Remove partitioner and frontend

This commit is contained in:
Patrick Walton 2019-01-10 19:33:17 -08:00
parent 4f95666cc8
commit 7bc62bb5af
11 changed files with 0 additions and 2474 deletions

View File

@ -1,2 +0,0 @@
target
Cargo.lock

View File

@ -1,27 +0,0 @@
[package]
name = "pathfinder_partitioner"
version = "0.2.0"
authors = ["Patrick Walton <pcwalton@mimiga.net>"]
[lib]
name = "pathfinder_partitioner"
[dependencies]
arrayvec = "0.4"
bincode = "1.0"
bit-vec = "0.4"
byteorder = "1.2"
env_logger = "0.5"
half = "1.0"
log = "0.3"
lyon_geom = "0.12"
lyon_path = "0.12"
serde = "1.0"
serde_derive = "1.0"
[dependencies.euclid]
version = "0.19"
features = ["serde"]
[dependencies.pathfinder_geometry]
path = "../geometry"

View File

@ -1,201 +0,0 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -1,25 +0,0 @@
Copyright (c) 2010 The Rust Project Developers
Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction, including without
limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

View File

@ -1,194 +0,0 @@
// pathfinder/partitioner/src/builder.rs
//
// Copyright © 2018 The Pathfinder Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use arrayvec::ArrayVec;
use euclid::{Angle, Point2D, Vector2D};
use lyon_geom::{CubicBezierSegment, QuadraticBezierSegment};
use lyon_path::builder::{FlatPathBuilder, PathBuilder};
use pathfinder_builder::cubic_to_quadratic::CubicToQuadraticSegmentIter;
use std::ops::Range;
const TANGENT_PARAMETER_TOLERANCE: f32 = 0.001;
const DEFAULT_APPROX_TOLERANCE: f32 = 0.001;
// TODO(pcwalton): A better debug.
#[derive(Debug)]
pub struct Builder {
pub endpoints: Vec<Endpoint>,
pub subpath_ranges: Vec<Range<u32>>,
pub approx_tolerance: f32,
}
impl Builder {
#[inline]
pub fn new() -> Builder {
Builder {
endpoints: vec![],
subpath_ranges: vec![],
approx_tolerance: DEFAULT_APPROX_TOLERANCE,
}
}
#[inline]
pub fn set_approx_tolerance(&mut self, tolerance: f32) {
self.approx_tolerance = tolerance
}
#[inline]
fn current_subpath_index(&self) -> Option<u32> {
if self.subpath_ranges.is_empty() {
None
} else {
Some(self.subpath_ranges.len() as u32 - 1)
}
}
fn add_endpoint(&mut self, ctrl: Option<Point2D<f32>>, to: Point2D<f32>) {
let current_subpath_index = match self.current_subpath_index() {
None => return,
Some(current_subpath_index) => current_subpath_index,
};
self.endpoints.push(Endpoint {
to: to,
ctrl: ctrl,
subpath_index: current_subpath_index,
});
}
#[inline]
pub fn end_subpath(&mut self) {
let last_endpoint_index = self.endpoints.len() as u32;
if let Some(current_subpath) = self.subpath_ranges.last_mut() {
current_subpath.end = last_endpoint_index
}
}
#[inline]
fn first_position_of_subpath(&self) -> Option<Point2D<f32>> {
self.subpath_ranges
.last()
.map(|subpath_range| self.endpoints[subpath_range.start as usize].to)
}
}
impl FlatPathBuilder for Builder {
type PathType = ();
#[inline]
fn build(self) {}
#[inline]
fn build_and_reset(&mut self) {
self.endpoints.clear();
self.subpath_ranges.clear();
}
#[inline]
fn current_position(&self) -> Point2D<f32> {
match self.endpoints.last() {
None => Point2D::zero(),
Some(endpoint) => endpoint.to,
}
}
fn close(&mut self) {
let first_position_of_subpath = match self.first_position_of_subpath() {
None => return,
Some(first_position_of_subpath) => first_position_of_subpath,
};
if first_position_of_subpath == self.current_position() {
return
}
self.add_endpoint(None, first_position_of_subpath);
self.end_subpath();
}
fn move_to(&mut self, to: Point2D<f32>) {
self.end_subpath();
let last_endpoint_index = self.endpoints.len() as u32;
self.subpath_ranges.push(last_endpoint_index..last_endpoint_index);
self.add_endpoint(None, to);
}
#[inline]
fn line_to(&mut self, to: Point2D<f32>) {
self.add_endpoint(None, to);
}
}
impl PathBuilder for Builder {
fn quadratic_bezier_to(&mut self, ctrl: Point2D<f32>, to: Point2D<f32>) {
let segment = QuadraticBezierSegment {
from: self.current_position(),
ctrl: ctrl,
to: to,
};
//self.add_endpoint(Some(ctrl), to);
// Split at X tangent.
let mut worklist: ArrayVec<[QuadraticBezierSegment<f32>; 2]> = ArrayVec::new();
match segment.local_x_extremum_t() {
Some(t) if t > TANGENT_PARAMETER_TOLERANCE &&
t < 1.0 - TANGENT_PARAMETER_TOLERANCE => {
let subsegments = segment.split(t);
worklist.push(subsegments.0);
worklist.push(subsegments.1);
}
_ => worklist.push(segment),
}
// Split at Y tangent.
for segment in worklist {
match segment.local_y_extremum_t() {
Some(t) if t > TANGENT_PARAMETER_TOLERANCE &&
t < 1.0 - TANGENT_PARAMETER_TOLERANCE => {
let subsegments = segment.split(t);
self.add_endpoint(Some(subsegments.0.ctrl), subsegments.0.to);
self.add_endpoint(Some(subsegments.1.ctrl), subsegments.1.to);
}
_ => self.add_endpoint(Some(segment.ctrl), segment.to),
}
}
}
fn cubic_bezier_to(&mut self, ctrl1: Point2D<f32>, ctrl2: Point2D<f32>, to: Point2D<f32>) {
let cubic_segment = CubicBezierSegment {
from: self.current_position(),
ctrl1: ctrl1,
ctrl2: ctrl2,
to: to,
};
for quadratic_segment in CubicToQuadraticSegmentIter::new(&cubic_segment,
self.approx_tolerance) {
self.quadratic_bezier_to(quadratic_segment.ctrl, quadratic_segment.to)
}
}
fn arc(&mut self,
_center: Point2D<f32>,
_radii: Vector2D<f32>,
_angle: Angle<f32>,
_x_rotation: Angle<f32>) {
panic!("TODO: Support arcs in the Pathfinder builder!")
}
}
#[derive(Clone, Copy, Debug)]
pub struct Endpoint {
pub to: Point2D<f32>,
pub ctrl: Option<Point2D<f32>>,
pub subpath_index: u32,
}

