// pathfinder/content/src/outline.rs // // Copyright © 2019 The Pathfinder Project Developers. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A compressed in-memory representation of paths. use crate::clip::{self, ContourPolygonClipper, ContourRectClipper}; use crate::dilation::ContourDilator; use crate::orientation::Orientation; use crate::segment::{Segment, SegmentFlags, SegmentKind}; use pathfinder_geometry::line_segment::LineSegment2F; use pathfinder_geometry::rect::RectF; use pathfinder_geometry::transform2d::Transform2F; use pathfinder_geometry::transform3d::Perspective; use pathfinder_geometry::unit_vector::UnitVector; use pathfinder_geometry::vector::{Vector2F, vec2f}; use std::f32::consts::PI; use std::fmt::{self, Debug, Formatter}; use std::mem; #[derive(Clone)] pub struct Outline { pub(crate) contours: Vec, pub(crate) bounds: RectF, } #[derive(Clone)] pub struct Contour { pub(crate) points: Vec, pub(crate) flags: Vec, pub(crate) bounds: RectF, pub(crate) closed: bool, } bitflags! { pub struct PointFlags: u8 { const CONTROL_POINT_0 = 0x01; const CONTROL_POINT_1 = 0x02; } } bitflags! { pub struct PushSegmentFlags: u8 { const UPDATE_BOUNDS = 0x01; const INCLUDE_FROM_POINT = 0x02; } } impl Outline { #[inline] pub fn new() -> Outline { Outline { contours: vec![], bounds: RectF::default(), } } #[inline] pub fn from_segments(segments: I) -> Outline where I: Iterator, { let mut outline = Outline::new(); let mut current_contour = Contour::new(); for segment in segments { if segment.flags.contains(SegmentFlags::FIRST_IN_SUBPATH) { if !current_contour.is_empty() { outline .contours .push(mem::replace(&mut current_contour, Contour::new())); } current_contour.push_point(segment.baseline.from(), PointFlags::empty(), true); } if segment.flags.contains(SegmentFlags::CLOSES_SUBPATH) { if !current_contour.is_empty() { current_contour.close(); let contour = mem::replace(&mut current_contour, Contour::new()); outline.push_contour(contour); } continue; } if segment.is_none() { continue; } if !segment.is_line() { current_contour.push_point(segment.ctrl.from(), PointFlags::CONTROL_POINT_0, true); if !segment.is_quadratic() { current_contour.push_point( segment.ctrl.to(), PointFlags::CONTROL_POINT_1, true, ); } } current_contour.push_point(segment.baseline.to(), PointFlags::empty(), true); } outline.push_contour(current_contour); outline } #[inline] pub fn bounds(&self) -> RectF { self.bounds } #[inline] pub fn contours(&self) -> &[Contour] { &self.contours } #[inline] pub fn into_contours(self) -> Vec { self.contours } /// Removes all contours from this outline. #[inline] pub fn clear(&mut self) { self.contours.clear(); self.bounds = RectF::default(); } pub fn push_contour(&mut self, contour: Contour) { if contour.is_empty() { return; } if self.contours.is_empty() { self.bounds = contour.bounds; } else { self.bounds = self.bounds.union_rect(contour.bounds); } self.contours.push(contour); } pub fn pop_contour(&mut self) -> Option { let last_contour = self.contours.pop(); let mut new_bounds = None; for contour in &mut self.contours { contour.update_bounds(&mut new_bounds); } self.bounds = new_bounds.unwrap_or_else(|| RectF::default()); last_contour } pub fn transform(&mut self, transform: &Transform2F) { if transform.is_identity() { return; } let mut new_bounds = None; for contour in &mut self.contours { contour.transform(transform); contour.update_bounds(&mut new_bounds); } self.bounds = new_bounds.unwrap_or_else(|| RectF::default()); } pub fn apply_perspective(&mut