )", 0, 2), R"( NEWTABLE R0 0 10 LOADN R1 1 SETTABLEN R1 R0 1 LOADN R1 2 SETTABLEN R1 R0 2 LOADN R1 3 SETTABLEN R1 R0 3 LOADN R1 4 SETTABLEN R1 R0 4 LOADN R1 5 SETTABLEN R1 R0 5 LOADN R1 6 SETTABLEN R1 R0 6 LOADN R1 7 SETTABLEN R1 R0 7 LOADN R1 8 SETTABLEN R1 R0 8 LOADN R1 9 SETTABLEN R1 R0 9 LOADN R1 10 SETTABLEN R1 R0 10 RETURN R0 1 )"); // loops with body that's too long CHECK_EQ("\n" + compileFunction(R"( local t = {} for i=1,100 do t[i] = i end return t )", 0, 2), R"( NEWTABLE R0 0 0 LOADN R3 1 LOADN R1 100 LOADN R2 1 FORNPREP R1 L1 L0: SETTABLE R3 R0 R3 FORNLOOP R1 L0 L1: RETURN R0 1 )"); // loops with body that's long but has a high boost factor due to constant folding CHECK_EQ("\n" + compileFunction(R"( local t = {} for i=1,25 do t[i] = i * i * i end return t )", 0, 2), R"( NEWTABLE R0 0 0 LOADN R1 1 SETTABLEN R1 R0 1 LOADN R1 8 SETTABLEN R1 R0 2 LOADN R1 27 SETTABLEN R1 R0 3 LOADN R1 64 SETTABLEN R1 R0 4 LOADN R1 125 SETTABLEN R1 R0 5 LOADN R1 216 SETTABLEN R1 R0 6 LOADN R1 343 SETTABLEN R1 R0 7 LOADN R1 512 SETTABLEN R1 R0 8 LOADN R1 729 SETTABLEN R1 R0 9 LOADN R1 1000 SETTABLEN R1 R0 10 LOADN R1 1331 SETTABLEN R1 R0 11 LOADN R1 1728 SETTABLEN R1 R0 12 LOADN R1 2197 SETTABLEN R1 R0 13 LOADN R1 2744 SETTABLEN R1 R0 14 LOADN R1 3375 SETTABLEN R1 R0 15 LOADN R1 4096 SETTABLEN R1 R0 16 LOADN R1 4913 SETTABLEN R1 R0 17 LOADN R1 5832 SETTABLEN R1 R0 18 LOADN R1 6859 SETTABLEN R1 R0 19 LOADN R1 8000 SETTABLEN R1 R0 20 LOADN R1 9261 SETTABLEN R1 R0 21 LOADN R1 10648 SETTABLEN R1 R0 22 LOADN R1 12167 SETTABLEN R1 R0 23 LOADN R1 13824 SETTABLEN R1 R0 24 LOADN R1 15625 SETTABLEN R1 R0 25 RETURN R0 1 )"); // loops with body that's long and doesn't have a high boost factor CHECK_EQ("\n" + compileFunction(R"( local t = {} for i=1,10 do t[i] = math.abs(math.sin(i)) end return t )", 0, 2), R"( NEWTABLE R0 0 10 LOADN R3 1 LOADN R1 10 LOADN R2 1 FORNPREP R1 L3 L0: FASTCALL1 24 R3 L1 MOVE R6 R3 GETIMPORT R5 2 [math.sin] CALL R5 1 1 L1: FASTCALL1 2 R5 L2 GETIMPORT R4 4 [math.abs] CALL R4 1 1 L2: SETTABLE R4 R0 R3 FORNLOOP R1 L0 L3: RETURN R0 1 )"); } TEST_CASE("LoopUnrollMutable") { // can't unroll loops that mutate iteration variable CHECK_EQ("\n" + compileFunction(R"( for i=1,3 do i = 3 print(i) -- should print 3 three times in a row end )", 0, 2), R"( LOADN R2 1 LOADN R0 3 LOADN R1 1 FORNPREP R0 L1 L0: MOVE R3 R2 LOADN R3 3 GETIMPORT R4 1 [print] MOVE R5 R3 CALL R4 1 0 FORNLOOP R0 L0 L1: RETURN R0 0 )"); } TEST_CASE("LoopUnrollCostBuiltins") { ScopedFastInt sfis[] = { {"LuauCompileLoopUnrollThreshold", 25}, {"LuauCompileLoopUnrollThresholdMaxBoost", 300}, }; // this loop uses builtins and is close to the cost budget so it's important that we model builtins as cheaper than regular calls CHECK_EQ("\n" + compileFunction(R"( function cipher(block, nonce) for i = 0,3 do block[i + 1] = bit32.band(bit32.rshift(nonce, i * 8), 0xff) end end )", 0, 2), R"( FASTCALL2K 39 R1 K0 L0 [0] MOVE R4 R1 LOADK R5 K0 [0] GETIMPORT R3 3 [bit32.rshift] CALL R3 2 1 L0: FASTCALL2K 29 R3 K4 L1 [255] LOADK R4 K4 [255] GETIMPORT R2 6 [bit32.band] CALL R2 2 1 L1: SETTABLEN R2 R0 1 FASTCALL2K 39 R1 K7 L2 [8] MOVE R4 R1 LOADK R5 K7 [8] GETIMPORT R3 3 [bit32.rshift] CALL R3 2 1 L2: FASTCALL2K 29 R3 K4 L3 [255] LOADK R4 K4 [255] GETIMPORT R2 6 [bit32.band] CALL R2 2 1 L3: SETTABLEN R2 R0 2 FASTCALL2K 39 R1 K8 L4 [16] MOVE R4 R1 LOADK R5 K8 [16] GETIMPORT R3 3 [bit32.rshift] CALL R3 2 1 L4: FASTCALL2K 29 R3 K4 L5 [255] LOADK R4 K4 [255] GETIMPORT R2 6 [bit32.band] CALL R2 2 1 L5: SETTABLEN R2 R0 3 FASTCALL2K 39 R1 K9 L6 [24] MOVE R4 R1 LOADK R5 K9 [24] GETIMPORT R3 3 [bit32.rshift] CALL R3 2 1 L6: FASTCALL2K 29 R3 K4 L7 [255] LOADK R4 K4 [255] GETIMPORT R2 6 [bit32.band] CALL R2 2 1 L7: SETTABLEN R2 R0 4 RETURN R0 0 )"); // note that if we break compiler's ability to reason about bit32 builtin the loop is no longer unrolled as it's too expensive CHECK_EQ("\n" + compileFunction(R"( bit32 = {} function cipher(block, nonce) for i = 0,3 do block[i + 1] = bit32.band(bit32.rshift(nonce, i * 8), 0xff) end end )", 0, 2), R"( LOADN R4 0 LOADN R2 3 LOADN R3 1 FORNPREP R2 L1 L0: ADDK R5 R4 K0 [1] GETGLOBAL R7 K1 ['bit32'] GETTABLEKS R6 R7 K2 ['band'] GETGLOBAL R8 K1 ['bit32'] GETTABLEKS R7 R8 K3 ['rshift'] MOVE R8 R1 MULK R9 R4 K4 [8] CALL R7 2 1 LOADN R8 255 CALL R6 2 1 SETTABLE R6 R0 R5 FORNLOOP R2 L0 L1: RETURN R0 0 )"); // additionally, if we pass too many constants the builtin stops being cheap because of argument setup CHECK_EQ("\n" + compileFunction(R"( function cipher(block, nonce) for i = 0,3 do block[i + 1] = bit32.band(bit32.rshift(nonce, i * 8), 0xff, 0xff, 0xff, 0xff, 0xff) end end )", 0, 2), R"( LOADN R4 0 LOADN R2 3 LOADN R3 1 FORNPREP R2 L3 L0: ADDK R5 R4 K0 [1] MULK R9 R4 K1 [8] FASTCALL2 39 R1 R9 L1 MOVE R8 R1 GETIMPORT R7 4 [bit32.rshift] CALL R7 2 1 L1: LOADN R8 255 LOADN R9 255 LOADN R10 255 LOADN R11 255 LOADN R12 255 FASTCALL 29 L2 GETIMPORT R6 6 [bit32.band] CALL R6 6 1 L2: SETTABLE R6 R0 R5 FORNLOOP R2 L0 L3: RETURN R0 0 )"); } TEST_CASE("InlineBasic") { // inline function that returns a constant CHECK_EQ("\n" + compileFunction(R"( local