View File

@ -1,164 +0,0 @@
// pathfinder/partitioner/src/lib.rs
//
// Copyright © 2018 The Pathfinder Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Processes paths into *mesh libraries*, which are vertex buffers ready to be uploaded to the
//! GPU and rendered with the supplied shaders.
//!
//! *Partitioning* is the process of cutting up a filled Bézier path into *B-quads*. A B-quad is
//! the core primitive that Pathfinder renders; it is a trapezoid-like shape that consists of
//! vertical sides on the left and right and Bézier curve segments and/or lines on the top and
//! bottom. Path partitioning is typically O(*n* log *n*) in the number of path commands.
//!
//! If you have a static set of paths (for example, one specific font), you may wish to run the
//! partitioner as a preprocessing step and store the resulting mesh library on disk. To aid this
//! use case, mesh libraries can be serialized into a simple binary format. Of course, meshes can
//! also be generated dynamically and rendered on the fly.
extern crate arrayvec;
extern crate bincode;
extern crate bit_vec;
extern crate byteorder;
extern crate env_logger;
extern crate euclid;
extern crate lyon_path;
extern crate pathfinder_geometry;
extern crate serde;
use lyon_path::geom as lyon_geom;
#[macro_use]
extern crate log;
#[macro_use]
extern crate serde_derive;
use euclid::Point2D;
use std::u32;
pub mod builder;
pub mod mesh;
pub mod mesh_pack;
pub mod partitioner;
/// The fill rule.
#[repr(C)]
#[derive(Debug, Clone, Copy, PartialEq, Serialize, Deserialize)]
pub enum FillRule {
EvenOdd = 0,
Winding = 1,
}
#[repr(C)]
#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
pub struct BQuad {
pub upper_left_vertex_index: u32,
pub upper_right_vertex_index: u32,
pub upper_control_point_vertex_index: u32,
pad0: u32,
pub lower_left_vertex_index: u32,
pub lower_right_vertex_index: u32,
pub lower_control_point_vertex_index: u32,
pad1: u32,
}
impl BQuad {
#[inline]
pub fn new(upper_left_vertex_index: u32,
upper_control_point_vertex_index: u32,
upper_right_vertex_index: u32,
lower_left_vertex_index: u32,
lower_control_point_vertex_index: u32,
lower_right_vertex_index: u32)
-> BQuad {
BQuad {
upper_left_vertex_index: upper_left_vertex_index,
upper_control_point_vertex_index: upper_control_point_vertex_index,
upper_right_vertex_index: upper_right_vertex_index,
lower_left_vertex_index: lower_left_vertex_index,
lower_control_point_vertex_index: lower_control_point_vertex_index,
lower_right_vertex_index: lower_right_vertex_index,
pad0: 0,
pad1: 0,
}
}
#[inline]
pub fn offset(&mut self, delta: u32) {
self.upper_left_vertex_index += delta;
self.upper_right_vertex_index += delta;
self.lower_left_vertex_index += delta;
self.lower_right_vertex_index += delta;
if self.upper_control_point_vertex_index < u32::MAX {
self.upper_control_point_vertex_index += delta;
}
if self.lower_control_point_vertex_index < u32::MAX {
self.lower_control_point_vertex_index += delta;
}
}
}
#[derive(Clone, Copy, PartialEq, Debug, Serialize, Deserialize)]
pub struct BQuadVertexPositions {
pub upper_left_vertex_position: Point2D<f32>,
pub upper_control_point_position: Point2D<f32>,
pub upper_right_vertex_position: Point2D<f32>,
pub lower_right_vertex_position: Point2D<f32>,
pub lower_control_point_position: Point2D<f32>,
pub lower_left_vertex_position: Point2D<f32>,
}
#[derive(Clone, Copy, PartialEq, Debug)]
#[repr(u8)]
pub(crate) enum BVertexKind {
Endpoint0,
Endpoint1,
ConvexControlPoint,
ConcaveControlPoint,
}
#[derive(Clone, Copy, Debug, Serialize, Deserialize)]
#[repr(C)]
pub struct BVertexLoopBlinnData {
pub tex_coord: [u8; 2],
pub sign: i8,
pad: u8,
}
impl BVertexLoopBlinnData {
#[inline]
pub(crate) fn new(kind: BVertexKind) -> BVertexLoopBlinnData {
let (tex_coord, sign) = match kind {
BVertexKind::Endpoint0 => ([0, 0], 0),
BVertexKind::Endpoint1 => ([2, 2], 0),
BVertexKind::ConcaveControlPoint => ([1, 0], 1),
BVertexKind::ConvexControlPoint => ([1, 0], -1),
};
BVertexLoopBlinnData {
tex_coord: tex_coord,
sign: sign,
pad: 0,
}
}
pub(crate) fn control_point(left_endpoint_position: &Point2D<f32>,
control_point_position: &Point2D<f32>,
right_endpoint_position: &Point2D<f32>,
bottom: bool)
-> BVertexLoopBlinnData {
let control_point_vector = *control_point_position - *left_endpoint_position;
let right_vector = *right_endpoint_position - *left_endpoint_position;
let determinant = right_vector.cross(control_point_vector);
let endpoint_kind = if (determinant < 0.0) ^ bottom {
BVertexKind::ConvexControlPoint
} else {
BVertexKind::ConcaveControlPoint
};
BVertexLoopBlinnData::new(endpoint_kind)
}
}

