luau/bench/gc/test_SunSpider_crypto-aes.lua

437 lines
17 KiB
Lua

--[[
* AES Cipher function: encrypt 'input' with Rijndael algorithm
*
* takes byte-array 'input' (16 bytes)
* 2D byte-array key schedule 'w' (Nr+1 x Nb bytes)
*
* applies Nr rounds (10/12/14) using key schedule w for 'add round key' stage
*
* returns byte-array encrypted value (16 bytes)
*/]]
local bench = script and require(script.Parent.bench_support) or require("bench_support")
function test()
-- Sbox is pre-computed multiplicative inverse in GF(2^8) used in SubBytes and KeyExpansion [§5.1.1]
local Sbox = { 0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76,
0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0,
0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15,
0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75,
0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84,
0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf,
0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8,
0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2,
0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73,
0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb,
0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79,
0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08,
0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a,
0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e,
0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf,
0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16 };
-- Rcon is Round Constant used for the Key Expansion [1st col is 2^(r-1) in GF(2^8)] [§5.2]
local Rcon = { { 0x00, 0x00, 0x00, 0x00 },
{0x01, 0x00, 0x00, 0x00},
{0x02, 0x00, 0x00, 0x00},
{0x04, 0x00, 0x00, 0x00},
{0x08, 0x00, 0x00, 0x00},
{0x10, 0x00, 0x00, 0x00},
{0x20, 0x00, 0x00, 0x00},
{0x40, 0x00, 0x00, 0x00},
{0x80, 0x00, 0x00, 0x00},
{0x1b, 0x00, 0x00, 0x00},
{0x36, 0x00, 0x00, 0x00} };
function Cipher(input, w) -- main Cipher function [§5.1]
local Nb = 4; -- block size (in words): no of columns in state (fixed at 4 for AES)
local Nr = #w / Nb - 1; -- no of rounds: 10/12/14 for 128/192/256-bit keys
local state = {{},{},{},{}}; -- initialise 4xNb byte-array 'state' with input [§3.4]
for i = 0,4*Nb-1 do state[(i % 4) + 1][math.floor(i/4) + 1] = input[i + 1]; end
state = AddRoundKey(state, w, 0, Nb);
for round = 1,Nr-1 do
state = SubBytes(state, Nb);
state = ShiftRows(state, Nb);
state = MixColumns(state, Nb);
state = AddRoundKey(state, w, round, Nb);
end
state = SubBytes(state, Nb);
state = ShiftRows(state, Nb);
state = AddRoundKey(state, w, Nr, Nb);
local output = {} -- convert state to 1-d array before returning [§3.4]
for i = 0,4*Nb-1 do output[i + 1] = state[(i % 4) + 1][math.floor(i / 4) + 1]; end
return output;
end
function SubBytes(s, Nb) -- apply SBox to state S [§5.1.1]
for r = 0,3 do
for c = 0,Nb-1 do s[r + 1][c + 1] = Sbox[s[r + 1][c + 1] + 1]; end
end
return s;
end
function ShiftRows(s, Nb) -- shift row r of state S left by r bytes [§5.1.2]
local t = {};
for r = 1,3 do
for c = 0,3 do t[c + 1] = s[r + 1][((c + r) % Nb) + 1] end; -- shift into temp copy
for c = 0,3 do s[r + 1][c + 1] = t[c + 1]; end -- and copy back
end -- note that this will work for Nb=4,5,6, but not 7,8 (always 4 for AES):
return s; -- see fp.gladman.plus.com/cryptography_technology/rijndael/aes.spec.311.pdf
end
function MixColumns(s, Nb) -- combine bytes of each col of state S [§5.1.3]
for c = 0,3 do
local a = {}; -- 'a' is a copy of the current column from 's'
local b = {}; -- 'b' is a•{02} in GF(2^8)
for i = 0,3 do
a[i + 1] = s[i + 1][c + 1];
if bit32.band(s[i + 1][c + 1], 0x80) ~= 0 then
b[i + 1] = bit32.bxor(bit32.lshift(s[i + 1][c + 1], 1), 0x011b);
else
b[i + 1] = bit32.lshift(s[i + 1][c + 1], 1);
end
end
-- a[n] ^ b[n] is a•{03} in GF(2^8)