self, perspective: &Perspective) { let mut new_bounds = None; for contour in &mut self.contours { contour.apply_perspective(perspective); contour.update_bounds(&mut new_bounds); } self.bounds = new_bounds.unwrap_or_else(|| RectF::default()); } pub fn dilate(&mut self, amount: Vector2F) { let orientation = Orientation::from_outline(self); self.contours .iter_mut() .for_each(|contour| contour.dilate(amount, orientation)); self.bounds = self.bounds.dilate(amount); } pub fn prepare_for_tiling(&mut self, view_box: RectF) { self.contours .iter_mut() .for_each(|contour| contour.prepare_for_tiling(view_box)); self.bounds = self .bounds .intersection(view_box) .unwrap_or_else(|| RectF::default()); } pub fn is_outside_polygon(&self, clip_polygon: &[Vector2F]) -> bool { clip::rect_is_outside_polygon(self.bounds, clip_polygon) } fn is_inside_polygon(&self, clip_polygon: &[Vector2F]) -> bool { clip::rect_is_inside_polygon(self.bounds, clip_polygon) } pub fn clip_against_polygon(&mut self, clip_polygon: &[Vector2F]) { // Quick check. if self.is_inside_polygon(clip_polygon) { return; } for contour in mem::replace(&mut self.contours, vec![]) { self.push_contour(ContourPolygonClipper::new(clip_polygon, contour).clip()); } } pub fn clip_against_rect(&mut self, clip_rect: RectF) { if clip_rect.contains_rect(self.bounds) { return; } for contour in mem::replace(&mut self.contours, vec![]) { self.push_contour(ContourRectClipper::new(clip_rect, contour).clip()); } } #[inline] pub fn close_all_contours(&mut self) { self.contours.iter_mut().for_each(|contour| contour.close()); } } impl Debug for Outline { fn fmt(&self, formatter: &mut Formatter) -> fmt::Result { for (contour_index, contour) in self.contours.iter().enumerate() { if contour_index > 0 { write!(formatter, " ")?; } contour.fmt(formatter)?; } Ok(()) } } impl Contour { #[inline] pub fn new() -> Contour { Contour { points: vec![], flags: vec![], bounds: RectF::default(), closed: false, } } #[inline] pub fn with_capacity(length: usize) -> Contour { Contour { points: Vec::with_capacity(length), flags: Vec::with_capacity(length), bounds: RectF::default(), closed: false, } } // Replaces this contour with a new one, with arrays preallocated to match `self`. #[inline] pub(crate) fn take(&mut self) -> Contour { let length = self.len() as usize; mem::replace( self, Contour { points: Vec::with_capacity(length), flags: Vec::with_capacity(length), bounds: RectF::default(), closed: false, }, ) } /// restore self to the state of Contour::new(), but keep the points buffer allocated #[inline] pub fn clear(&mut self) { self.points.clear(); self.flags.clear(); self.bounds = RectF::default(); self.closed = false; } #[inline] pub fn iter(&self, flags: ContourIterFlags) -> ContourIter { ContourIter { contour: self, index: 1, flags, } } #[inline] pub fn is_empty(&self) -> bool { self.points.is_empty() } #[inline] pub fn len(&self) -> u32 { self.points.len() as u32 } #[inline] pub fn bounds(&self) -> RectF { self.bounds } #[inline] pub fn is_closed(&self) -> bool { self.closed } #[inline] pub fn position_of(&self, index: u32) -> Vector2F { self.points[index as usize] } #[inline] pub fn last_position(&self) -> Option { self.points.last().cloned() } #[inline] pub(crate) fn position_of_last(&self, index: u32) -> Vector2F { self.points[self.points.len() - index as usize] } #[inline] pub fn push_endpoint(&mut self, point: Vector2F) { self.push_point(point, PointFlags::empty(), true); } #[inline] pub fn push_quadratic(&mut self, ctrl: Vector2F, point: Vector2F) { self.push_point(ctrl, PointFlags::CONTROL_POINT_0, true); self.push_point(point, PointFlags::empty(), true); } #[inline] pub fn push_cubic(&mut self, ctrl0: Vector2F, ctrl1: Vector2F, point: Vector2F) { self.push_point(ctrl0, PointFlags::CONTROL_POINT_0, true); self.push_point(ctrl1, PointFlags::CONTROL_POINT_1, true); self.push_point(point, PointFlags::empty(), true); } #[inline] pub fn close(&mut self) { self.closed = true; } #[inline] pub(crate) fn push_point(&mut self, point: Vector2F, flags: PointFlags, update_bounds: bool) { debug_assert!(!point.x().is_nan() && !point.y().is_nan()); if update_bounds { let first = self.is_empty(); union_rect(&mut self.bounds, point, first); } self.points.push(point); self.flags.push(flags); } #[inline] pub(crate) fn push_segment(&mut self, segment: &Segment, flags: PushSegmentFlags) { if segment.is_none() { return; } let update_bounds = flags.contains(PushSegmentFlags::UPDATE_BOUNDS); self.push_point(segment.baseline.from(), PointFlags::empty(), update_bounds); if !segment.is_line() { self.push_point( segment.ctrl.from(), PointFlags::CONTROL_POINT_0, update_bounds, ); if !segment.is_quadratic() { self.push_point( segment.ctrl.to(), PointFlags::CONTROL_POINT_1, update_bounds, ); } } self.push_point(segment.baseline.to(), PointFlags::empty(), update_bounds); } pub fn push_arc(&mut self, transform: &Transform2F, start_angle: f32, end_angle: f32, direction: ArcDirection) { if end_angle - start_angle >= PI * 2.0 { self.push_ellipse(transform); } else { let start = vec2f(start_angle.cos(), start_angle.sin()); let end = vec2f(end_angle.cos(), end_angle.sin()); self.push_arc_from_unit_chord(transform, LineSegment2F::new(start, end), direction); } } pub fn push_arc_from_unit_chord(&mut self, transform: &Transform2F, mut chord: LineSegment2F, direction: ArcDirection) { let mut direction_transform = Transform2F::default(); if direction == ArcDirection::CCW { chord = chord.reversed(); direction_transform = Transform2F::from_scale(vec2f(1.0, -1.0)); } let (mut vector, end_vector) = (UnitVector(chord.from()), UnitVector(chord.to())); let mut first_segment = true; loop { let mut sweep_vector = end_vector.rev_rotate_by(vector); let last = sweep_vector.0.x() >= -EPSILON && sweep_vector.0.y() >= -EPSILON; let mut segment; if !last { sweep_vector = UnitVector(vec2f(0.0, 1.0)); segment = Segment::quarter_circle_arc(); } else { segment = Segment::arc_from_cos(sweep_vector.0.x()); } let half_sweep_vector = sweep_vector.halve_angle(); let rotation = Transform2F::from_rotation_vector(half_sweep_vector.rotate_by(vector)); segment = segment.transform(&(*transform * rotation * direction_transform)); let mut push_segment_flags = PushSegmentFlags::UPDATE_BOUNDS; if first_segment { push_segment_flags.insert(PushSegmentFlags::INCLUDE_FROM_POINT); first_segment = false; } self.push_segment(&segment, push_segment_flags); if last { break; } vector = vector.rotate_by(sweep_vector); } const EPSILON: f32 = 0.001; } pub fn push_ellipse(&mut self, transform: &Transform2F) { let segment = Segment::quarter_circle_arc(); let mut rotation; self.push_segment(&segment.transform(transform), PushSegmentFlags::UPDATE_BOUNDS | PushSegmentFlags::INCLUDE_FROM_POINT); rotation = Transform2F::from_rotation_vector(UnitVector(vec2f( 0.0, 1.0))); self.push_segment(&segment.transform(&(*transform * rotation)), PushSegmentFlags::UPDATE_BOUNDS); rotation = Transform2F::from_rotation_vector(UnitVector(vec2f(-1.0, 0.0))); self.push_segment(&segment.transform(&(*transform * rotation)), PushSegmentFlags::UPDATE_BOUNDS); rotation = Transform2F::from_rotation_vector(UnitVector(vec2f( 0.0, -1.0))); self.push_segment(&segment.transform(&(*transform * rotation)), PushSegmentFlags::UPDATE_BOUNDS); } #[inline] pub fn segment_after(&self, point_index: u32) -> Segment { debug_assert!