View File

@ -1,396 +0,0 @@
// pathfinder/partitioner/src/mesh.rs
//
// Copyright © 2018 The Pathfinder Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use euclid::approxeq::ApproxEq;
use euclid::{Point2D, Rect, Size2D, Vector2D};
use lyon_path::PathEvent;
use pathfinder_geometry::normals::PathNormals;
use pathfinder_geometry::segments::{self, SegmentIter};
use std::f32;
use std::u32;
use {BQuad, BQuadVertexPositions, BVertexLoopBlinnData};
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct Mesh {
pub b_quads: Vec<BQuad>,
// FIXME(pcwalton): Merge with `b_vertex_positions` below.
pub b_quad_vertex_positions: Vec<BQuadVertexPositions>,
pub b_quad_vertex_interior_indices: Vec<u32>,
pub b_vertex_positions: Vec<Point2D<f32>>,
pub b_vertex_loop_blinn_data: Vec<BVertexLoopBlinnData>,
pub b_boxes: Vec<BBox>,
pub stencil_segments: Vec<StencilSegment>,
pub stencil_normals: Vec<StencilNormals>,
pub tile_metadata: Option<TileMetadata>,
}
impl Mesh {
#[inline]
pub fn new() -> Mesh {
Mesh {
b_quads: vec![],
b_quad_vertex_positions: vec![],
b_quad_vertex_interior_indices: vec![],
b_vertex_positions: vec![],
b_vertex_loop_blinn_data: vec![],
b_boxes: vec![],
stencil_segments: vec![],
stencil_normals: vec![],
tile_metadata: None,
}
}
pub fn clear(&mut self) {
self.b_quads.clear();
self.b_quad_vertex_positions.clear();
self.b_quad_vertex_interior_indices.clear();
self.b_vertex_positions.clear();
self.b_vertex_loop_blinn_data.clear();
self.b_boxes.clear();
self.stencil_segments.clear();
self.stencil_normals.clear();
self.tile_metadata = None;
}
pub(crate) fn add_b_vertex(&mut self,
position: &Point2D<f32>,
loop_blinn_data: &BVertexLoopBlinnData) {
self.b_vertex_positions.push(*position);
self.b_vertex_loop_blinn_data.push(*loop_blinn_data);
}
pub(crate) fn add_b_quad(&mut self, b_quad: &BQuad) {
let BQuadVertexPositions {
upper_left_vertex_position: ul,
upper_right_vertex_position: ur,
lower_left_vertex_position: ll,
lower_right_vertex_position: lr,
..
} = self.get_b_quad_vertex_positions(b_quad);
if ul.x.approx_eq(&ur.x) || ll.x.approx_eq(&lr.x) {
return
}
self.b_quads.push(*b_quad);
self.add_b_quad_vertex_positions(b_quad);
self.add_b_box(b_quad);
}
fn add_b_quad_vertex_positions(&mut self, b_quad: &BQuad) {
let b_quad_vertex_positions = self.get_b_quad_vertex_positions(b_quad);
let first_b_quad_vertex_position_index = (self.b_quad_vertex_positions.len() as u32) * 6;
self.push_b_quad_vertex_position_interior_indices(first_b_quad_vertex_position_index,
&b_quad_vertex_positions);
self.b_quad_vertex_positions.push(b_quad_vertex_positions);
}
fn add_b_box(&mut self, b_quad: &BQuad) {
let BQuadVertexPositions {
upper_left_vertex_position: ul,
upper_control_point_position: uc,
upper_right_vertex_position: ur,
lower_left_vertex_position: ll,
lower_control_point_position: lc,
lower_right_vertex_position: lr,
} = self.get_b_quad_vertex_positions(b_quad);
let rect = Rect::from_points([ul, uc, ur, ll, lc, lr].into_iter());
let (edge_ucl, edge_urc, edge_ulr) = (uc - ul, ur - uc, ul - ur);