s[1][c + 1] = bit32.bxor(bit32.bxor(bit32.bxor(b[1], a[2]), bit32.bxor(b[2], a[3])), a[4]); -- 2*a0 + 3*a1 + a2 + a3
s[2][c + 1] = bit32.bxor(bit32.bxor(bit32.bxor(a[1], b[2]), bit32.bxor(a[3], b[3])), a[4]); -- a0 * 2*a1 + 3*a2 + a3
s[3][c + 1] = bit32.bxor(bit32.bxor(bit32.bxor(a[1], a[2]), bit32.bxor(b[3], a[4])), b[4]); -- a0 + a1 + 2*a2 + 3*a3
s[4][c + 1] = bit32.bxor(bit32.bxor(bit32.bxor(a[1], b[1]), bit32.bxor(a[2], a[3])), b[4]); -- 3*a0 + a1 + a2 + 2*a3
end
return s;
end
function AddRoundKey(state, w, rnd, Nb) -- xor Round Key into state S [§5.1.4]
for r = 0,3 do
for c = 0,Nb-1 do state[r + 1][c + 1] = bit32.bxor(state[r + 1][c + 1], w[rnd*4+c + 1][r + 1]); end
end
return state;
end
function KeyExpansion(key) -- generate Key Schedule (byte-array Nr+1 x Nb) from Key [§5.2]
local Nb = 4; -- block size (in words): no of columns in state (fixed at 4 for AES)
local Nk = #key / 4 -- key length (in words): 4/6/8 for 128/192/256-bit keys
local Nr = Nk + 6; -- no of rounds: 10/12/14 for 128/192/256-bit keys
local w = {};
local temp = {};
for i = 0,Nk do
local r = { key[4*i + 1], key[4*i + 2], key[4*i + 3], key[4*i + 4] };
w[i + 1] = r;
end
for i = Nk,(Nb*(Nr+1)) - 1 do
w[i + 1] = {};
for t = 0,3 do temp[t + 1] = w[i-1 + 1][t + 1]; end
if (i % Nk == 0) then
temp = SubWord(RotWord(temp));
for t = 0,3 do temp[t + 1] = bit32.bxor(temp[t + 1], Rcon[i/Nk + 1][t + 1]); end
elseif (Nk > 6 and i % Nk == 4) then
temp = SubWord(temp);
end
for t = 0,3 do w[i + 1][t + 1] = bit32.bxor(w[i - Nk + 1][t + 1], temp[t + 1]); end
end
return w;
end
function SubWord(w) -- apply SBox to 4-byte word w
for i = 0,3 do w[i + 1] = Sbox[w[i + 1] + 1]; end
return w;
end
function RotWord(w) -- rotate 4-byte word w left by one byte
w[5] = w[1];
for i = 0,3 do w[i + 1] = w[i + 2]; end
return w;
end
--[[
* Use AES to encrypt 'plaintext' with 'password' using 'nBits' key, in 'Counter' mode of operation
* - see http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
* for each block
* - outputblock = cipher(counter, key)
* - cipherblock = plaintext xor outputblock
]]
function AESEncryptCtr(plaintext, password, nBits)
if (not (nBits==128 or nBits==192 or nBits==256)) then return ''; end -- standard allows 128/192/256 bit keys
-- for this example script, generate the key by applying Cipher to 1st 16/24/32 chars of password;
-- for real-world applications, a higher security approach would be to hash the password e.g. with SHA-1
local nBytes = nBits/8; -- no bytes in key
local pwBytes = {};
for i = 0,nBytes-1 do pwBytes[i + 1] = bit32.band(string.byte(password, i + 1), 0xff); end
local key = Cipher(pwBytes, KeyExpansion(pwBytes));
-- key is now 16/24/32 bytes long
for i = 1,nBytes-16 do
table.insert(key, key[i])
end
-- initialise counter block (NIST SP800-38A §B.2): millisecond time-stamp for nonce in 1st 8 bytes,
-- block counter in 2nd 8 bytes
local blockSize = 16; -- block size fixed at 16 bytes / 128 bits (Nb=4) for AES
local counterBlock = {}; -- block size fixed at 16 bytes / 128 bits (Nb=4) for AES
local nonce = 12564231564 -- (new Date()).getTime(); -- milliseconds since 1-Jan-1970
-- encode nonce in two stages to cater for JavaScript 32-bit limit on bitwise ops
for i = 0,3 do counterBlock[i + 1] = bit32.band(bit32.rshift(nonce, i * 8), 0xff); end
for i = 0,3 do counterBlock[i + 4 + 1] = bit32.band(bit32.rshift(math.floor(nonce / 0x100000000), i*8), 0xff); end
-- generate key schedule - an expansion of the key into distinct Key Rounds for each round
local keySchedule = KeyExpansion(key);
local blockCount = math.ceil(#plaintext / blockSize);
local ciphertext = {}; -- ciphertext as array of strings
for b = 0,blockCount-1 do
-- set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes)
-- again done in two stages for 32-bit ops