function foo() return 42 end local x = foo() return x )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] LOADN R1 42 RETURN R1 1 )"); // inline function that returns the argument CHECK_EQ("\n" + compileFunction(R"( local function foo(a) return a end local x = foo(42) return x )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] LOADN R1 42 RETURN R1 1 )"); // inline function that returns one of the two arguments CHECK_EQ("\n" + compileFunction(R"( local function foo(a, b, c) if a then return b else return c end end local x = foo(true, math.random(), 5) return x )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] GETIMPORT R2 3 [math.random] CALL R2 0 1 MOVE R1 R2 RETURN R1 1 RETURN R1 1 )"); // inline function that returns one of the two arguments CHECK_EQ("\n" + compileFunction(R"( local function foo(a, b, c) if a then return b else return c end end local x = foo(true, 5, math.random()) return x )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] GETIMPORT R2 3 [math.random] CALL R2 0 1 LOADN R1 5 RETURN R1 1 RETURN R1 1 )"); } TEST_CASE("InlineBasicProhibited") { // we can't inline variadic functions CHECK_EQ("\n" + compileFunction(R"( local function foo(...) return 42 end local x = foo() return x )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] MOVE R1 R0 CALL R1 0 1 RETURN R1 1 )"); // we can't inline any functions in modules with getfenv/setfenv CHECK_EQ("\n" + compileFunction(R"( local function foo() return 42 end local x = foo() getfenv() return x )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] MOVE R1 R0 CALL R1 0 1 GETIMPORT R2 2 [getfenv] CALL R2 0 0 RETURN R1 1 )"); } TEST_CASE("InlineNestedLoops") { // functions with basic loops get inlined CHECK_EQ("\n" + compileFunction(R"( local function foo(t) for i=1,3 do t[i] = i end return t end local x = foo({}) return x )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] NEWTABLE R2 0 0 LOADN R3 1 SETTABLEN R3 R2 1 LOADN R3 2 SETTABLEN R3 R2 2 LOADN R3 3 SETTABLEN R3 R2 3 MOVE R1 R2 RETURN R1 1 )"); // we can even unroll the loops based on inline argument CHECK_EQ("\n" + compileFunction(R"( local function foo(t, n) for i=1, n do t[i] = i end return t end local x = foo({}, 3) return x )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] NEWTABLE R2 0 0 LOADN R3 1 SETTABLEN R3 R2 1 LOADN R3 2 SETTABLEN R3 R2 2 LOADN R3 3 SETTABLEN R3 R2 3 MOVE R1 R2 RETURN R1 1 )"); } TEST_CASE("InlineNestedClosures") { // we can inline functions that contain/return functions CHECK_EQ("\n" + compileFunction(R"( local function foo(x) return function(y) return x + y end end local x = foo(1)(2) return x )", 2, 2), R"( DUPCLOSURE R0 K0 ['foo'] LOADN R2 1 NEWCLOSURE R1 P1 CAPTURE VAL R2 LOADN R2 2 CALL R1 1 1 RETURN R1 1 )"); } TEST_CASE("InlineMutate") { // if the argument is mutated, it gets a register even if the value is constant CHECK_EQ("\n" + compileFunction(R"( local function foo(a) a = a or 5 return a end local x = foo(42) return x )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] LOADN R2 42 ORK R2 R2 K1 [5] MOVE R1 R2 RETURN R1 1 )"); // if the argument is a local, it can be used directly CHECK_EQ("\n" + compileFunction(R"( local function foo(a) return a end local x = ... local y = foo(x) return y )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] GETVARARGS R1 1 MOVE R2 R1 RETURN R2 1 )"); // ... but if it's mutated, we move it in case it is mutated through a capture during the inlined function CHECK_EQ("\n" + compileFunction(R"( local function foo(a) return a end local x = ... x = nil local y = foo(x) return y )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] GETVARARGS R1 1 LOADNIL R1 MOVE R3 R1 MOVE R2 R3 RETURN R2 1 )"); // we also don't inline functions if they have been assigned to CHECK_EQ("\n" + compileFunction(R"( local function foo(a) return a end foo = foo local x = foo(42) return x )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] MOVE R1 R0 LOADN R2 42 CALL R1 1 1 RETURN R1 1 )"); } TEST_CASE("InlineUpval") { // if the argument is an upvalue, we naturally need to copy it to a local CHECK_EQ("\n" + compileFunction(R"( local function foo(a) return a end local b = ... function bar() local x = foo(b) return x end )", 1, 2), R"( GETUPVAL R1 0 MOVE R0 R1 RETURN R0 1 )"); // if the function uses an upvalue it's more complicated, because the lexical upvalue may become a local CHECK_EQ("\n" + compileFunction(R"( local b = ... local function foo(a) return a + b end local x = foo(42) return x )", 1, 2), R"( GETVARARGS R0 1 DUPCLOSURE R1 K0 ['foo'] CAPTURE VAL R0 LOADN R3 42 ADD R2 R3 R0 RETURN R2 1 )"); // sometimes the lexical upvalue is deep enough that it's still an upvalue though CHECK_EQ("\n" + compileFunction(R"( local b = ... function bar() local function foo(a) return a + b end local x = foo(42) return x end )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] CAPTURE UPVAL U0 LOADN R2 42 GETUPVAL R3 0 ADD R1 R2 R3 RETURN R1 1 )"); } TEST_CASE("InlineCapture") { // if the argument is captured by a nested closure, normally we can rely on capture by value CHECK_EQ("\n" + compileFunction(R"( local function