let (edge_lcl, edge_lrc, edge_llr) = (lc - ll, lr - lc, ll - lr);
let (edge_len_ucl, edge_len_urc) = (edge_ucl.length(), edge_urc.length());
let (edge_len_lcl, edge_len_lrc) = (edge_lcl.length(), edge_lrc.length());
let (edge_len_ulr, edge_len_llr) = (edge_ulr.length(), edge_llr.length());
let (uv_upper, uv_lower, sign_upper, sign_lower, mode_upper, mode_lower);
if edge_len_ucl < 0.01 || edge_len_urc < 0.01 || edge_len_ulr < 0.01 ||
edge_ucl.dot(-edge_ulr) > 0.9999 * edge_len_ucl * edge_len_ulr {
uv_upper = Uv::line(&rect, &ul, &ur);
sign_upper = -1.0;
mode_upper = -1.0;
} else {
uv_upper = Uv::curve(&rect, &ul, &uc, &ur);
sign_upper = (edge_ucl.cross(-edge_ulr)).signum();
mode_upper = 1.0;
}
if edge_len_lcl < 0.01 || edge_len_lrc < 0.01 || edge_len_llr < 0.01 ||
edge_lcl.dot(-edge_llr) > 0.9999 * edge_len_lcl * edge_len_llr {
uv_lower = Uv::line(&rect, &ll, &lr);
sign_lower = 1.0;
mode_lower = -1.0;
} else {
uv_lower = Uv::curve(&rect, &ll, &lc, &lr);
sign_lower = -(edge_lcl.cross(-edge_llr)).signum();
mode_lower = 1.0;
}
let b_box = BBox {
upper_left_position: rect.origin,
lower_right_position: rect.bottom_right(),
upper_left_uv_upper: uv_upper.origin,
upper_left_uv_lower: uv_lower.origin,
d_upper_uv_dx: uv_upper.d_uv_dx,
d_lower_uv_dx: uv_lower.d_uv_dx,
d_upper_uv_dy: uv_upper.d_uv_dy,
d_lower_uv_dy: uv_lower.d_uv_dy,
upper_sign: sign_upper,
lower_sign: sign_lower,
upper_mode: mode_upper,
lower_mode: mode_lower,
};
self.b_boxes.push(b_box);
}
fn get_b_quad_vertex_positions(&self, b_quad: &BQuad) -> BQuadVertexPositions {
let ul = self.b_vertex_positions[b_quad.upper_left_vertex_index as usize];
let ur = self.b_vertex_positions[b_quad.upper_right_vertex_index as usize];
let ll = self.b_vertex_positions[b_quad.lower_left_vertex_index as usize];
let lr = self.b_vertex_positions[b_quad.lower_right_vertex_index as usize];
let mut b_quad_vertex_positions = BQuadVertexPositions {
upper_left_vertex_position: ul,
upper_control_point_position: ul.lerp(ur, 0.5),
upper_right_vertex_position: ur,
lower_left_vertex_position: ll,
lower_control_point_position: ll.lerp(lr, 0.5),
lower_right_vertex_position: lr,
};
if b_quad.upper_control_point_vertex_index != u32::MAX {
let uc = &self.b_vertex_positions[b_quad.upper_control_point_vertex_index as usize];
b_quad_vertex_positions.upper_control_point_position = *uc;
}
if b_quad.lower_control_point_vertex_index != u32::MAX {
let lc = &self.b_vertex_positions[b_quad.lower_control_point_vertex_index as usize];
b_quad_vertex_positions.lower_control_point_position = *lc;
}
b_quad_vertex_positions
}
fn push_b_quad_vertex_position_interior_indices(&mut self,
first_vertex_index: u32,
b_quad: &BQuadVertexPositions) {
let upper_curve_is_concave =
(b_quad.upper_right_vertex_position - b_quad.upper_left_vertex_position).cross(
b_quad.upper_control_point_position - b_quad.upper_left_vertex_position) > 0.0;
let lower_curve_is_concave =
(b_quad.lower_left_vertex_position - b_quad.lower_right_vertex_position).cross(