(self.point_is_endpoint(point_index)); let mut segment = Segment::none(); segment.baseline.set_from(self.position_of(point_index)); let point1_index = self.add_to_point_index(point_index, 1); if self.point_is_endpoint(point1_index) { segment.baseline.set_to(self.position_of(point1_index)); segment.kind = SegmentKind::Line; } else { segment.ctrl.set_from(self.position_of(point1_index)); let point2_index = self.add_to_point_index(point_index, 2); if self.point_is_endpoint(point2_index) { segment.baseline.set_to(self.position_of(point2_index)); segment.kind = SegmentKind::Quadratic; } else { segment.ctrl.set_to(self.position_of(point2_index)); segment.kind = SegmentKind::Cubic; let point3_index = self.add_to_point_index(point_index, 3); segment.baseline.set_to(self.position_of(point3_index)); } } segment } #[inline] pub fn hull_segment_after(&self, prev_point_index: u32) -> LineSegment2F { let next_point_index = self.next_point_index_of(prev_point_index); LineSegment2F::new( self.points[prev_point_index as usize], self.points[next_point_index as usize], ) } #[inline] pub fn point_is_endpoint(&self, point_index: u32) -> bool { !self.flags[point_index as usize] .intersects(PointFlags::CONTROL_POINT_0 | PointFlags::CONTROL_POINT_1) } #[inline] pub fn add_to_point_index(&self, point_index: u32, addend: u32) -> u32 { let (index, limit) = (point_index + addend, self.len()); if index >= limit { index - limit } else { index } } #[inline] pub fn point_is_logically_above(&self, a: u32, b: u32) -> bool { let (a_y, b_y) = (self.points[a as usize].y(), self.points[b as usize].y()); a_y < b_y || (a_y == b_y && a < b) } #[inline] pub fn prev_endpoint_index_of(&self, mut point_index: u32) -> u32 { loop { point_index = self.prev_point_index_of(point_index); if self.point_is_endpoint(point_index) { return point_index; } } } #[inline] pub fn next_endpoint_index_of(&self, mut point_index: u32) -> u32 { loop { point_index = self.next_point_index_of(point_index); if self.point_is_endpoint(point_index) { return point_index; } } } #[inline] pub fn prev_point_index_of(&self, point_index: u32) -> u32 { if point_index == 0 { self.len() - 1 } else { point_index - 1 } } #[inline] pub fn next_point_index_of(&self, point_index: u32) -> u32 { if point_index == self.len() - 1 { 0 } else { point_index + 1 } } pub fn transform(&mut self, transform: &Transform2F) { if transform.is_identity() { return; } for (point_index, point) in self.points.iter_mut().enumerate() { *point = *transform * *point; union_rect(&mut self.bounds, *point, point_index == 0); } } pub fn apply_perspective(&mut self, perspective: &Perspective) { for (point_index, point) in self.points.iter_mut().enumerate() { *point = *perspective * *point; union_rect(&mut self.bounds, *point, point_index == 0); } } pub fn dilate(&mut self, amount: Vector2F, orientation: Orientation) { ContourDilator::new(self, amount, orientation).dilate(); self.bounds = self.bounds.dilate(amount); } fn prepare_for_tiling(&mut self, view_box: RectF) { // Snap points to the view box bounds. This mops up floating point error from the clipping // process. let (mut last_endpoint_index, mut contour_is_monotonic) = (None, true); for point_index in 0..