{-# OPTIONS --rewriting #-} module Properties.Subtyping where open import Agda.Builtin.Equality using (_≡_; refl) open import FFI.Data.Either using (Either; Left; Right; mapLR; swapLR; cond) open import Luau.Subtyping using (_<:_; _≮:_; Tree; Language; ¬Language; witness; any; none; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-err; left; right; _,_) open import Luau.Type using (Type; Scalar; strict; nil; number; string; boolean; none; any; _⇒_; _∪_; _∩_; tgt) open import Properties.Contradiction using (CONTRADICTION; ¬) open import Properties.Equality using (_≢_) open import Properties.Functions using (_∘_) open import Properties.Product using (_×_; _,_) src = Luau.Type.src strict -- Language membership is decidable dec-language : ∀ T t → Either (¬Language T t) (Language T t) dec-language nil (scalar number) = Left (scalar-scalar number nil (λ ())) dec-language nil (scalar boolean) = Left (scalar-scalar boolean nil (λ ())) dec-language nil (scalar string) = Left (scalar-scalar string nil (λ ())) dec-language nil (scalar nil) = Right (scalar nil) dec-language nil function = Left (scalar-function nil) dec-language nil (function-ok t) = Left (scalar-function-ok nil) dec-language nil (function-err t) = Right (scalar-function-err nil) dec-language boolean (scalar number) = Left (scalar-scalar number boolean (λ ())) dec-language boolean (scalar boolean) = Right (scalar boolean) dec-language boolean (scalar string) = Left (scalar-scalar string boolean (λ ())) dec-language boolean (scalar nil) = Left (scalar-scalar nil boolean (λ ())) dec-language boolean function = Left (scalar-function boolean) dec-language boolean (function-ok t) = Left (scalar-function-ok boolean) dec-language boolean (function-err t) = Right (scalar-function-err boolean) dec-language number (scalar number) = Right (scalar number) dec-language number (scalar boolean) = Left (scalar-scalar boolean number (λ ())) dec-language number (scalar string) = Left (scalar-scalar string number (λ ())) dec-language number (scalar nil) = Left (scalar-scalar nil number (λ ())) dec-language number function = Left (scalar-function number) dec-language number (function-ok t) = Left (scalar-function-ok number) dec-language number (function-err t) = Right (scalar-function-err number) dec-language string (scalar number) = Left (scalar-scalar number string (λ ())) dec-language string (scalar boolean) = Left (scalar-scalar boolean string (λ ())) dec-language string (scalar string) = Right (scalar string) dec-language string (scalar nil) = Left (scalar-scalar nil string (λ ())) dec-language string function = Left (scalar-function string) dec-language string (function-ok t) = Left (scalar-function-ok string) dec-language string (function-err t) = Right (scalar-function-err string) dec-language (T₁ ⇒ T₂) (scalar s) = Left (function-scalar s) dec-language (T₁ ⇒ T₂) function = Right function dec-language (T₁ ⇒ T₂) (function-ok t) = mapLR function-ok function-ok (dec-language T₂ t) dec-language (T₁ ⇒ T₂) (function-err t) = mapLR function-err function-err (swapLR (dec-language T₁ t)) dec-language