b_quad.lower_control_point_position - b_quad.lower_right_vertex_position) > 0.0;
let indices: &'static [u32] = match (upper_curve_is_concave, lower_curve_is_concave) {
(false, false) => &[UL, UR, LL, UR, LR, LL],
(true, false) => &[UL, UC, LL, UC, LR, LL, UR, LR, UC],
(false, true) => &[UL, LC, LL, UL, UR, LC, UR, LR, LC],
(true, true) => &[UL, UC, LL, UC, LC, LL, UR, LC, UC, UR, LR, LC],
};
self.b_quad_vertex_interior_indices
.extend(indices.into_iter().map(|index| index + first_vertex_index));
const UL: u32 = 0;
const UC: u32 = 1;
const UR: u32 = 2;
const LR: u32 = 3;
const LC: u32 = 4;
const LL: u32 = 5;
}
pub fn push_stencil_segments<I>(&mut self, stream: I) where I: Iterator<Item = PathEvent> {
let segment_iter = SegmentIter::new(stream);
for segment in segment_iter {
match segment {
segments::Segment::Line(line_segment) => {
self.stencil_segments.push(StencilSegment {
from: line_segment.from,
ctrl: line_segment.from.lerp(line_segment.to, 0.5),
to: line_segment.to,
})
}
segments::Segment::Quadratic(quadratic_segment) => {
self.stencil_segments.push(StencilSegment {
from: quadratic_segment.from,
ctrl: quadratic_segment.ctrl,
to: quadratic_segment.to,
})
}
segments::Segment::Cubic(..) => {
panic!("push_stencil_segments(): Convert cubics to quadratics first!")
}
segments::Segment::EndSubpath(..) => {}
}
}
}
/// Computes vertex normals necessary for emboldening and/or stem darkening. This is intended
/// for stencil-and-cover.
pub fn push_stencil_normals<I>(&mut self, stream: I) where I: Iterator<Item = PathEvent> {
let mut normals = PathNormals::new();
normals.add_path(stream);
self.stencil_normals.extend(normals.normals().iter().map(|normals| {
StencilNormals {
from: normals.from,
ctrl: normals.ctrl,
to: normals.to,
}
}))
}
}
#[derive(Clone, Copy, Debug, Serialize, Deserialize)]
pub struct BBox {
pub upper_left_position: Point2D<f32>,
pub lower_right_position: Point2D<f32>,
pub upper_left_uv_upper: Point2D<f32>,
pub upper_left_uv_lower: Point2D<f32>,
pub d_upper_uv_dx: Vector2D<f32>,
pub d_lower_uv_dx: Vector2D<f32>,
pub d_upper_uv_dy: Vector2D<f32>,
pub d_lower_uv_dy: Vector2D<f32>,
pub upper_sign: f32,
pub lower_sign: f32,
pub upper_mode: f32,
pub lower_mode: f32,
}
#[derive(Clone, Copy, Debug, Serialize, Deserialize)]
pub struct StencilSegment {
pub from: Point2D<f32>,
pub ctrl: Point2D<f32>,
pub to: Point2D<f32>,
}
#[derive(Clone, Copy, Debug, Serialize, Deserialize)]
pub struct StencilNormals {
pub from: Vector2D<f32>,
pub ctrl: Vector2D<f32>,
pub to: Vector2D<f32>,
}
#[derive(Clone, Copy, Debug, Serialize, Deserialize)]
pub struct TileMetadata {
pub origin: Point2D<f32>,
pub path_index: u32,
}
#[derive(Clone, Copy, Debug)]
struct CornerValues {
upper_left: Point2D<f32>,
upper_right: Point2D<f32>,
lower_left: Point2D<f32>,
lower_right: Point2D<f32>,
}
#[derive(Clone, Copy, Debug)]
struct Uv {
origin: Point2D<f32>,
d_uv_dx: Vector2D<f32>,
d_uv_dy: Vector2D<f32>,
}
impl Uv {
fn from_values(origin: &Point2D<f32>, origin_right: &Point2D<f32>, origin_down: &Point2D<f32>)