(self.points.len() as u32) { if contour_is_monotonic { if self.point_is_endpoint(point_index) { if let Some(last_endpoint_index) = last_endpoint_index { if !self.curve_with_endpoints_is_monotonic(last_endpoint_index, point_index) { contour_is_monotonic = false; } } last_endpoint_index = Some(point_index); } } } // Convert to monotonic, if necessary. if !contour_is_monotonic { self.make_monotonic(); } // Update bounds. self.bounds = self .bounds .intersection(view_box) .unwrap_or_else(|| RectF::default()); } fn make_monotonic(&mut self) { debug!("--- make_monotonic() ---"); let contour = self.take(); self.bounds = contour.bounds; let mut last_endpoint_index = None; let input_point_count = contour.points.len() as u32; for point_index in 0..(input_point_count + 1) { if point_index < input_point_count && !contour.point_is_endpoint(point_index) { continue; } if let Some(last_endpoint_index) = last_endpoint_index { let position_index = if point_index == input_point_count { 0 } else { point_index }; let baseline = LineSegment2F::new( contour.points[last_endpoint_index as usize], contour.points[position_index as usize], ); let point_count = point_index - last_endpoint_index + 1; if point_count == 3 { let ctrl_point_index = last_endpoint_index as usize + 1; let ctrl_position = &contour.points[ctrl_point_index]; handle_cubic( self, &Segment::quadratic(baseline, *ctrl_position).to_cubic(), ); } else if point_count == 4 { let first_ctrl_point_index = last_endpoint_index as usize + 1; let ctrl_position_0 = &contour.points[first_ctrl_point_index + 0]; let ctrl_position_1 = &contour.points[first_ctrl_point_index + 1]; let ctrl = LineSegment2F::new(*ctrl_position_0, *ctrl_position_1); handle_cubic(self, &Segment::cubic(baseline, ctrl)); } self.push_point( contour.points[position_index as usize], PointFlags::empty(), false, ); } last_endpoint_index = Some(point_index); } fn handle_cubic(contour: &mut Contour, segment: &Segment) { debug!("handle_cubic({:?})", segment); match segment.as_cubic_segment().y_extrema() { (Some(t0), Some(t1)) => { let (segments_01, segment_2) = segment.as_cubic_segment().split(t1); let (segment_0, segment_1) = segments_01.as_cubic_segment().split(t0 / t1); contour.push_segment(&segment_0, PushSegmentFlags::empty()); contour.push_segment(&segment_1, PushSegmentFlags::empty()); contour.push_segment(&segment_2, PushSegmentFlags::empty()); } (Some(t0), None) | (None, Some(t0)) => { let (segment_0, segment_1) = segment.as_cubic_segment().split(t0); contour.push_segment(&segment_0, PushSegmentFlags::empty()); contour.push_segment(&segment_1, PushSegmentFlags::empty()); } (None, None) => contour.push_segment(segment, PushSegmentFlags::empty()), } } } fn curve_with_endpoints_is_monotonic( &self, start_endpoint_index: u32, end_endpoint_index: u32, ) -> bool { let start_position = self.points[start_endpoint_index as usize]; let end_position = self.points[end_endpoint_index as usize]; if start_position.x() <= end_position.x() { for point_index in start_endpoint_index..end_endpoint_index { if self.points[point_index as usize].x() > self.points[point_index as usize + 1].x() { return false; } } } else { for point_index in start_endpoint_index..end_endpoint_index { if self.points[point_index as usize].x() < self.points[point_index as usize + 1].x() { return false; } } } if start_position.y() <= end_position.y() { for point_index in start_endpoint_index..end_endpoint_index { if self.points[point_index as usize].y() > self.points[point_index as usize + 