use core::fmt; use std::fmt::{Debug, Formatter}; use std::ops::{Index, IndexMut}; use crate::err::{ErrorType, ProcessingResult}; use crate::pattern::{TrieNode, TrieNodeMatch}; use crate::proc::MatchAction::*; use crate::proc::MatchMode::*; use crate::proc::range::ProcessorRange; use crate::spec::codepoint::is_whitespace; use regex::bytes::Regex; use memchr::memchr; pub mod checkpoint; pub mod entity; pub mod range; pub enum MatchMode { IsChar(u8), IsNotChar(u8), WhileChar(u8), WhileNotChar(u8), IsPred(fn(u8) -> bool), IsNotPred(fn(u8) -> bool), WhilePred(fn(u8) -> bool), WhileNotPred(fn(u8) -> bool), IsSeq(&'static [u8]), // Provide the length of the pattern as the second element. WhileNotPat(&'static Regex, usize), // Through is like WhileNot followed by Is, but matches zero if Is is zero. // Useful for matching delimiter patterns. For example, matching Through "" match everything up to and including the next "", but would match zero if there is no "". ThroughPat(&'static Regex), } pub enum MatchAction { Keep, Discard, MatchOnly, } // Processing state of a file. Single use only; create one per processing. pub struct Processor<'d> { code: &'d mut [u8], // Index of the next character to read. read_next: usize, // Index of the next unwritten space. write_next: usize, } impl<'d> Index for Processor<'d> { type Output = [u8]; fn index(&self, index: ProcessorRange) -> &Self::Output { &self.code[index.start..index.end] } } impl<'d> IndexMut for Processor<'d> { fn index_mut(&mut self, index: ProcessorRange) -> &mut Self::Output { debug_assert!(index.end <= self.write_next); &mut self.code[index.start..index.end] } } impl<'d> Processor<'d> { // Constructor. pub fn new(code: &mut [u8]) -> Processor { Processor { write_next: 0, read_next: 0, code } } // INTERNAL APIs. // Bounds checking. fn _in_bounds(&self, offset: usize) -> bool { self.read_next + offset < self.code.len() } // Reading. /// Get the `offset` character from next. /// When `offset` is 0, the next character is returned. /// Panics. Does not check bounds for performance (e.g. already checked). fn _read_offset(&self, offset: usize) -> u8 { self.code[self.read_next + offset] } fn _maybe_read_offset(&self, offset: usize) -> Option { self.code.get(self.read_next + offset).map(|c| *c) } fn _maybe_read_slice_offset(&self, offset: usize, count: usize) -> Option<&[u8]> { self.code.get(self.read_next + offset..self.read_next + offset + count) } /// Move next `amount` characters to output. /// Panics. Does not check bounds for performance (e.g. already checked). #[inline(always)] fn _shift(&mut self, amount: usize) -> () { // Optimisation: Don't shift if already there (but still update offsets). if self.read_next != self.write_next { self.code.copy_within(self.read_next..self.read_next + amount, self.write_next); }; self.read_next += amount; self.write_next += amount; } #[inline(always)] fn _replace(&mut self, start: usize, end: usize, data: &[u8]) -> usize { debug_assert!(start <= end); let added = data.len() - (end - start); // Do not allow writing over source. debug_assert!(self.write_next + added <= self.read_next); self.code.copy_within(end..self.write_next, end + added); self.code[start..start + data.len()].copy_from_slice(data); // Don't need to update read_next as only data before it has changed. self.write_next += added; added } #[inline(always)] fn _insert(&mut self, at: usize, data: &[u8]) -> usize { self._replace(at, at, data) } // Matching. #[inline(always)] fn _one bool>(&mut self, cond: C) -> usize { self._maybe_read_offset(0).filter(|n| cond(*n)).is_some() as usize } #[inline(always)] fn _many bool>(&mut self, cond: C) -> usize { let mut count = 0usize; while self._maybe_read_offset(count).filter(|c| cond(*c)).is_some() { count += 1; }; count } #[inline(always)] pub fn m(&mut self, mode: MatchMode, action: MatchAction) -> ProcessorRange { let count = match mode { IsChar(c) => self._one(|n| n == c), IsNotChar(c) => self._one(|n| n != c), WhileChar(c) => self._many(|n| n == c), WhileNotChar(c) => memchr(c, &self.code[self.read_next..]).unwrap_or(0), IsPred(p) => self._one(|n| p(n)), IsNotPred(p) => self._one(|n| !p(n)), WhilePred(p) => self._many(|n| p(n)), WhileNotPred(p) => self._many(|n| !p(n)), // Sequence matching is slow. If using in a loop, use Pat or Trie instead. IsSeq(seq) => self._maybe_read_slice_offset(0, seq.len()).filter(|src| *src == seq).map_or(0, |_| seq.len()), WhileNotPat(pat, len) => pat.shortest_match(&self.code[self.read_next..]).map_or(self.code.len() - self.read_next, |p| p - len), ThroughPat(pat) => pat.shortest_match(&self.code[self.read_next..]).unwrap_or(0), }; // If keeping, match will be available in written range (which is better as source might eventually get overwritten). // If discarding, then only option is source range. let start = match action { Discard | MatchOnly => self.read_next, Keep => self.write_next, }; match action { Discard => self.read_next += count, Keep => self._shift(count), MatchOnly => {} }; ProcessorRange { start, end: start + count } } #[inline(always)] pub fn m_trie(&mut self, trie: &TrieNode, action: MatchAction) -> Option { match trie.longest_matching_prefix(&self.code[self.read_next..]) { TrieNodeMatch::Found { len, value } => { match action { Discard => self.read_next += len, Keep => self._shift(len), MatchOnly => {} }; Some(value) } TrieNodeMatch::NotFound { .. } => None, } } // PUBLIC APIs. // Bounds checking pub fn at_end(&self) -> bool { !self._in_bounds(0) } /// Get how many characters have been consumed from source. pub fn read_len(&self) -> usize { self.read_next } /// Get how many characters have been written to output. pub fn written_len(&self) -> usize { self.write_next } pub fn reserve_output(&mut self, amount: usize) -> () { self.write_next += amount; } // Looking ahead. /// Get the `offset` character from next. /// When `offset` is 0, the next character is returned. pub fn peek(&self, offset: usize) -> Option { self._maybe_read_offset(offset) } pub fn peek_many(&self, offset: usize, count: usize) -> Option<&[u8]> { self._maybe_read_slice_offset(offset, count) } // Consuming source characters. /// Skip and return the next character. /// Will result in an error if exceeds bounds. pub fn skip(&mut self) -> ProcessingResult { self._maybe_read_offset(0).map(|c| { self.read_next += 1; c }).ok_or(ErrorType::UnexpectedEnd) } pub fn skip_amount_expect(&mut self, amount: usize) -> () { debug_assert!(!self.at_end(), "skip known characters"); self.read_next += amount; } pub fn skip_expect(&mut self) -> () { debug_assert!(!self.at_end(), "skip known character"); self.read_next += 1; } // Writing characters directly. /// Write `c` to output. Will panic if exceeds bounds. pub fn write(&mut self, c: u8) -> () { self.code[self.write_next] = c; self.write_next += 1; } pub fn write_range(&mut self, s: ProcessorRange) -> ProcessorRange { let dest_start = self.write_next; let dest_end = dest_start + s.len(); self.code.copy_within(s.start..s.end, dest_start); self.write_next = dest_end; ProcessorRange { start: dest_start, end: dest_end } } /// Write `s` to output. Will panic if exceeds bounds. pub fn write_slice(&mut self, s: &[u8]) -> () { self.code[self.write_next..self.write_next + s.len()].copy_from_slice(s); self.write_next += s.len(); } pub fn write_utf8(&mut self, c: char) -> () { let mut encoded = [0u8; 4]; self.write_slice(c.encode_utf8(&mut encoded).as_bytes()); } // Shifting characters. pub fn accept(&mut self) -> ProcessingResult { self._maybe_read_offset(0).map(|c| { self.code[self.write_next] = c; self.read_next += 1; self.write_next += 1; c }).ok_or(ErrorType::UnexpectedEnd) } pub fn accept_expect(&mut self) -> u8 { debug_assert!(!self.at_end()); let c = self._read_offset(0); self.code[self.write_next] = c; self.read_next += 1; self.write_next += 1; c } pub fn accept_amount_expect(&mut self, count: usize) -> () { debug_assert!(self._in_bounds(count - 1)); self._shift(count); } } impl Debug for Processor<'_> { fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { let mut lines = vec![(1, String::new())]; let mut line_idx = 0; let mut indicator_line_idx_opt: Option = None; let mut line_cols = 0; let mut line_no = 1; for (i, &c) in self.code.iter().enumerate() { if i == self.read_next || i == self.write_next { let indicator_line_idx = if indicator_line_idx_opt.is_none() { let indicator_line_idx = lines.len(); lines.push((-1, String::new())); indicator_line_idx_opt = Some(indicator_line_idx); indicator_line_idx } else if let Some(indicator_line_idx) = indicator_line_idx_opt { indicator_line_idx } else { unreachable!(); }; // At this point, `line_cols` is how many characters are on this line BEFORE this character. while line_cols > 0 && lines[indicator_line_idx].1.len() < line_cols { lines[indicator_line_idx].1.push(' '); }; lines[indicator_line_idx].1.push(if i == self.read_next && i == self.write_next { 'B' } else if i == self.read_next { 'R' } else { 'W' }) }; match c { b'\n' => { lines[line_idx].1.push_str("⏎"); line_no += 1; line_cols = 0; line_idx = lines.len(); lines.push((line_no, String::new())); indicator_line_idx_opt = None; } c => { match c { c if is_whitespace(c) => lines[line_idx].1.push('·'), c if c >= b'!' && c <= b'~' => lines[line_idx].1.push(c as char), _ => lines[line_idx].1.push('�'), }; line_cols += 1; } }; }; let max_line_no_width = (line_no as f64).log10().ceil() as usize; // Don't use for_each as otherwise we can't return errors. for l in lines .iter() .map(|(line_no, line)| if *line_no == -1 { format!("{:>indent$}|{}\n", String::from_utf8(vec![b'>'; max_line_no_width]).unwrap(), line, indent = max_line_no_width) } else { format!("{:>indent$}|{}\n", line_no, line, indent = max_line_no_width) }) { f.write_str(l.as_str())?; } Ok(()) } }