for c = 0,3 do counterBlock[15-c + 1] = bit32.band(bit32.rshift(b, c*8), 0xff); end
for c = 0,3 do counterBlock[15-c-4 + 1] = bit32.rshift(math.floor(b/0x100000000), c*8) end
local cipherCntr = Cipher(counterBlock, keySchedule); -- -- encrypt counter block --
-- calculate length of final block:
local blockLength = nil
if b<blockCount-1 then
blockLength = blockSize;
else
blockLength = (#plaintext - 1) % blockSize+1;
end
local ct = '';
for i = 0,blockLength-1 do -- -- xor plaintext with ciphered counter byte-by-byte --
local plaintextByte = string.byte(plaintext, b*blockSize+i + 1);
local cipherByte = bit32.bxor(plaintextByte, cipherCntr[i + 1]);
ct = ct .. string.char(cipherByte);
end
-- ct is now ciphertext for this block
ciphertext[b + 1] = escCtrlChars(ct); -- escape troublesome characters in ciphertext
end
-- convert the nonce to a string to go on the front of the ciphertext
local ctrTxt = '';
for i = 0,7 do ctrTxt = ctrTxt .. string.char(counterBlock[i + 1]); end
ctrTxt = escCtrlChars(ctrTxt);
-- use '-' to separate blocks, use Array.join to concatenate arrays of strings for efficiency
return ctrTxt .. '-' .. table.concat(ciphertext, '-');
end
--[[
* Use AES to decrypt 'ciphertext' with 'password' using 'nBits' key, in Counter mode of operation
*
* for each block
* - outputblock = cipher(counter, key)
* - cipherblock = plaintext xor outputblock
]]
function AESDecryptCtr(ciphertext, password, nBits)
if (not (nBits==128 or nBits==192 or nBits==256)) then return ''; end -- standard allows 128/192/256 bit keys
local nBytes = nBits/8; -- no bytes in key
local pwBytes = {};
for i = 0,nBytes-1 do pwBytes[i + 1] = bit32.band(string.byte(password, i + 1), 0xff); end
local pwKeySchedule = KeyExpansion(pwBytes);
local key = Cipher(pwBytes, pwKeySchedule);
-- key is now 16/24/32 bytes long
for i = 1,nBytes-16 do
table.insert(key, key[i])
end
local keySchedule = KeyExpansion(key);
-- split ciphertext into array of block-length strings
local tmp = {}
for token in string.gmatch(ciphertext, "[^-]+") do
table.insert(tmp, token)
end
ciphertext = tmp;
-- recover nonce from 1st element of ciphertext
local blockSize = 16; -- block size fixed at 16 bytes / 128 bits (Nb=4) for AES
local counterBlock = {};
local ctrTxt = unescCtrlChars(ciphertext[1]);
for i = 0,7 do counterBlock[i + 1] = string.byte(ctrTxt, i + 1); end
local plaintext = {};
for b = 1,#ciphertext-1 do
-- set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes)
for c = 0,3 do counterBlock[15-c + 1] = bit32.band(bit32.rshift((b-1), c*8), 0xff); end
for c = 0,3 do counterBlock[15-c-4 + 1] = bit32.band(bit32.rshift(math.floor((b-1)/0x100000000), c*8), 0xff); end
local cipherCntr = Cipher(counterBlock, keySchedule); -- encrypt counter block
ciphertext[b + 1] = unescCtrlChars(ciphertext[b + 1]);
local pt = '';
for i = 0,#ciphertext[b + 1]-1 do
-- -- xor plaintext with ciphered counter byte-by-byte --
local ciphertextByte = string.byte(ciphertext[b + 1], i + 1);
local plaintextByte = bit32.bxor(ciphertextByte, cipherCntr[i + 1]);
pt = pt .. string.char(plaintextByte);
end
-- pt is now plaintext for this block
plaintext[b] = pt; -- b-1 'cos no initial nonce block in plaintext
end
return table.concat(plaintext)
end
function escCtrlChars(str) -- escape control chars which might cause problems handling ciphertext
return string.gsub(str, "[\0\t\n\v\f\r\'\"!-]", function(c) return '!' .. string.byte(c, 1) .. '!'; end);
end
function unescCtrlChars(str) -- unescape potentially problematic control characters
return string.gsub(str, "!%d%d?%d?!", function(c)
local sc = string.sub(c, 2,-2)
return string.char(tonumber(sc));
end);
end
--[[
* if escCtrlChars()/unescCtrlChars() still gives problems, use encodeBase64()/decodeBase64() instead
]]
local b64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=";
