// pathfinder/shaders/gles2/stencil-aaa.fs.glsl // // Copyright (c) 2018 The Pathfinder Project Developers. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. varying vec3 vUV; void main() { // Unpack. vec3 uv = vUV; vec2 dUVDX = dFdx(uv.xy), dUVDY = dFdy(uv.xy); // Calculate the reciprocal of the Jacobian determinant. This will be useful for determining // distance from endpoints. // // http://pcwalton.github.io/2018/02/14/determining-triangle-geometry-in-fragment-shaders.html float recipJ = 1.0 / det2(mat2(dUVDX, dUVDY)); // Calculate X distances between endpoints. float v02DX = dUVDY.y - dUVDY.x, v10DX = -dUVDY.y, v21DX = 2.0 * dUVDY.x - dUVDY.y; float v02X = v02DX * recipJ, v10X = v10DX * recipJ; // Compute winding number and convexity. bool inCurve = insideCurve(uv); float openWinding = fastSign(-v02X); float convex = uv.z != 0.0 ? uv.z : -fastSign(dUVDY.y) * openWinding; // Compute open rect area. vec2 areas = clamp(vec2(det2(mat2(uv.xy, dUVDY))) * recipJ - vec2(0.0, v02X), -0.5, 0.5); float openRectArea = openWinding * (areas.y - areas.x); // Compute closed rect area and winding, if necessary. float closedRectArea = 0.0, closedWinding = 0.0; if (inCurve && v10DX * v21DX < 0.0) { closedRectArea = 0.5 - fastSign(v10X) * (v10X * openWinding < 0.0 ? areas.x : areas.y); closedWinding = fastSign((dUVDX.y - dUVDX.x) * dUVDY.y); } // Calculate approximate area of the curve covering this pixel square. float curveArea = estimateArea(signedDistanceToCurve(uv.xy, dUVDX, dUVDY, inCurve)); // Calculate alpha. vec2 alpha = vec2(openWinding, closedWinding) * 0.5 + convex * curveArea; alpha *= vec2(openRectArea, closedRectArea); // Finish up. gl_FragColor = vec4(alpha.x + alpha.y); }