1].y() { return false; } } } else { for point_index in start_endpoint_index..end_endpoint_index { if self.points[point_index as usize].y() < self.points[point_index as usize + 1].y() { return false; } } } true } // Use this function to keep bounds up to date when mutating paths. See `Outline::transform()` // for an example of use. pub(crate) fn update_bounds(&self, bounds: &mut Option) { *bounds = Some(match *bounds { None => self.bounds, Some(bounds) => bounds.union_rect(self.bounds), }) } } impl Debug for Contour { fn fmt(&self, formatter: &mut Formatter) -> fmt::Result { for (segment_index, segment) in self.iter(ContourIterFlags::IGNORE_CLOSE_SEGMENT) .enumerate() { if segment_index == 0 { write!( formatter, "M {} {}", segment.baseline.from_x(), segment.baseline.from_y() )?; } match segment.kind { SegmentKind::None => {} SegmentKind::Line => { write!( formatter, " L {} {}", segment.baseline.to_x(), segment.baseline.to_y() )?; } SegmentKind::Quadratic => { write!( formatter, " Q {} {} {} {}", segment.ctrl.from_x(), segment.ctrl.from_y(), segment.baseline.to_x(), segment.baseline.to_y() )?; } SegmentKind::Cubic => { write!( formatter, " C {} {} {} {} {} {}", segment.ctrl.from_x(), segment.ctrl.from_y(), segment.ctrl.to_x(), segment.ctrl.to_y(), segment.baseline.to_x(), segment.baseline.to_y() )?; } } } if self.closed { write!(formatter, " z")?; } Ok(()) } } #[derive(Clone, Copy, Debug, Default, PartialEq, Eq, PartialOrd, Ord)] pub struct PointIndex(u32); impl PointIndex { #[inline] pub fn new(contour: u32, point: u32) -> PointIndex { debug_assert!(contour <= 0xfff); debug_assert!(point <= 0x000f_ffff); PointIndex((contour << 20) | point) } #[inline] pub fn contour(self) -> u32 { self.0 >> 20 } #[inline] pub fn point(self) -> u32 { self.0 & 0x000f_ffff } } pub struct ContourIter<'a> { contour: &'a Contour, index: u32, flags: ContourIterFlags, } impl<'a> Iterator for ContourIter<'a> { type Item = Segment; #[inline] fn next(&mut self) -> Option { let contour = self.contour; let include_close_segment = self.contour.closed && !self.flags.contains(ContourIterFlags::IGNORE_CLOSE_SEGMENT); if (self.index == contour.len() && !include_close_segment) || self.index == contour.len() + 1 { return None; } let point0_index = self.index - 1; let point0 = contour.position_of(point0_index); if self.index == contour.len() { let point1 = contour.position_of(0); self.index += 1; return Some(Segment::line(LineSegment2F::new(point0, point1))); } let point1_index = self.index; self.index += 1; let point1 = contour.position_of(point1_index); if contour.point_is_endpoint(point1_index) { return Some(Segment::line(LineSegment2F::new(point0, point1))); } let point2_index = self.index; let point2 = contour.position_of(point2_index); self.index += 1; if contour.point_is_endpoint(point2_index) { return Some(Segment::quadratic(LineSegment2F::new(point0, point2), point1)); } let point3_index = self.index; let point3 = contour.position_of(point3_index); self.index += 1; debug_assert!(contour.point_is_endpoint(point3_index)); return Some(Segment::cubic( LineSegment2F::new(point0, point3), LineSegment2F::new(point1, point2), )); } } #[derive(Clone, Copy, Debug, PartialEq)] pub enum ArcDirection { CW, CCW, } bitflags! { pub struct ContourIterFlags: u8 { const IGNORE_CLOSE_SEGMENT = 1; } } #[inline] pub(crate) fn union_rect(bounds: &mut RectF, new_point: Vector2F, first: bool) { if first { *bounds = RectF::from_points(new_point, new_point); } else { *bounds = bounds.union_point(new_point) } }