foo(a) return function() return a end end local x = ... local y = foo(x) return y )", 2, 2), R"( DUPCLOSURE R0 K0 ['foo'] GETVARARGS R1 1 NEWCLOSURE R2 P1 CAPTURE VAL R1 RETURN R2 1 )"); // if the argument is a constant, we move it to a register so that capture by value can happen CHECK_EQ("\n" + compileFunction(R"( local function foo(a) return function() return a end end local y = foo(42) return y )", 2, 2), R"( DUPCLOSURE R0 K0 ['foo'] LOADN R2 42 NEWCLOSURE R1 P1 CAPTURE VAL R2 RETURN R1 1 )"); // if the argument is an externally mutated variable, we copy it to an argument and capture it by value CHECK_EQ("\n" + compileFunction(R"( local function foo(a) return function() return a end end local x x = 42 local y = foo(x) return y )", 2, 2), R"( DUPCLOSURE R0 K0 ['foo'] LOADNIL R1 LOADN R1 42 MOVE R3 R1 NEWCLOSURE R2 P1 CAPTURE VAL R3 RETURN R2 1 )"); // finally, if the argument is mutated internally, we must capture it by reference and close the upvalue CHECK_EQ("\n" + compileFunction(R"( local function foo(a) a = a or 42 return function() return a end end local y = foo() return y )", 2, 2), R"( DUPCLOSURE R0 K0 ['foo'] LOADNIL R2 ORK R2 R2 K1 [42] NEWCLOSURE R1 P1 CAPTURE REF R2 CLOSEUPVALS R2 RETURN R1 1 )"); // note that capture might need to be performed during the fallthrough block CHECK_EQ("\n" + compileFunction(R"( local function foo(a) a = a or 42 print(function() return a end) end local x = ... local y = foo(x) return y )", 2, 2), R"( DUPCLOSURE R0 K0 ['foo'] GETVARARGS R1 1 MOVE R3 R1 ORK R3 R3 K1 [42] GETIMPORT R4 3 [print] NEWCLOSURE R5 P1 CAPTURE REF R3 CALL R4 1 0 LOADNIL R2 CLOSEUPVALS R3 RETURN R2 1 )"); // note that mutation and capture might be inside internal control flow // TODO: this has an oddly redundant CLOSEUPVALS after JUMP; it's not due to inlining, and is an artifact of how StatBlock/StatReturn interact // fixing this would reduce the number of redundant CLOSEUPVALS a bit but it only affects bytecode size as these instructions aren't executed CHECK_EQ("\n" + compileFunction(R"( local function foo(a) if not a then local b b = 42 return function() return b end end end local x = ... local y = foo(x) return y, x )", 2, 2), R"( DUPCLOSURE R0 K0 ['foo'] GETVARARGS R1 1 JUMPIF R1 L0 LOADNIL R3 LOADN R3 42 NEWCLOSURE R2 P1 CAPTURE REF R3 CLOSEUPVALS R3 JUMP L1 CLOSEUPVALS R3 L0: LOADNIL R2 L1: MOVE R3 R2 MOVE R4 R1 RETURN R3 2 )"); } TEST_CASE("InlineFallthrough") { // if the function doesn't return, we still fill the results with nil CHECK_EQ("\n" + compileFunction(R"( local function foo() end local a, b = foo() return a, b )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] LOADNIL R1 LOADNIL R2 RETURN R1 2 )"); // this happens even if the function returns conditionally CHECK_EQ("\n" + compileFunction(R"( local function foo(a) if a then return 42 end end local a, b = foo(false) return a, b )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] LOADNIL R1 LOADNIL R2 RETURN R1 2 )"); // note though that we can't inline a function like this in multret context // this is because we don't have a SETTOP instruction CHECK_EQ("\n" + compileFunction(R"( local function foo() end return foo() )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] MOVE R1 R0 CALL R1 0 -1 RETURN R1 -1 )"); } TEST_CASE("InlineArgMismatch") { // when inlining a function, we must respect all the usual rules // caller might not have enough arguments CHECK_EQ("\n" + compileFunction(R"( local function foo(a) return a end local x = foo() return x )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] LOADNIL R1 RETURN R1 1 )"); // caller might be using multret for arguments CHECK_EQ("\n" + compileFunction(R"( local function foo(a, b) return a + b end local x = foo(math.modf(1.5)) return x )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] LOADK R3 K1 [1.5] FASTCALL1 20 R3 L0 GETIMPORT R2 4 [math.modf] CALL R2 1 2 L0: ADD R1 R2 R3 RETURN R1 1 )"); // caller might be using varargs for arguments CHECK_EQ("\n" + compileFunction(R"( local function foo(a, b) return a + b end local x = foo(...) return x )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] GETVARARGS R2 2 ADD R1 R2 R3 RETURN R1 1 )"); // caller might have too many arguments, but we still need to compute them for side effects CHECK_EQ("\n" + compileFunction(R"( local function foo(a) return a end local x = foo(42, print()) return x )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] GETIMPORT R2 2 [print] CALL R2 0 1 LOADN R1 42 RETURN R1 1 )"); // caller might not have enough arguments, and the arg might be mutated so it needs a register CHECK_EQ("\n" + compileFunction(R"( local function foo(a) a = 42 return a end local x = foo() return x )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] LOADNIL R2 LOADN R2 42 MOVE R1 R2 RETURN R1 1 )"); } TEST_CASE("InlineMultiple") { // we call this with a different set of variable/constant args CHECK_EQ("\n" + compileFunction(R"( local function foo(a, b) return a + b end local x, y = ... local a = foo(x, 1) local b = foo(1, x) local c = foo(1, 2) local d = foo(x, y) return a, b, c, d )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] GETVARARGS R1 2 ADDK R3 R1 K1 [1] LOADN R5 1 ADD R4 R5 R1 LOADN R5 3 ADD R6 R1 R2 RETURN R3 4 )"); } TEST_CASE("InlineChain") { // inline a chain of functions CHECK_EQ("\n" + compileFunction(R"( local function foo(a, b) return a + b end local function bar(x) return foo(x, 1) * foo(x, -1) end local function baz() return (bar(42)) end return (baz()) )", 3, 2), R"( DUPCLOSURE R0 K0 ['foo'] DUPCLOSURE R1 K1 ['bar'] DUPCLOSURE R2 K2 ['baz'] LOADN R4 43 LOADN R5 41 MUL R3 R4 R5 RETURN R3 1 )"); } TEST_CASE("InlineThresholds") { ScopedFastInt sfis[] = { {"LuauCompileInlineThreshold", 25}, {"LuauCompileInlineThresholdMaxBoost", 300}, {"LuauCompileInlineDepth", 2}, }; // this function has enormous register pressure (50 regs) so we choose not to inline it CHECK_EQ("\n" + compileFunction(R"( local function foo() return {{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} end return (foo()) )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] MOVE R1 R0 CALL R1 0 1 RETURN R1 1 )"); // this function has less register pressure but a large cost CHECK_EQ("\n" + compileFunction(R"( local function foo() return {},{},{},{},{} end return (foo()) )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] MOVE R1 R0 CALL R1 0 1 RETURN R1 1 )"); // this chain of function is of length 3 but our limit in this test is 2, so we call foo twice CHECK_EQ("\n" + compileFunction(R"( local function foo(a, b) return a + b end local function bar(x) return foo(x, 1) * foo(x, -1) end local function baz() return (bar(42)) end return (baz()) )", 3, 2), R"( DUPCLOSURE R0 K0 ['foo'] DUPCLOSURE R1 K1 ['bar'] DUPCLOSURE R2 K2 ['baz'] MOVE R4 R0 LOADN R5 42 LOADN R6 1 CALL R4 2 1 MOVE R5 R0 LOADN R6 42 LOADN R7 -1 CALL R5 2 1 MUL R3 R4 R5 RETURN R3 1 )"); } TEST_CASE("InlineIIFE") { // IIFE with arguments CHECK_EQ("\n" + compileFunction(R"( function choose(a, b, c) return ((function(a, b, c) if a then return b else return c end end)(a, b, c)) end )", 1, 2), R"( JUMPIFNOT R0 L0 MOVE R3 R1 RETURN R3 1 L0: MOVE R3 R2 RETURN R3 1 RETURN R3 1 )"); // IIFE with upvalues CHECK_EQ("\n" + compileFunction(R"( function choose(a, b, c) return ((function() if a then return b else return c end end)()) end )", 1, 2), R"( JUMPIFNOT R0 L0 MOVE R3 R1 RETURN R3 1 L0: MOVE R3 R2 RETURN R3 1 RETURN R3 1 )"); } TEST_CASE("InlineRecurseArguments") { // the example looks silly but we preserve it verbatim as it was found by fuzzer for a previous version of the compiler CHECK_EQ("\n" + compileFunction(R"( local function foo(a, b) end foo(foo(foo,foo(foo,foo))[foo]) )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] LOADNIL R3 LOADNIL R2 GETTABLE R1 R2 R0 RETURN R0 0 )"); // verify that invocations of the inlined function in any position for computing the arguments to itself compile CHECK_EQ("\n" + compileFunction(R"( local function foo(a, b) return a + b end local x, y, z = ... return foo(foo(x, y), foo(z, 1)) )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] GETVARARGS R1 3 ADD R5 R1 R2 ADDK R6 R3 K1 [1] ADD R4 R5 R6 RETURN R4 1 )"); // verify that invocations of the inlined function in any position for computing the arguments to itself compile, including constants and locals // note that foo(k1, k2) doesn't get constant folded, so there's still actual math emitted for some of the calls below CHECK_EQ("\n" + compileFunction(R"( local function foo(a, b) return a + b end local x, y, z = ... return foo(foo(1, 2), 3), foo(1, foo(2, 3)), foo(x, foo(2, 3)), foo(x, foo(y, 3)), foo(x, foo(y, z)), foo(x+0, foo(y, z)), foo(x+0, foo(y+0, z)), foo(x+0, foo(y, z+0)), foo(1, foo(x, y)) )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] GETVARARGS R1 3 LOADN R5 3 ADDK R4 R5 K1 [3] LOADN R6 5 LOADN R7 1 ADD R5 R7 R6 LOADN R7 5 ADD R6 R1 R7 ADDK R8 R2 K1 [3] ADD R7 R1 R8 ADD R9 R2 R3 ADD R8 R1 R9 ADDK R10 R1 K2 [0] ADD R11 R2 R3 ADD R9 R10 R11 ADDK R11 R1 K2 [0] ADDK R13 R2 K2 [0] ADD R12 R13 R3 ADD R10 R11 R12 ADDK R12 R1 K2 [0] ADDK R14 R3 K2 [0] ADD R13 R2 R14 ADD R11 R12 R13 ADD R13 R1 R2 LOADN R14 1 ADD R12 R14 R13 RETURN R4 9 )"); } TEST_CASE("InlineFastCallK") { CHECK_EQ("\n" + compileFunction(R"( local function set(l0) rawset({}, l0) end set(false) set({}) )", 1, 2), R"( DUPCLOSURE R0 K0 ['set'] NEWTABLE R2 0 0 FASTCALL2K 49 R2 K1 L0 [false] LOADK R3 K1 [false] GETIMPORT R1 3 [rawset] CALL R1 2 0 L0: NEWTABLE R1 0 0 NEWTABLE R3 0 0 FASTCALL2 49 R3 R1 L1 MOVE R4 R1 GETIMPORT R2 3 [rawset] CALL R2 2 0 L1: RETURN R0 0 )"); } TEST_CASE("InlineExprIndexK") { CHECK_EQ("\n" + compileFunction(R"( local _ = function(l0) local _ = nil while _(_)[_] do end end local _ = _(0)[""] if _ then do for l0=0,8 do end end elseif _ then _ = nil do for l0=0,8 do return true end end end )", 1, 2), R"( DUPCLOSURE R0 K0 [] L0: LOADNIL R4 LOADNIL R5 CALL R4 1 1 LOADNIL R5 GETTABLE R3 R4 R5 JUMPIFNOT R3 L1 JUMPBACK L0 L1: LOADNIL R2 GETTABLEKS R1 R2 K1 [''] JUMPIFNOT R1 L2 RETURN R0 0 L2: JUMPIFNOT R1 L3 LOADNIL R1 LOADB R2 1 RETURN R2 1 LOADB R2 1 RETURN R2 1 LOADB R2 1 RETURN R2 1 LOADB R2 1 RETURN R2 1 LOADB R2 1 RETURN R2 1 LOADB R2 1 RETURN R2 1 LOADB R2 1 