none t = Left none dec-language any t = Right any dec-language (T₁ ∪ T₂) t = cond (λ p → cond (Left ∘ _,_ p) (Right ∘ right) (dec-language T₂ t)) (Right ∘ left) (dec-language T₁ t) dec-language (T₁ ∩ T₂) t = cond (Left ∘ left) (λ p → cond (Left ∘ right) (Right ∘ _,_ p) (dec-language T₂ t)) (dec-language T₁ t) -- ¬Language T is the complement of Language T language-comp : ∀ {T} t → ¬Language T t → ¬(Language T t) language-comp t (p₁ , p₂) (left q) = language-comp t p₁ q language-comp t (p₁ , p₂) (right q) = language-comp t p₂ q language-comp t (left p) (q₁ , q₂) = language-comp t p q₁ language-comp t (right p) (q₁ , q₂) = language-comp t p q₂ language-comp (scalar s) (scalar-scalar s p₁ p₂) (scalar s) = p₂ refl language-comp (scalar s) (function-scalar s) (scalar s) = language-comp function (scalar-function s) function language-comp (scalar s) none (scalar ()) language-comp function (scalar-function ()) function language-comp (function-ok t) (scalar-function-ok ()) (function-ok q) language-comp (function-ok t) (function-ok p) (function-ok q) = language-comp t p q language-comp (function-err t) (function-err p) (function-err q) = language-comp t q p -- ≮: is the complement of <: ¬≮:-impl-<: : ∀ {T U} → ¬(T ≮: U) → (T <: U) ¬≮:-impl-<: {T} {U} p t q with dec-language U t ¬≮:-impl-<: {T} {U} p t q | Left r = CONTRADICTION (p (witness t q r)) ¬≮:-impl-<: {T} {U} p t q | Right r = r <:-impl-¬≮: : ∀ {T U} → (T <: U) → ¬(T ≮: U) <:-impl-¬≮: p (witness t q r) = language-comp t r (p t q) -- reflexivity ≮:-refl : ∀ {T} → ¬(T ≮: T) ≮:-refl (witness t p q) = language-comp t q p <:-refl : ∀ {T} → (T <: T) <:-refl = ¬≮:-impl-<: ≮:-refl -- transititivity ≮:-trans-≡ : ∀ {S T U} → (S ≮: T) → (T ≡ U) → (S ≮: U) ≮:-trans-≡ p refl = p ≡-trans-≮: : ∀ {S T U} → (S ≡ T) → (T ≮: U) → (S ≮: U) ≡-trans-≮: refl p = p ≮:-trans : ∀ {S T U} → (S ≮: U) → Either (S ≮: T) (T ≮: U) ≮:-trans {T = T} (witness t p q) = mapLR (witness t p) (λ z → witness t z q) (dec-language T t) <:-trans : ∀ {S T U} → (S <: T) → (T <: U) → (S <: U) <:-trans p q = ¬≮:-impl-<: (cond (<:-impl-¬≮: p) (<:-impl-¬≮: q) ∘ ≮:-trans) -- Properties of scalars skalar = number ∪ (string ∪ (nil ∪ boolean)) function-≮:-scalar : ∀ {S T U} → (Scalar U) → ((S ⇒ T) ≮: U) function-≮:-scalar s = witness function function (scalar-function s) scalar-≮:-function : ∀ {S T U} → (Scalar U) → (U ≮: (S ⇒ T)) scalar-≮:-function s = witness (scalar s) (scalar s) (function-scalar s) any-≮:-scalar : ∀ {U} → (Scalar U) → (any ≮: U) any-≮:-scalar s = witness (function-ok (scalar s)) any (scalar-function-ok s) scalar-≮:-none : ∀ {U} → (Scalar U) → (U ≮: none) scalar-≮:-none s = witness (scalar s) (scalar s) none scalar-≢-impl-≮: : ∀ {T U} → (Scalar T) → (Scalar U) → (T ≢ U) → (T ≮: U) scalar-≢-impl-≮: s₁ s₂ p = witness (scalar s₁) (scalar s₁) (scalar-scalar s₁ s₂ p) -- Properties of tgt tgt-function-ok : ∀ {T t} → (Language (tgt T) t) → Language T (function-ok t) tgt-function-ok {T = nil} (scalar ()) tgt-function-ok {T = T₁ ⇒ T₂} p = function-ok p tgt-function-ok {T = none} (scalar ()) tgt-function-ok {T = any} p = any tgt-function-ok {T = boolean} (scalar ()) tgt-function-ok {T = number} (scalar ()) tgt-function-ok {T = string} (scalar ()) tgt-function-ok {T = T₁ ∪ T₂} (left p) = left (tgt-function-ok p) tgt-function-ok {T = T₁ ∪ T₂} (right p) = right (tgt-function-ok p) tgt-function-ok {T = T₁ ∩ T₂} (p₁ , p₂) = (tgt-function-ok p₁ , tgt-function-ok p₂) function-ok-tgt : ∀ {T t} → Language T (function-ok t) → (Language (tgt T) t) function-ok-tgt (function-ok p) = p function-ok-tgt (left p) = left (function-ok-tgt p) function-ok-tgt (right p) = right (function-ok-tgt p) function-ok-tgt (p₁ , p₂) = (function-ok-tgt p₁ , function-ok-tgt p₂) function-ok-tgt any = any skalar-function-ok : ∀ {t} → (¬Language skalar (function-ok t)) skalar-function-ok = (scalar-function-ok number , (scalar-function-ok string , (scalar-function-ok nil , scalar-function-ok boolean))) skalar-scalar : ∀ {T} (s : Scalar T) → (Language skalar (scalar s)) skalar-scalar number = left (scalar number) skalar-scalar boolean = right (right (right (scalar boolean))) skalar-scalar string = right (left (scalar string)) skalar-scalar nil = right (right (left (scalar nil))) tgt-none-≮: : ∀ {T U} → (tgt T ≮: U) → (T ≮: (skalar ∪ (none ⇒ U))) tgt-none-≮: (witness t p q) = witness (function-ok t) (tgt-function-ok p) (skalar-function-ok , function-ok q) none-tgt-≮: : ∀ {T U} → (T ≮: (skalar ∪ (none ⇒ U))) → (tgt T ≮: U) none-tgt-≮: (witness (scalar s) p (q₁ , q₂)) = CONTRADICTION (≮:-refl (witness (scalar s) (skalar-scalar s) q₁)) none-tgt-≮: (witness function p (q₁ , scalar-function ())) none-tgt-≮: (witness (function-ok t) p (q₁ , function-ok q₂)) = witness t (function-ok-tgt p) q₂ none-tgt-≮: (witness (function-err (scalar s)) p (q₁ , function-err (scalar ()))) -- Properties of src function-err-src : ∀ {T t} → (¬Language (src T) t) → Language T (function-err t) function-err-src {T = nil} none = scalar-function-err nil function-err-src {T = T₁ ⇒ T₂} p = function-err p function-err-src {T = none} (scalar-scalar number () p) function-err-src {T = none} (scalar-function-ok ()) function-err-src {T = any} none = any function-err-src {T = boolean} p = scalar-function-err boolean function-err-src {T = number} p = scalar-function-err number function-err-src {T = string} p = scalar-function-err string function-err-src {T = T₁ ∪ T₂} (left p) = left (function-err-src p) function-err-src {T = T₁ ∪ T₂} (right p) = right (function-err-src p) function-err-src {T = T₁ ∩ T₂} (p₁ , p₂) = function-err-src p₁ , function-err-src p₂ ¬function-err-src : ∀ {T t} → (Language (src T) t) → ¬Language T (function-err t) ¬function-err-src {T = nil} (scalar ()) ¬function-err-src {T = T₁ ⇒ T₂} p = function-err p ¬function-err-src {T = none} any = none ¬function-err-src {T = any} (scalar ()) ¬function-err-src {T = boolean} (scalar ()) ¬function-err-src {T = number} (scalar ()) ¬function-err-src {T = string} (scalar ()) ¬function-err-src {T = T₁ ∪ T₂} (p₁ , p₂) = (¬function-err-src p₁ , ¬function-err-src p₂) ¬function-err-src {T = T₁ ∩ T₂} (left p) = left (¬function-err-src p) ¬function-err-src {T = T₁ ∩ T₂} (right p) = right (¬function-err-src