function encodeBase64(str) -- http://tools.ietf.org/html/rfc4648
local o1, o2, o3, h1, h2, h3, h4, bits
local i=0
local enc='';
str = encodeUTF8(str); -- encode multi-byte chars into UTF-8 for byte-array
repeat -- pack three octets into four hexets
o1 = string.byte(str, i + 1); i = i + 1
o2 = string.byte(str, i + 1); i = i + 1
o3 = string.byte(str, i + 1); i = i + 1
bits = bit32.bor(bit32.bor(bit32.lshift(o1, 16), bit32.lshift(o2, 8)), o3);
h1 = bit32.band(bit32.rshit(bits, 18), 0x3f);
h2 = bit32.band(bit32.rshit(bits, 12), 0x3f);
h3 = bit32.band(bit32.rshit(bits, 6), 0x3f);
h4 = bit32.band(bits, 0x3f);
-- end of string? index to '=' in b64
if (isNaN(o3)) then h4 = 64; end
if (isNaN(o2)) then h3 = 64; end
-- use hexets to index into b64, and append result to encoded string
enc = enc .. (b64.charAt(h1) + b64.charAt(h2) + b64.charAt(h3) + b64.charAt(h4));
until not (i < #str);
return enc;
end
function decodeBase64(str)
local o1, o2, o3, h1, h2, h3, h4, bits
local i=0
local enc='';
repeat -- unpack four hexets into three octets using index points in b64
h1 = b64.indexOf(str.charAt(i)); i = i + 1
h2 = b64.indexOf(str.charAt(i)); i = i + 1
h3 = b64.indexOf(str.charAt(i)); i = i + 1
h4 = b64.indexOf(str.charAt(i)); i = i + 1
bits = bit32.bor(bit32.bor(bit32.bor(bit32.lshift(h1, 18), bit32.lshift(h2, 12)), bit32.lshift(h3, 6)), h4);
o1 = bit32.band(bit32.rshift(bits, 16), 0xff);
o2 = bit32.band(bit32.rshift(bits, 8), 0xff);
o3 = bit32.band(bits, 0xff);
if (h3 == 64) then enc = enc .. string.char(o1);
elseif (h4 == 64) then enc = enc .. string.char(o1, o2);
else enc = enc .. string.char(o1, o2, o3); end
until not (i < #str);
return decodeUTF8(enc); -- decode UTF-8 byte-array back to Unicode
end
function encodeUTF8(str) -- encode multi-byte string into utf-8 multiple single-byte characters
return str;
end
function decodeUTF8(str) -- decode utf-8 encoded string back into multi-byte characters
return str;
end
local plainText = "ROMEO: But, soft! what light through yonder window breaks?\n\
It is the east, and Juliet is the sun.\n\
Arise, fair sun, and kill the envious moon,\n\
Who is already sick and pale with grief,\n\
That thou her maid art far more fair than she:\n\
Be not her maid, since she is envious;\n\
Her vestal livery is but sick and green\n\
And none but fools do wear it; cast it off.\n\
It is my lady, O, it is my love!\n\
O, that she knew she were!\n\
She speaks yet she says nothing: what of that?\n\
Her eye discourses; I will answer it.\n\
I am too bold, 'tis not to me she speaks:\n\
Two of the fairest stars in all the heaven,\n\
Having some business, do entreat her eyes\n\
To twinkle in their spheres till they return.\n\
What if her eyes were there, they in her head?\n\
The brightness of her cheek would shame those stars,\n\
As daylight doth a lamp; her eyes in heaven\n\
Would through the airy region stream so bright\n\
That birds would sing and think it were not night.\n\
See, how she leans her cheek upon her hand!\n\
O, that I were a glove upon that hand,\n\
That I might touch that cheek!\n\
JULIET: Ay me!\n\
ROMEO: She speaks:\n\
O, speak again, bright angel! for thou art\n\
As glorious to this night, being o'er my head\n\
As is a winged messenger of heaven\n\
Unto the white-upturned wondering eyes\n\
Of mortals that fall back to gaze on him\n\
When he bestrides the lazy-pacing clouds\n\
And sails upon the bosom of the air.";
local password = "O Romeo, Romeo! wherefore art thou Romeo?";
local t = ""
for i = 0,10000 do
t = t.."a"
end
local cipherText = AESEncryptCtr(plainText, password, 256);
local decryptedText = AESDecryptCtr(cipherText, password, 256);
if (decryptedText ~= plainText) then
assert(false, "ERROR: bad result: expected " .. plainText .. " but got " .. decryptedText);
end
end
bench.runCode(test, "crypto-aes")