RETURN R2 1 LOADB R2 1 RETURN R2 1 LOADB R2 1 RETURN R2 1 L3: RETURN R0 0 )"); } TEST_CASE("InlineHiddenMutation") { // when the argument is assigned inside the function, we can't reuse the local CHECK_EQ("\n" + compileFunction(R"( local function foo(a) a = 42 return a end local x = ... local y = foo(x :: number) return y )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] GETVARARGS R1 1 MOVE R3 R1 LOADN R3 42 MOVE R2 R3 RETURN R2 1 )"); // and neither can we do that when it's assigned outside the function CHECK_EQ("\n" + compileFunction(R"( local function foo(a) mutator() return a end local x = ... mutator = function() x = 42 end local y = foo(x :: number) return y )", 2, 2), R"( DUPCLOSURE R0 K0 ['foo'] GETVARARGS R1 1 NEWCLOSURE R2 P1 CAPTURE REF R1 SETGLOBAL R2 K1 ['mutator'] MOVE R3 R1 GETGLOBAL R4 K1 ['mutator'] CALL R4 0 0 MOVE R2 R3 CLOSEUPVALS R1 RETURN R2 1 )"); } TEST_CASE("InlineMultret") { // inlining a function in multret context is prohibited since we can't adjust L->top outside of CALL/GETVARARGS CHECK_EQ("\n" + compileFunction(R"( local function foo(a) return a() end return foo(42) )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] MOVE R1 R0 LOADN R2 42 CALL R1 1 -1 RETURN R1 -1 )"); // however, if we can deduce statically that a function always returns a single value, the inlining will work CHECK_EQ("\n" + compileFunction(R"( local function foo(a) return a end return foo(42) )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] LOADN R1 42 RETURN R1 1 )"); // this analysis will also propagate through other functions CHECK_EQ("\n" + compileFunction(R"( local function foo(a) return a end local function bar(a) return foo(a) end return bar(42) )", 2, 2), R"( DUPCLOSURE R0 K0 ['foo'] DUPCLOSURE R1 K1 ['bar'] LOADN R2 42 RETURN R2 1 )"); // we currently don't do this analysis fully for recursive functions since they can't be inlined anyway CHECK_EQ("\n" + compileFunction(R"( local function foo(a) return foo(a) end return foo(42) )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] CAPTURE VAL R0 MOVE R1 R0 LOADN R2 42 CALL R1 1 -1 RETURN R1 -1 )"); // we do this for builtins though as we assume getfenv is not used or is not changing arity CHECK_EQ("\n" + compileFunction(R"( local function foo(a) return math.abs(a) end return foo(42) )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] LOADN R1 42 RETURN R1 1 )"); } TEST_CASE("ReturnConsecutive") { // we can return a single local directly CHECK_EQ("\n" + compileFunction0(R"( local x = ... return x )"), R"( GETVARARGS R0 1 RETURN R0 1 )"); // or multiple, when they are allocated in consecutive registers CHECK_EQ("\n" + compileFunction0(R"( local x, y = ... return x, y )"), R"( GETVARARGS R0 2 RETURN R0 2 )"); // but not if it's an expression CHECK_EQ("\n" + compileFunction0(R"( local x, y = ... return x, y + 1 )"), R"( GETVARARGS R0 2 MOVE R2 R0 ADDK R3 R1 K0 [1] RETURN R2 2 )"); // or a local with wrong register number CHECK_EQ("\n" + compileFunction0(R"( local x, y = ... return y, x )"), R"( GETVARARGS R0 2 MOVE R2 R1 MOVE R3 R0 RETURN R2 2 )"); // also double check the optimization doesn't trip on no-argument return (these are rare) CHECK_EQ("\n" + compileFunction0(R"( return )"), R"( RETURN R0 0 )"); // this optimization also works in presence of group / type casts CHECK_EQ("\n" + compileFunction0(R"( local x, y = ... return (x), y :: number )"), R"( GETVARARGS R0 2 RETURN R0 2 )"); } TEST_CASE("OptimizationLevel") { // at optimization level 1, no inlining is performed CHECK_EQ("\n" + compileFunction(R"( local function foo(a) return a end return foo(42) )", 1, 1), R"( DUPCLOSURE R0 K0 ['foo'] MOVE R1 R0 LOADN R2 42 CALL R1 1 -1 RETURN R1 -1 )"); // you can override the level from 1 to 2 to force it CHECK_EQ("\n" + compileFunction(R"( --!optimize 2 local function foo(a) return a end return foo(42) )", 1, 1), R"( DUPCLOSURE R0 K0 ['foo'] LOADN R1 42 RETURN R1 1 )"); // you can also override it externally CHECK_EQ("\n" + compileFunction(R"( local function foo(a) return a end return foo(42) )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] LOADN R1 42 RETURN R1 1 )"); // ... after which you can downgrade it back via hot comment CHECK_EQ("\n" + compileFunction(R"( --!optimize 1 local function foo(a) return a end return foo(42) )", 1, 2), R"( DUPCLOSURE R0 K0 ['foo'] MOVE R1 R0 LOADN R2 42 CALL R1 1 -1 RETURN R1 -1 )"); } TEST_CASE("BuiltinFolding") { CHECK_EQ("\n" + compileFunction(R"( return math.abs(-42), math.acos(1), math.asin(0), math.atan2(0, 1), math.atan(0), math.ceil(1.5), math.cosh(0), math.cos(0), math.deg(3.14159265358979323846), math.exp(0), math.floor(-1.5), math.fmod(7, 3), math.ldexp(0.5, 3), math.log10(100), math.log(1), math.log(4, 2), math.log(27, 3), math.max(1, 2, 3), math.min(1, 2, 3), math.pow(3, 3), math.floor(math.rad(180)), math.sinh(0), math.sin(0), math.sqrt(9), math.tanh(0), math.tan(0), bit32.arshift(-10, 1), bit32.arshift(10, 1), bit32.band(1, 3), bit32.bnot(-2), bit32.bor(1, 2), bit32.bxor(3, 7), bit32.btest(1, 3), bit32.extract(100, 1, 3), bit32.lrotate(100, -1), bit32.lshift(100, 1), bit32.replace(100, 