{-# OPTIONS --rewriting #-} module Luau.OpSem where open import Agda.Builtin.Equality using (_≡_) open import Agda.Builtin.Float using (Float; primFloatPlus; primFloatMinus; primFloatTimes; primFloatDiv; primFloatEquality; primFloatLess; primFloatInequality) open import Agda.Builtin.Bool using (Bool; true; false) open import Agda.Builtin.String using (primStringEquality; primStringAppend) open import Utility.Bool using (not; _or_; _and_) open import Agda.Builtin.Nat using () renaming (_==_ to _==ᴬ_) open import FFI.Data.Maybe using (Maybe; just; nothing) open import Luau.Heap using (Heap; _≡_⊕_↦_; _[_]; function_is_end) open import Luau.Substitution using (_[_/_]ᴮ) open import Luau.Syntax using (Value; Expr; Stat; Block; nil; addr; val; var; function_is_end; _$_; block_is_end; local_←_; _∙_; done; return; name; fun; arg; binexp; BinaryOperator; +; -; *; /; <; >; ==; ~=; <=; >=; ··; number; bool; string) open import Luau.RuntimeType using (RuntimeType; valueType) open import Properties.Product using (_×_; _,_) evalEqOp : Value → Value → Bool evalEqOp Value.nil Value.nil = true evalEqOp (addr x) (addr y) = (x ==ᴬ y) evalEqOp (number x) (number y) = primFloatEquality x y evalEqOp (bool true) (bool y) = y evalEqOp (bool false) (bool y) = not y evalEqOp _ _ = false evalNeqOp : Value → Value → Bool evalNeqOp (number x) (number y) = primFloatInequality x y evalNeqOp x y = not (evalEqOp x y) data _⟦_⟧_⟶_ : Value → BinaryOperator → Value → Value → Set where + : ∀ m n → (number m) ⟦ + ⟧ (number n) ⟶ number (primFloatPlus m n) - : ∀ m n → (number m) ⟦ - ⟧ (number n) ⟶ number (primFloatMinus m n) / : ∀ m n → (number m) ⟦ / ⟧ (number n) ⟶ number (primFloatTimes m n) * : ∀ m n → (number m) ⟦ * ⟧ (number n) ⟶ number (primFloatDiv m n) < : ∀ m n → (number m) ⟦ < ⟧ (number n) ⟶ bool (primFloatLess m n) > : ∀ m n → (number m) ⟦ > ⟧ (number n) ⟶ bool (primFloatLess n m) <= : ∀ m n → (number m) ⟦ <= ⟧ (number n) ⟶ bool ((primFloatLess m n) or (primFloatEquality m n)) >= : ∀ m n → (number m) ⟦ >= ⟧ (number n) ⟶ bool ((primFloatLess n m) or (primFloatEquality m n)) == : ∀ v w → v ⟦ == ⟧ w ⟶ bool (evalEqOp v w) ~= : ∀ v w → v ⟦ ~= ⟧ w ⟶ bool (evalNeqOp v w) ·· : ∀ x y → (string x) ⟦ ·· ⟧ (string y) ⟶ string (primStringAppend x y) data _⊢_⟶ᴮ_⊣_ {a} : Heap a → Block a → Block a → Heap a → Set data _⊢_⟶ᴱ_⊣_ {a} : Heap a → Expr a → Expr a → Heap a → Set data _⊢_⟶ᴱ_⊣_ where function : ∀ a {H H′ F B} → H′ ≡ H ⊕ a ↦ (function F is B end) → ------------------------------------------- H ⊢ (function F is B end) ⟶ᴱ val(addr a) ⊣ H′ app₁ : ∀ {H H′ M M′ N} → H ⊢ M ⟶ᴱ M′ ⊣ H′ → ----------------------------- H ⊢ (M $ N) ⟶ᴱ (M′ $ N) ⊣ H′ app₂ : ∀ v {H H′ N N′} → H ⊢ N ⟶ᴱ N′ ⊣ H′ → ----------------------------- H ⊢ (val v $ N) ⟶ᴱ (val v $ N′) ⊣ H′ beta : ∀ O v {H a F B} → (O ≡ function F is B end) → H [ a ] ≡ just(O) → ----------------------------------------------------------------------------- H ⊢ (val (addr a) $ val v) ⟶ᴱ (block (fun F) is (B [ v / name(arg F) ]ᴮ) end) ⊣ H block : ∀ {H H′ B B′ b} → H ⊢ B ⟶ᴮ B′ ⊣ H′ → ---------------------------------------------------- H ⊢ (block b is B end) ⟶ᴱ (block b is B′ end) ⊣ H′ return : ∀ v {H B b} → -------------------------------------------------------- H ⊢ (block b is return (val v) ∙ B end) ⟶ᴱ val v ⊣ H done : ∀ {H b} → -------------------------------------------- H ⊢ (block b is done end) ⟶ᴱ (val nil) ⊣ H binOp₀ : ∀ {H op v₁ v₂ w} → v₁ ⟦ op ⟧ v₂ ⟶ w → -------------------------------------------------- H ⊢ (binexp (val v₁) op (val v₂)) ⟶ᴱ (val w) ⊣ H binOp₁ : ∀ {H H′ x x′ op y} → H ⊢ x ⟶ᴱ x′ ⊣ H′ → --------------------------------------------- H ⊢ (binexp x op y) ⟶ᴱ (binexp x′ op y) ⊣ H′ binOp₂ : ∀ {H H′ x op y y′} → H ⊢ y ⟶ᴱ y′ ⊣ H′ → --------------------------------------------- H ⊢ (binexp x op y) ⟶ᴱ (binexp x op y′) ⊣ H′ data _⊢_⟶ᴮ_⊣_ where local : ∀ {H H′ x M M′ B} → H ⊢ M ⟶ᴱ M′ ⊣ H′ → ------------------------------------------------- H ⊢ (local x ← M ∙ B) ⟶ᴮ (local x ← M′ ∙ B) ⊣ H′ subst : ∀ v {H x B} → ------------------------------------------------------ H ⊢ (local x ← val v ∙ B) ⟶ᴮ (B [ v / name x ]ᴮ) ⊣ H function : ∀ a {H H′ F B C} → H′ ≡ H ⊕ a ↦ (function F is C end) → -------------------------------------------------------------- H ⊢ (function F is C end ∙ B) ⟶ᴮ (B [ addr a / name(fun F) ]ᴮ) ⊣ H′ return : ∀ {H H′ M M′ B} → H ⊢ M ⟶ᴱ M′ ⊣ H′ → -------------------------------------------- H ⊢ (return M ∙ B) ⟶ᴮ (return M′ ∙ B) ⊣ H′ data _⊢_⟶*_⊣_ {a} : Heap a → Block a → Block a → Heap a → Set where refl : ∀ {H B} → ---------------- H ⊢ B ⟶* B ⊣ H step : ∀ {H H′ H″ B B′ B″} → H ⊢ B ⟶ᴮ B′ ⊣ H′ → H′ ⊢ B′ ⟶* B″ ⊣ H″ → ------------------ H ⊢ B ⟶* B″ ⊣ H″