-> Uv {
Uv {
origin: *origin,
d_uv_dx: *origin_right - *origin,
d_uv_dy: *origin_down - *origin,
}
}
fn curve(rect: &Rect<f32>, left: &Point2D<f32>, ctrl: &Point2D<f32>, right: &Point2D<f32>)
-> Uv {
let origin_right = rect.top_right();
let origin_down = rect.bottom_left();
let (lambda_origin, denom) = to_barycentric(left, ctrl, right, &rect.origin);
let (lambda_origin_right, _) = to_barycentric(left, ctrl, right, &origin_right);
let (lambda_origin_down, _) = to_barycentric(left, ctrl, right, &origin_down);
let uv_origin = lambda_to_uv(&lambda_origin, denom);
let uv_origin_right = lambda_to_uv(&lambda_origin_right, denom);
let uv_origin_down = lambda_to_uv(&lambda_origin_down, denom);
return Uv::from_values(&uv_origin, &uv_origin_right, &uv_origin_down);
// https://gamedev.stackexchange.com/a/23745
fn to_barycentric(a: &Point2D<f32>, b: &Point2D<f32>, c: &Point2D<f32>, p: &Point2D<f32>)
-> ([f64; 2], f64) {
let (a, b, c, p) = (a.to_f64(), b.to_f64(), c.to_f64(), p.to_f64());
let (v0, v1, v2) = (b - a, c - a, p - a);
let (d00, d01) = (v0.dot(v0), v0.dot(v1));
let d11 = v1.dot(v1);
let (d20, d21) = (v2.dot(v0), v2.dot(v1));
let denom = d00 * d11 - d01 * d01;
([(d11 * d20 - d01 * d21), (d00 * d21 - d01 * d20)], denom)
}
fn lambda_to_uv(lambda: &[f64; 2], denom: f64) -> Point2D<f32> {
(Point2D::new(lambda[0] * 0.5 + lambda[1], lambda[1]) / denom).to_f32()
}
}
fn line(rect: &Rect<f32>, left: &Point2D<f32>, right: &Point2D<f32>) -> Uv {
let (values, line_bounds);
if f32::abs(left.y - right.y) < 0.01 {
values = CornerValues {
upper_left: Point2D::new(0.0, 0.5),
upper_right: Point2D::new(0.5, 1.0),
lower_right: Point2D::new(1.0, 0.5),
lower_left: Point2D::new(0.5, 0.0),
};
line_bounds = Rect::new(*left + Vector2D::new(0.0, -1.0),
Size2D::new(right.x - left.x, 2.0));
} else {
if left.y < right.y {
values = CornerValues {
upper_left: Point2D::new(1.0, 1.0),
upper_right: Point2D::new(0.0, 1.0),
lower_left: Point2D::new(1.0, 0.0),
lower_right: Point2D::new(0.0, 0.0),
};
} else {
values = CornerValues {
upper_left: Point2D::new(0.0, 1.0),
upper_right: Point2D::new(1.0, 1.0),
lower_left: Point2D::new(0.0, 0.0),
lower_right: Point2D::new(1.0, 0.0),
};
}
line_bounds = Rect::from_points([*left, *right].into_iter());
}
let origin_right = rect.top_right();
let origin_down = rect.bottom_left();
let uv_origin = bilerp(&line_bounds, &values, &rect.origin);
let uv_origin_right = bilerp(&line_bounds, &values, &origin_right);
let uv_origin_down = bilerp(&line_bounds, &values, &origin_down);
return Uv::from_values(&uv_origin, &uv_origin_right, &uv_origin_down);
fn bilerp(rect: &Rect<f32>, values: &CornerValues, position: &Point2D<f32>)
-> Point2D<f32> {
let upper = values.upper_left.lerp(values.upper_right,
(position.x - rect.min_x()) / rect.size.width);
let lower = values.lower_left.lerp(values.lower_right,
(position.x - rect.min_x()) / rect.size.width);
upper.lerp(lower, (position.y - rect.min_y()) / rect.size.height)
}
}
}