5, 1, 3), bit32.rrotate(100, -1), bit32.rshift(100, 1), type(100), string.byte("a"), string.byte("abc", 2), string.len("abc"), typeof(true), math.clamp(-1, 0, 1), math.sign(77), math.round(7.6), bit32.extract(-1, 31), bit32.replace(100, 1, 0), math.log(100, 10), typeof(nil), (type("fin")) )", 0, 2), R"( LOADN R0 42 LOADN R1 0 LOADN R2 0 LOADN R3 0 LOADN R4 0 LOADN R5 2 LOADN R6 1 LOADN R7 1 LOADN R8 180 LOADN R9 1 LOADN R10 -2 LOADN R11 1 LOADN R12 4 LOADN R13 2 LOADN R14 0 LOADN R15 2 LOADN R16 3 LOADN R17 3 LOADN R18 1 LOADN R19 27 LOADN R20 3 LOADN R21 0 LOADN R22 0 LOADN R23 3 LOADN R24 0 LOADN R25 0 LOADK R26 K0 [4294967291] LOADN R27 5 LOADN R28 1 LOADN R29 1 LOADN R30 3 LOADN R31 4 LOADB R32 1 LOADN R33 2 LOADN R34 50 LOADN R35 200 LOADN R36 106 LOADN R37 200 LOADN R38 50 LOADK R39 K1 ['number'] LOADN R40 97 LOADN R41 98 LOADN R42 3 LOADK R43 K2 ['boolean'] LOADN R44 0 LOADN R45 1 LOADN R46 8 LOADN R47 1 LOADN R48 101 LOADN R49 2 LOADK R50 K3 ['nil'] LOADK R51 K4 ['string'] RETURN R0 52 )"); } TEST_CASE("BuiltinFoldingProhibited") { CHECK_EQ("\n" + compileFunction(R"( return math.abs(), math.max(1, true), string.byte("abc", 42), bit32.rshift(10, 42), bit32.extract(1, 2, "3"), bit32.bor(1, true), bit32.band(1, true), bit32.bxor(1, true), bit32.btest(1, true), math.min(1, true) )", 0, 2), R"( FASTCALL 2 L0 GETIMPORT R0 2 [math.abs] CALL R0 0 1 L0: LOADN R2 1 FASTCALL2K 18 R2 K3 L1 [true] LOADK R3 K3 [true] GETIMPORT R1 5 [math.max] CALL R1 2 1 L1: LOADK R3 K6 ['abc'] FASTCALL2K 41 R3 K7 L2 [42] LOADK R4 K7 [42] GETIMPORT R2 10 [string.byte] CALL R2 2 1 L2: LOADN R4 10 FASTCALL2K 39 R4 K7 L3 [42] LOADK R5 K7 [42] GETIMPORT R3 13 [bit32.rshift] CALL R3 2 1 L3: LOADN R5 1 LOADN R6 2 LOADK R7 K14 ['3'] FASTCALL 34 L4 GETIMPORT R4 16 [bit32.extract] CALL R4 3 1 L4: LOADN R6 1 FASTCALL2K 31 R6 K3 L5 [true] LOADK R7 K3 [true] GETIMPORT R5 18 [bit32.bor] CALL R5 2 1 L5: LOADN R7 1 FASTCALL2K 29 R7 K3 L6 [true] LOADK R8 K3 [true] GETIMPORT R6 20 [bit32.band] CALL R6 2 1 L6: LOADN R8 1 FASTCALL2K 32 R8 K3 L7 [true] LOADK R9 K3 [true] GETIMPORT R7 22 [bit32.bxor] CALL R7 2 1 L7: LOADN R9 1 FASTCALL2K 33 R9 K3 L8 [true] LOADK R10 K3 [true] GETIMPORT R8 24 [bit32.btest] CALL R8 2 1 L8: LOADN R10 1 FASTCALL2K 19 R10 K3 L9 [true] LOADK R11 K3 [true] GETIMPORT R9 26 [math.min] CALL R9 2 1 L9: RETURN R0 10 )"); } TEST_CASE("BuiltinFoldingProhibitedCoverage") { const char* builtins[] = { "math.abs", "math.acos", "math.asin", "math.atan2", "math.atan", "math.ceil", "math.cosh", "math.cos", "math.deg", "math.exp", "math.floor", "math.fmod", "math.ldexp", "math.log10", "math.log", "math.max", "math.min", "math.pow", "math.rad", "math.sinh", "math.sin", "math.sqrt", "math.tanh", "math.tan", "bit32.arshift", "bit32.band", "bit32.bnot", "bit32.bor", "bit32.bxor", "bit32.btest", "bit32.extract", "bit32.lrotate", "bit32.lshift", "bit32.replace", "bit32.rrotate", "bit32.rshift", "type", "string.byte", "string.len", "typeof", "math.clamp", "math.sign", "math.round", }; for (const char* func : builtins) { std::string source = "return "; source += func; source += "()"; std::string bc = compileFunction(source.c_str(), 0, 2); CHECK(bc.find("FASTCALL") != std::string::npos); } } TEST_CASE("BuiltinFoldingMultret") { CHECK_EQ("\n" + compileFunction(R"( local NoLanes: Lanes = --[[ ]] 0b0000000000000000000000000000000 local OffscreenLane: Lane = --[[ ]] 0b1000000000000000000000000000000 local function getLanesToRetrySynchronouslyOnError(root: FiberRoot): Lanes local everythingButOffscreen = bit32.band(root.pendingLanes, bit32.bnot(OffscreenLane)) if everythingButOffscreen ~= NoLanes then return everythingButOffscreen end if bit32.band(everythingButOffscreen, OffscreenLane) ~= 0 then return OffscreenLane end return NoLanes end )", 0, 2), R"( GETTABLEKS R2 R0 K0 ['pendingLanes'] FASTCALL2K 29 R2 K1 L0 [3221225471] LOADK R3 K1 [3221225471] GETIMPORT R1 4 [bit32.band] CALL R1 2 1 L0: JUMPXEQKN R1 K5 L1 [0] RETURN R1 1 L1: FASTCALL2K 29 R1 K6 L2 [1073741824] MOVE R3 R1 LOADK R4 K6 [1073741824] GETIMPORT R2 4 [bit32.band] CALL R2 2 1 L2: JUMPXEQKN R2 K5 L3 [0] LOADK R2 K6 [1073741824] RETURN R2 1 L3: LOADN R2 0 RETURN R2 1 )"); // Note: similarly, here we should have folded the return value but haven't because it's the last call in the sequence CHECK_EQ("\n" + compileFunction(R"( return math.abs(-42) )", 0, 2), R"( LOADN R0 42 RETURN R0 1 )"); } TEST_CASE("LocalReassign") { // locals can be re-assigned and the register gets reused CHECK_EQ("\n" + compileFunction0(R"( local function test(a, b) local c = a return c + b end )"), R"( ADD R2 R0 R1 RETURN R2 1 )"); // this works if the expression is using type casts or grouping CHECK_EQ("\n" + compileFunction0(R"( local function test(a, b) local c = (a :: number) return c + b end )"), R"( ADD R2 R0 R1 RETURN R2 1 )"); // the optimization requires that neither local is mutated CHECK_EQ("\n" + compileFunction0(R"( local function test(a, b) local c = a c += 0 local d = b b += 0 return c + d end )"), R"( MOVE R2 R0 ADDK R2 R2 K0 [0] MOVE R3 R1 ADDK R1 R1 K0 [0] ADD R4 R2 R3 RETURN R4 1 )"); // sanity