// pathfinder/geometry/src/basic/line_segment.rs // // Copyright © 2019 The Pathfinder Project Developers. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Line segment types, optimized with SIMD. use crate::basic::point::Point2DF32; use crate::util; use pathfinder_simd::default::F32x4; use std::ops::{Add, Sub}; #[derive(Clone, Copy, Debug, PartialEq, Default)] pub struct LineSegmentF32(pub F32x4); impl LineSegmentF32 { #[inline] pub fn new(from: &Point2DF32, to: &Point2DF32) -> LineSegmentF32 { LineSegmentF32(from.0.concat_xy_xy(to.0)) } #[inline] pub fn from(&self) -> Point2DF32 { Point2DF32(self.0) } #[inline] pub fn to(&self) -> Point2DF32 { Point2DF32(self.0.zwxy()) } #[inline] pub fn set_from(&mut self, point: &Point2DF32) { self.0 = point.0.concat_xy_zw(self.0) } #[inline] pub fn set_to(&mut self, point: &Point2DF32) { self.0 = self.0.concat_xy_xy(point.0) } #[allow(clippy::wrong_self_convention)] #[inline] pub fn from_x(&self) -> f32 { self.0[0] } #[allow(clippy::wrong_self_convention)] #[inline] pub fn from_y(&self) -> f32 { self.0[1] } #[inline] pub fn to_x(&self) -> f32 { self.0[2] } #[inline] pub fn to_y(&self) -> f32 { self.0[3] } #[inline] pub fn set_from_x(&mut self, x: f32) { self.0[0] = x } #[inline] pub fn set_from_y(&mut self, y: f32) { self.0[1] = y } #[inline] pub fn set_to_x(&mut self, x: f32) { self.0[2] = x } #[inline] pub fn set_to_y(&mut self, y: f32) { self.0[3] = y } #[inline] pub fn scale(&self, factor: f32) -> LineSegmentF32 { LineSegmentF32(self.0 * F32x4::splat(factor)) } #[inline] pub fn split(&self, t: f32) -> (LineSegmentF32, LineSegmentF32) { debug_assert!(t >= 0.0 && t <= 1.0); let (from_from, to_to) = (self.0.xyxy(), self.0.zwzw()); let d_d = to_to - from_from; let mid_mid = from_from + d_d * F32x4::splat(t); (LineSegmentF32(from_from.concat_xy_xy(mid_mid)), LineSegmentF32(mid_mid.concat_xy_xy(to_to))) } // Returns the left segment first, followed by the right segment. #[inline] pub fn split_at_x(&self, x: f32) -> (LineSegmentF32, LineSegmentF32) { let (min_part, max_part) = self.split(self.solve_t_for_x(x)); if min_part.from_x() < max_part.from_x() { (min_part, max_part) } else { (max_part, min_part) } } // Returns the upper segment first, followed by the lower segment. #[inline] pub fn split_at_y(&self, y: f32) -> (LineSegmentF32, LineSegmentF32) { let (min_part, max_part) = self.split(self.solve_t_for_y(y)); // Make sure we compare `from_y` and `to_y` to properly handle the case in which one of the // two segments is zero-length. if min_part.from_y() < max_part.to_y() { (min_part, max_part) } else { (max_part, min_part) } } #[inline] pub fn solve_t_for_x(&self, x: f32) -> f32 { (x - self.from_x()) / (self.to_x() - self.from_x()) } #[inline] pub fn solve_t_for_y(&self, y: f32) -> f32 { (y - self.from_y()) / (self.to_y() - self.from_y()) } #[inline] pub fn solve_x_for_y(&self, y: f32) -> f32 { util::lerp(self.from_x(), self.to_x(), self.solve_t_for_y(y)) } #[inline] pub fn solve_y_for_x(&self, x: f32) -> f32 { util::lerp(self.from_y(), self.to_y(), self.solve_t_for_x(x)) } #[inline] pub fn reversed(&self) -> LineSegmentF32 { LineSegmentF32(self.0.zwxy()) } #[inline] pub fn upper_point(&self) -> Point2DF32 { if self.from_y() < self.to_y() { self.from() } else { self.to() } } #[inline] pub fn min_x(&self) -> f32 { f32::min(self.from_x(), self.to_x()) } #[inline] pub fn max_x(&self) -> f32 { f32::max(self.from_x(), self.to_x()) } #[inline] pub fn min_y(&self) -> f32 { f32::min(self.from_y(), self.to_y()) } #[inline] pub fn max_y(&self) -> f32 { f32::max(self.from_y(), self.to_y()) } #[inline] pub fn y_winding(&self) -> i32 { if self.from_y() < self.to_y() { 1 } else { -1 } } // Reverses if necessary so that the from point is above the to point. Calling this method // again will undo the transformation. #[inline] pub fn orient(&self, y_winding: i32) -> LineSegmentF32 { if y_winding >= 0 { *self } else { self.reversed() } } // TODO(pcwalton): Optimize with SIMD. #[inline] pub fn square_length(&self) -> f32 { let (dx, dy) = (self.to_x() - self.from_x(), self.to_y() - self.from_y()); dx * dx + dy * dy } // Given a line equation of the form `ax + by + c = 0`, returns a vector of the form // `[a, b, c, 0]`. // // TODO(pcwalton): Optimize. #[inline] pub fn line_coords(&self) -> F32x4 { let from = F32x4::new(self.0[0], self.0[1], 1.0, 0.0); let to = F32x4::new(self.0[2], self.0[3], 1.0, 0.0); from.cross(to) } #[inline] pub fn vector(&self) -> Point2DF32 { self.to() - self.from() } // http://www.cs.swan.ac.uk/~cssimon/line_intersection.html pub fn intersection_t(&self, other: &LineSegmentF32) -> Option { let d0d1 = self.vector().0.concat_xy_xy(other.vector().0); let offset = other.from() - self.from(); let factors = d0d1.concat_wz_yx(offset.0); let terms = d0d1 * factors; let denom = terms[0] - terms[1]; if f32::abs(denom) < EPSILON { return None; } return Some((terms[3] - terms[2]) / denom); const EPSILON: f32 = 0.0001; } #[inline] pub fn sample(&self, t: f32) -> Point2DF32 { self.from() + self.vector().scale(t) } #[inline] pub fn offset(&self, distance: f32) -> LineSegmentF32 { if self.is_zero_length() { *self } else { *self + self.vector().yx().normalize().scale_xy(Point2DF32::new(-distance, distance)) } } #[inline] pub fn is_zero_length(&self) -> bool { self.vector().is_zero() } } impl Add for LineSegmentF32 { type Output = LineSegmentF32; #[inline] fn add(self, point: Point2DF32) -> LineSegmentF32 { LineSegmentF32(self.0 + point.0.xyxy()) } } impl Sub for LineSegmentF32 { type Output = LineSegmentF32; #[inline] fn sub(self, point: Point2DF32) -> LineSegmentF32 { LineSegmentF32(self.0 - point.0.xyxy()) } } #[derive(Clone, Copy, Debug)] #[repr(transparent)] pub struct LineSegmentU4(pub u16); #[derive(Clone, Copy, Debug)] #[repr(transparent)] pub struct LineSegmentU8(pub u32);