View File

@ -1,96 +0,0 @@
// pathfinder/partitioner/src/mesh_pack.rs
//
// Copyright © 2018 The Pathfinder Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use bincode;
use byteorder::{LittleEndian, WriteBytesExt};
use mesh::{Mesh, TileMetadata};
use serde::Serialize;
use std::io::{self, ErrorKind, Seek, SeekFrom, Write};
use std::u32;
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct MeshPack {
pub meshes: Vec<Mesh>,
}
impl MeshPack {
#[inline]
pub fn new() -> MeshPack {
MeshPack {
meshes: vec![],
}
}
#[inline]
pub fn push(&mut self, mesh: Mesh) {
self.meshes.push(mesh)
}
/// Writes this mesh pack to a RIFF file.
///
/// RIFF is a dead-simple extensible binary format documented here:
/// https://msdn.microsoft.com/en-us/library/windows/desktop/ee415713(v=vs.85).aspx
pub fn serialize_into<W>(&self, writer: &mut W) -> io::Result<()> where W: Write + Seek {
// `PFMP` for "Pathfinder Mesh Pack".
try!(writer.write_all(b"RIFF\0\0\0\0PFMP"));
// NB: The RIFF spec requires that all chunks be padded to an even byte offset. However,
// for us, this is guaranteed by construction because each instance of all of the data that
// we're writing has a byte size that is a multiple of 4. So we don't bother with doing it
// explicitly here.
for mesh in &self.meshes {
try!(write_chunk(writer, b"mesh", |writer| {
try!(write_simple_chunk(writer, b"bqua", &mesh.b_quads));
try!(write_simple_chunk(writer, b"bqvp", &mesh.b_quad_vertex_positions));
try!(write_simple_chunk(writer, b"bqii", &mesh.b_quad_vertex_interior_indices));
try!(write_simple_chunk(writer, b"bbox", &mesh.b_boxes));
try!(write_simple_chunk(writer, b"sseg", &mesh.stencil_segments));
try!(write_simple_chunk(writer, b"snor", &mesh.stencil_normals));
match mesh.tile_metadata {
None => try!(write_simple_chunk::<_, TileMetadata>(writer, b"tile", &[])),
Some(metadata) => try!(write_simple_chunk(writer, b"tile", &[metadata])),
}
Ok(())
}));
}
let total_length = try!(writer.seek(SeekFrom::Current(0)));
try!(writer.seek(SeekFrom::Start(4)));
try!(writer.write_u32::<LittleEndian>((total_length - 8) as u32));
return Ok(());
fn write_chunk<W, F>(writer: &mut W, tag: &[u8; 4], mut closure: F) -> io::Result<()>
where W: Write + Seek, F: FnMut(&mut W) -> io::Result<()> {
try!(writer.write_all(tag));
try!(writer.write_all(b"\0\0\0\0"));
let start_position = try!(writer.seek(SeekFrom::Current(0)));
try!(closure(writer));
let end_position = try!(writer.seek(SeekFrom::Current(0)));
try!(writer.seek(SeekFrom::Start(start_position - 4)));
try!(writer.write_u32::<LittleEndian>((end_position - start_position) as u32));
try!(writer.seek(SeekFrom::Start(end_position)));
Ok(())
}
fn write_simple_chunk<W, T>(writer: &mut W, tag: &[u8; 4], data: &[T]) -> io::Result<()>
where W: Write + Seek, T: Serialize {
write_chunk(writer, tag, |writer| {
for datum in data {
try!(bincode::serialize_into(&mut *writer, datum).map_err(|_| {
io::Error::from(ErrorKind::Other)
}));
}
Ok(())
})
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,18 +0,0 @@
[package]
name = "pathfinder"
version = "0.2.0"
authors = ["Patrick Walton <pcwalton@mimiga.net>"]
[dependencies]
clap = "2.27"
lyon_path = "0.12"
[dependencies.font-kit]
git = "https://github.com/pcwalton/font-kit"
features = ["loader-freetype-default"]
[dependencies.pathfinder_geometry]
path = "../../geometry"
[dependencies.pathfinder_partitioner]
path = "../../partitioner"