check for two values CHECK_EQ("\n" + compileFunction0(R"( local function test(a, b) local c = a local d = b return c + d end )"), R"( ADD R2 R0 R1 RETURN R2 1 )"); // note: we currently only support this for single assignments CHECK_EQ("\n" + compileFunction0(R"( local function test(a, b) local c, d = a, b return c + d end )"), R"( MOVE R2 R0 MOVE R3 R1 ADD R4 R2 R3 RETURN R4 1 )"); // of course, captures capture the original register as well (by value since it's immutable) CHECK_EQ("\n" + compileFunction(R"( local function test(a, b) local c = a local d = b return function() return c + d end end )", 1), R"( NEWCLOSURE R2 P0 CAPTURE VAL R0 CAPTURE VAL R1 RETURN R2 1 )"); } TEST_CASE("MultipleAssignments") { // order of assignments is left to right CHECK_EQ("\n" + compileFunction0(R"( local a, b a, b = f(1), f(2) )"), R"( LOADNIL R0 LOADNIL R1 GETIMPORT R2 1 [f] LOADN R3 1 CALL R2 1 1 MOVE R0 R2 GETIMPORT R2 1 [f] LOADN R3 2 CALL R2 1 1 MOVE R1 R2 RETURN R0 0 )"); // this includes table assignments CHECK_EQ("\n" + compileFunction0(R"( local t t[1], t[2] = 3, 4 )"), R"( LOADNIL R0 LOADNIL R1 LOADN R2 3 LOADN R3 4 SETTABLEN R2 R0 1 SETTABLEN R3 R1 2 RETURN R0 0 )"); // semantically, we evaluate the right hand side first; this allows us to e.g swap elements in a table easily CHECK_EQ("\n" + compileFunction0(R"( local t = ... t[1], t[2] = t[2], t[1] )"), R"( GETVARARGS R0 1 GETTABLEN R1 R0 2 GETTABLEN R2 R0 1 SETTABLEN R1 R0 1 SETTABLEN R2 R0 2 RETURN R0 0 )"); // however, we need to optimize local assignments; to do this well, we need to handle assignment conflicts // let's first go through a few cases where there are no conflicts: // when multiple assignments have no conflicts (all local vars are read after being assigned), codegen is the same as a series of single // assignments CHECK_EQ("\n" + compileFunction0(R"( local xm1, x, xp1, xi = ... xm1,x,xp1,xi = x,xp1,xp1+1,xi-1 )"), R"( GETVARARGS R0 4 MOVE R0 R1 MOVE R1 R2 ADDK R2 R2 K0 [1] SUBK R3 R3 K0 [1] RETURN R0 0 )"); // similar example to above from a more complex case CHECK_EQ("\n" + compileFunction0(R"( local a, b, c, d, e, f, g, h, t1, t2 = ... h, g, f, e, d, c, b, a = g, f, e, d + t1, c, b, a, t1 + t2 )"), R"( GETVARARGS R0 10 MOVE R7 R6 MOVE R6 R5 MOVE R5 R4 ADD R4 R3 R8 MOVE R3 R2 MOVE R2 R1 MOVE R1 R0 ADD R0 R8 R9 RETURN R0 0 )"); // when locals have a conflict, we assign temporaries instead of locals, and at the end copy the values back // the basic example of this is a swap/rotate CHECK_EQ("\n" + compileFunction0(R"( local a, b = ... a, b = b, a )"), R"( GETVARARGS R0 2 MOVE R2 R1 MOVE R1 R0 MOVE R0 R2 RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0(R"( local a, b, c = ... a, b, c = c, a, b )"), R"( GETVARARGS R0 3 MOVE R3 R2 MOVE R4 R0 MOVE R2 R1 MOVE R0 R3 MOVE R1 R4 RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0(R"( local a, b, c = ... a, b, c = b, c, a )"), R"( GETVARARGS R0 3 MOVE R3 R1 MOVE R1 R2 MOVE R2 R0 MOVE R0 R3 RETURN R0 0 )"); // multiple assignments with multcall handling - foo() evalutes to temporary registers and they are copied out to target CHECK_EQ("\n" + compileFunction0(R"( local a, b, c, d = ... a, b, c, d = 1, foo() )"), R"( GETVARARGS R0 4 LOADN R0 1 GETIMPORT R4 1 [foo] CALL R4 0 3 MOVE R1 R4 MOVE R2 R5 MOVE R3 R6 RETURN R0 0 )"); // note that during this we still need to handle local reassignment, eg when table assignments are performed CHECK_EQ("\n" + compileFunction0(R"( local a, b, c, d = ... a, b[a], c[d], d = 1, foo() )"), R"( GETVARARGS R0 4 LOADN R4 1 GETIMPORT R6 1 [foo] CALL R6 0 3 SETTABLE R6 R1 R0 SETTABLE R7 R2 R3 MOVE R0 R4 MOVE R3 R8 RETURN R0 0 )"); // multiple assignments with multcall handling - foo evaluates to a single argument so all remaining locals are assigned to nil // note that here we don't assign the locals directly, as this case is very rare so we use the similar code path as above CHECK_EQ("\n" + compileFunction0(R"( local a, b, c, d = ... a, b, c, d = 1, foo )"), R"( GETVARARGS R0 4 LOADN R0 1 GETIMPORT R4 1 [foo] LOADNIL R5 LOADNIL R6 MOVE R1 R4 MOVE R2 R5 MOVE R3 R6 RETURN R0 0 )"); // note that we also try to use locals as a source of assignment directly when assigning fields; this works using old local value when possible CHECK_EQ("\n" + compileFunction0(R"( local a, b = ... a[1], a[2] = b, b + 1 )"), R"( GETVARARGS R0 2 ADDK R2 R1 K0 [1] SETTABLEN R1 R0 1 SETTABLEN R2 R0 2 RETURN R0 0 )"); // ... of course if the local is reassigned, we defer the assignment until later CHECK_EQ("\n" + compileFunction0(R"( local a, b = ... b, a[1] = 42, b )"), R"( GETVARARGS R0 2 LOADN R2 42 SETTABLEN R1 R0 1 MOVE R1 R2 RETURN R0 0 )"); // when there are more expressions when values, we evalute them for side effects, but they also participate in conflict handling CHECK_EQ("\n" + compileFunction0(R"( local a, b = ... a, b = 1, 2, a + b )"), R"( GETVARARGS R0 2 LOADN R2 1 LOADN R3 2 ADD R4 R0 R1 MOVE R0 R2 MOVE R1 R3 RETURN R0 0 )"); // because we perform assignments to complex l-values after assignments to locals, we make sure register conflicts are tracked accordingly CHECK_EQ("\n" + compileFunction0(R"( local