p) src-¬function-err : ∀ {T t} → Language T (function-err t) → (¬Language (src T) t) src-¬function-err {T = nil} p = none src-¬function-err {T = T₁ ⇒ T₂} (function-err p) = p src-¬function-err {T = none} (scalar-function-err ()) src-¬function-err {T = any} p = none src-¬function-err {T = boolean} p = none src-¬function-err {T = number} p = none src-¬function-err {T = string} p = none src-¬function-err {T = T₁ ∪ T₂} (left p) = left (src-¬function-err p) src-¬function-err {T = T₁ ∪ T₂} (right p) = right (src-¬function-err p) src-¬function-err {T = T₁ ∩ T₂} (p₁ , p₂) = (src-¬function-err p₁ , src-¬function-err p₂) src-¬scalar : ∀ {S T t} (s : Scalar S) → Language T (scalar s) → (¬Language (src T) t) src-¬scalar number (scalar number) = none src-¬scalar boolean (scalar boolean) = none src-¬scalar string (scalar string) = none src-¬scalar nil (scalar nil) = none src-¬scalar s (left p) = left (src-¬scalar s p) src-¬scalar s (right p) = right (src-¬scalar s p) src-¬scalar s (p₁ , p₂) = (src-¬scalar s p₁ , src-¬scalar s p₂) src-¬scalar s any = none src-any-≮: : ∀ {T U} → (T ≮: src U) → (U ≮: (T ⇒ any)) src-any-≮: (witness t p q) = witness (function-err t) (function-err-src q) (¬function-err-src p) any-src-≮: : ∀ {S T U} → (U ≮: S) → (T ≮: (U ⇒ any)) → (U ≮: src T) any-src-≮: (witness t x x₁) (witness (scalar s) p (function-scalar s)) = witness t x (src-¬scalar s p) any-src-≮: r (witness (function-ok (scalar s)) p (function-ok (scalar-scalar s () q))) any-src-≮: r (witness (function-ok (function-ok _)) p (function-ok (scalar-function-ok ()))) any-src-≮: r (witness (function-err t) p (function-err q)) = witness t q (src-¬function-err p) -- Properties of any and none any-≮: : ∀ {T U} → (T ≮: U) → (any ≮: U) any-≮: (witness t p q) = witness t any q none-≮: : ∀ {T U} → (T ≮: U) → (T ≮: none) none-≮: (witness t p q) = witness t p none any-≮:-none : (any ≮: none) any-≮:-none = witness (scalar nil) any none function-≮:-none : ∀ {T U} → ((T ⇒ U) ≮: none) function-≮:-none = witness function function none -- A Gentle Introduction To Semantic Subtyping (https://www.cduce.org/papers/gentle.pdf) -- defines a "set-theoretic" model (sec 2.5) -- Unfortunately we don't quite have this property, due to uninhabited types, -- for example (none -> T) is equivalent to (none -> U) -- when types are interpreted as sets of syntactic values. _⊆_ : ∀ {A : Set} → (A → Set) → (A → Set) → Set (P ⊆ Q) = ∀ a → (P a) → (Q a) _⊗_ : ∀ {A B : Set} → (A → Set) → (B → Set) → ((A × B) → Set) (P ⊗ Q) (a , b) = (P a) × (Q b) Comp : ∀ {A : Set} → (A → Set) → (A → Set) Comp P a = ¬(P a) set-theoretic-if : ∀ {S₁ T₁ S₂ T₂} → -- This is the "if" part of being a set-theoretic model (Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂)) → (∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Language T₁)) → Q ⊆ Comp((Language S₂) ⊗ Comp(Language T₂))) set-theoretic-if {S₁} {T₁} {S₂} {T₂} p Q q (t , u) Qtu (S₂t , ¬T₂u) = q (t , u) Qtu (S₁t , ¬T₁u) where S₁t : Language S₁ t S₁t with dec-language S₁ t S₁t | Left ¬S₁t with p (function-err t) (function-err ¬S₁t) S₁t | Left ¬S₁t | function-err ¬S₂t = CONTRADICTION (language-comp t ¬S₂t S₂t) S₁t | Right r = r ¬T₁u : ¬(Language T₁ u) ¬T₁u T₁u with p (function-ok u) (function-ok T₁u) ¬T₁u T₁u | function-ok T₂u = ¬T₂u T₂u not-quite-set-theoretic-only-if : ∀ {S₁ T₁ S₂ T₂} → -- We don't quite have that this is a set-theoretic model -- it's only true when Language T₁ and ¬Language T₂ t₂ are inhabited -- in particular it's not true when T₁ is none, or T₂ is any. ∀ s₂ t₂ → Language S₂ s₂ → ¬Language T₂ t₂ → -- This is the "only if" part of being a set-theoretic model (∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Language T₁)) → Q ⊆ Comp((Language S₂) ⊗ Comp(Language T₂))) → (Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂)) not-quite-set-theoretic-only-if {S₁} {T₁} {S₂} {T₂} s₂ t₂ S₂s₂ ¬T₂t₂ p = r where Q : (Tree × Tree) → Set Q (t , u) = Either (¬Language S₁ t) (Language T₁ u) q : Q ⊆ Comp((Language S₁) ⊗ Comp(Language T₁)) q (t , u) (Left ¬S₁t) (S₁t , ¬T₁u) = language-comp t ¬S₁t S₁t q (t , u) (Right T₂u) (S₁t , ¬T₁u) = ¬T₁u T₂u r : Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂) r function function = function r (function-err t) (function-err ¬S₁t) with dec-language S₂ t r (function-err t) (function-err ¬S₁t) | Left ¬S₂t = function-err ¬S₂t r (function-err t) (function-err ¬S₁t) | Right S₂t = CONTRADICTION (p Q q (t , t₂) (Left ¬S₁t) (S₂t , language-comp t₂ ¬T₂t₂)) r (function-ok t) (function-ok T₁t) with dec-language T₂ t r (function-ok t) (function-ok T₁t) | Left ¬T₂t = CONTRADICTION (p Q q (s₂ , t) (Right T₁t) (S₂s₂ , language-comp t ¬T₂t)) r (function-ok t) (function-ok T₁t) | Right T₂t = function-ok T₂t -- A counterexample when the argument type is empty. set-theoretic-counterexample-one : (∀ Q → Q ⊆ Comp((Language none) ⊗ Comp(Language number)) → Q ⊆ Comp((Language none) ⊗ Comp(Language string))) set-theoretic-counterexample-one Q q ((scalar s) , u) Qtu (scalar () , p) set-theoretic-counterexample-one Q q ((function-err t) , u) Qtu (scalar-function-err () , p) set-theoretic-counterexample-two : (none ⇒ number) ≮: (none ⇒ string) set-theoretic-counterexample-two = witness (function-ok (scalar number)) (function-ok (scalar number)) (function-ok (scalar-scalar number string (λ ()))) -- At some point we may deal with overloaded function resolution, which should fix this problem... -- The reason why this is connected to overloaded functions is that currently we have that the type of -- f(x) is (tgt T) where f:T. Really we should have the type depend on the type of x, that is use (tgt T U), -- where U is the type of x. In particular (tgt (S => T) (U & V)) should be the same as (tgt ((S&U) => T) V) -- and tgt(none => T) should be any. For example -- -- tgt((number => string) & (string => bool))(number) -- is tgt(number => string)(number) & tgt(string => bool)(number) -- is tgt(number => string)(number) & tgt(string => bool)(number&any) -- is tgt(number => string)(number) & tgt(string&number => bool)(any) -- is tgt(number => string)(number) & tgt(none => bool)(any) -- is string & any -- is string -- -- there's some discussion of this in the Gentle Introduction paper.