View File

@ -1,111 +0,0 @@
// pathfinder/utils/frontend/main.rs
//
// Copyright © 2017 The Pathfinder Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Pathfinder is built as a set of modular Rust crates and accompanying shaders. Depending on how
//! you plan to use Pathfinder, you may need to link against many of these crates, or you may not
//! need to link against any of them and and only use the shaders at runtime.
//!
//! Typically, if you need to generate paths at runtime or load fonts on the fly, then you will
//! need to use the `pathfinder_partitioner` and/or `pathfinder_font_renderer` crates. If your app
//! instead uses a fixed set of paths or fonts, then you may wish to consider running the
//! Pathfinder command-line tool as part of your build process. Note that in the latter case you
//! may not need to ship any Rust code at all!
//!
//! This crate defines the `pathfinder` command line tool. It takes a font as an argument and
//! produces *mesh libraries* for the glyphs you wish to include. A *mesh library* is essentially a
//! simple storage format for VBOs. To render these paths, you can directly upload these VBOs to
//! the GPU and render them using the shaders provided.
extern crate clap;
extern crate font_kit;
extern crate lyon_path;
extern crate pathfinder_geometry;
extern crate pathfinder_partitioner;
use clap::{App, Arg};
use font_kit::font::Font;
use font_kit::hinting::HintingOptions;
use lyon_path::PathEvent;
use lyon_path::builder::{FlatPathBuilder, PathBuilder};
use lyon_path::default::Path as LyonPath;
use pathfinder_geometry::FillRule;
use pathfinder_geometry::mesh_pack::MeshPack;
use pathfinder_geometry::partitioner::Partitioner;
use std::fs::File;
use std::path::{Path, PathBuf};
use std::process;
fn convert_font(font_path: &Path, output_path: &Path) -> Result<(), ()> {
let font = try!(Font::from_path(font_path, 0).map_err(drop));
let glyph_count = font.glyph_count();
let mut paths: Vec<(u16, Vec<PathEvent>)> = vec![];
let mut mesh_pack = MeshPack::new();
for glyph_index in 0..glyph_count {
let mut path_builder = LyonPath::builder();
if font.outline(glyph_index, HintingOptions::None, &mut path_builder).is_err() {
continue
}
let path = path_builder.build();
let mut partitioner = Partitioner::new();
let path_index = (glyph_index + 1) as u16;
partitioner.mesh_mut().push_stencil_segments(path.iter());
path.iter().for_each(|event| partitioner.builder_mut().path_event(event));
partitioner.partition(FillRule::Winding);
partitioner.builder_mut().build_and_reset();
paths.push((path_index, path.iter().collect()));
mesh_pack.push(partitioner.into_mesh());
}
let mut output_file = try!(File::create(output_path).map_err(drop));
mesh_pack.serialize_into(&mut output_file).map_err(drop)
}
pub fn main() {
let app = App::new("Pathfinder Build Utility")
.version("0.1")
.author("The Pathfinder Project Developers")
.about("Builds meshes from fonts for use with Pathfinder")
.arg(Arg::with_name("FONT-PATH").help("The `.ttf` or `.otf` font file to use")
.required(true)
.index(1))
.arg(Arg::with_name("OUTPUT-PATH").help("The `.pfml` mesh library to produce").index(2));
let matches = app.get_matches();
let font_path = matches.value_of("FONT-PATH").unwrap();
let font_path = Path::new(font_path);
let output_path = match matches.value_of("OUTPUT-PATH") {
Some(output_path) => PathBuf::from(output_path),
None => {
match font_path.file_stem() {
None => {
eprintln!("error: No valid input path specified");
process::exit(1)
}
Some(output_path) => {
let mut output_path = PathBuf::from(output_path);
output_path.set_extension("pfml");
output_path
}
}
}
};
if convert_font(font_path, &output_path).is_err() {
// TODO(pcwalton): Better error handling.
eprintln!("error: Failed");
process::exit(1)
}
}