a, b = ... a[1], b = b, b + 1 )"), R"( GETVARARGS R0 2 ADDK R2 R1 K0 [1] SETTABLEN R1 R0 1 MOVE R1 R2 RETURN R0 0 )"); } TEST_CASE("BuiltinExtractK") { // below, K0 refers to a packed f+w constant for bit32.extractk builtin // K1 and K2 refer to 1 and 3 and are only used during fallback path CHECK_EQ("\n" + compileFunction0(R"( local v = ... return bit32.extract(v, 1, 3) )"), R"( GETVARARGS R0 1 FASTCALL2K 59 R0 K0 L0 [65] MOVE R2 R0 LOADK R3 K1 [1] LOADK R4 K2 [3] GETIMPORT R1 5 [bit32.extract] CALL R1 3 -1 L0: RETURN R1 -1 )"); } TEST_CASE("SkipSelfAssignment") { CHECK_EQ("\n" + compileFunction0("local a a = a"), R"( LOADNIL R0 RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("local a a = a :: number"), R"( LOADNIL R0 RETURN R0 0 )"); CHECK_EQ("\n" + compileFunction0("local a a = (((a)))"), R"( LOADNIL R0 RETURN R0 0 )"); // Keep it on optimization level 0 CHECK_EQ("\n" + compileFunction("local a a = a", 0, 0), R"( LOADNIL R0 MOVE R0 R0 RETURN R0 0 )"); } TEST_CASE("ElideJumpAfterIf") { // break refers to outer loop => we can elide unconditional branches CHECK_EQ("\n" + compileFunction0(R"( local foo, bar = ... repeat if foo then break elseif bar then break end print(1234) until foo == bar )"), R"( GETVARARGS R0 2 L0: JUMPIFNOT R0 L1 RETURN R0 0 L1: JUMPIF R1 L2 GETIMPORT R2 1 [print] LOADN R3 1234 CALL R2 1 0 JUMPIFEQ R0 R1 L2 JUMPBACK L0 L2: RETURN R0 0 )"); // break refers to inner loop => branches remain CHECK_EQ("\n" + compileFunction0(R"( local foo, bar = ... repeat if foo then while true do break end elseif bar then while true do break end end print(1234) until foo == bar )"), R"( GETVARARGS R0 2 L0: JUMPIFNOT R0 L1 JUMP L2 JUMPBACK L2 JUMP L2 L1: JUMPIFNOT R1 L2 JUMP L2 JUMPBACK L2 L2: GETIMPORT R2 1 [print] LOADN R3 1234 CALL R2 1 0 JUMPIFEQ R0 R1 L3 JUMPBACK L0 L3: RETURN R0 0 )"); } TEST_CASE("BuiltinArity") { // by default we can't assume that we know parameter/result count for builtins as they can be overridden at runtime CHECK_EQ("\n" + compileFunction(R"( return math.abs(unknown()) )", 0, 1), R"( GETIMPORT R1 1 [unknown] CALL R1 0 -1 FASTCALL 2 L0 GETIMPORT R0 4 [math.abs] CALL R0 -1 -1 L0: RETURN R0 -1 )"); // however, when using optimization level 2, we assume compile time knowledge about builtin behavior even if we can't deoptimize that with fenv // in the test case below, this allows us to synthesize a more efficient FASTCALL1 (and use a fixed-return call to unknown) CHECK_EQ("\n" + compileFunction(R"( return math.abs(unknown()) )", 0, 2), R"( GETIMPORT R1 1 [unknown] CALL R1 0 1 FASTCALL1 2 R1 L0 GETIMPORT R0 4 [math.abs] CALL R0 1 1 L0: RETURN R0 1 )"); // some builtins are variadic, and as such they can't use fixed-length fastcall variants CHECK_EQ("\n" + compileFunction(R"( return math.max(0, unknown()) )", 0, 2), R"( LOADN R1 0 GETIMPORT R2 1 [unknown] CALL R2 0 -1 FASTCALL 18 L0 GETIMPORT R0 4 [math.max] CALL R0 -1 1 L0: RETURN R0 1 )"); // some builtins are not variadic but don't have a fixed number of arguments; we currently don't optimize this although we might start to in the // future CHECK_EQ("\n" + compileFunction(R"( return bit32.extract(0, 1, unknown()) )", 0, 2), R"( LOADN R1 0 LOADN R2 1 GETIMPORT R3 1 [unknown] CALL R3 0 -1 FASTCALL 34 L0 GETIMPORT R0 4 [bit32.extract] CALL R0 -1 1 L0: RETURN R0 1 )"); // importantly, this optimization also helps us get around the multret inlining restriction for builtin wrappers CHECK_EQ("\n" + compileFunction(R"( local function new() return setmetatable({}, MT) end return new() )", 1, 2), R"( DUPCLOSURE R0 K0 ['new'] NEWTABLE R2 0 0 GETIMPORT R3 2 [MT] FASTCALL2 61 R2 R3 L0 GETIMPORT R1 4 [setmetatable] CALL R1 2 1 L0: RETURN R1 1 )"); // note that the results of this optimization are benign in fixed-arg contexts which dampens the effect of fenv substitutions on correctness in // practice CHECK_EQ("\n" + compileFunction(R"( local x = ... local y, z = type(x) return type(y, z) )", 0, 2), R"( GETVARARGS R0 1 FASTCALL1 40 R0 L0 MOVE R2 R0 GETIMPORT R1 1 [type] CALL R1 1 2 L0: FASTCALL2 40 R1 R2 L1 MOVE R4 R1 MOVE R5 R2 GETIMPORT R3 1 [type] CALL R3 2 1 L1: RETURN R3 1 )"); } TEST_CASE("EncodedTypeTable") { ScopedFastFlag sffs[] = { {"BytecodeVersion4", true}, {"CompileFunctionType", true}, }; CHECK_EQ("\n" + compileFunction0TypeTable(R"( function myfunc(test: string, num: number) print(test) end function myfunc2(test: number?) end function myfunc3(test: string, n: number) end function myfunc4(test: string | number, n: number) end -- Promoted to function(any, any) since general unions are not supported. -- Functions with all `any` parameters will have omitted type info. function myfunc5(test: string | number, n: number | boolean) end myfunc('test') )"), R"( 0: function(string, number) 1: function(number?) 2: function(string, number) 3: function(any, number) )"); CHECK_EQ("\n" + compileFunction0TypeTable(R"( local Str = { a = 1 } -- Implicit `self` parameter is automatically assumed to be table type. function Str:test(n: number) print(self.a, n) end Str:test(234) )"), R"( 0: function({ }, number) )"); } TEST_SUITE_END();