pathfinder/shaders/gles2/ecaa-curve.fs.glsl

56 lines
1.8 KiB
GLSL

// pathfinder/shaders/gles2/ecaa-line.vs.glsl
//
// Copyright (c) 2017 Mozilla Foundation
precision highp float;
uniform bool uLowerPart;
varying vec4 vEndpoints;
varying vec2 vControlPoint;
// Solve the equation:
//
// x = p0x + t^2 * (p0x - 2*p1x + p2x) + t*(2*p1x - 2*p0x)
//
// We use the Citardauq Formula to avoid floating point precision issues.
float solveCurveT(float p0x, float p1x, float p2x, float x) {
float a = p0x - 2.0 * p1x + p2x;
float b = 2.0 * p1x - 2.0 * p0x;
float c = p0x - x;
return 2.0 * c / (-b - sqrt(b * b - 4.0 * a * c));
}
void main() {
// Unpack.
vec2 center = gl_FragCoord.xy;
vec2 p0 = vEndpoints.xy, p1 = vEndpoints.zw;
vec2 cp = vControlPoint;
// Compute pixel extents.
vec4 pixelExtents = center.xxyy + vec4(-0.5, 0.5, -0.5, 0.5);
// Clip the curve to the left and right edges to create a line.
//
// TODO(pcwalton): Consider clipping to the bottom and top edges properly too. (I kind of doubt
// it's worth it to do this, though, given that the maximum error doing it this way will always
// be less than a pixel, and it saves a lot of time.)
//
// FIXME(pcwalton): Factor out shared terms to avoid computing them multiple times.
vec2 t = vec2(pixelExtents.x > p0.x ? solveCurveT(p0.x, cp.x, p1.x, pixelExtents.x) : 0.0,
p1.x < pixelExtents.y ? solveCurveT(p0.x, cp.x, p1.x, pixelExtents.y) : 1.0);
vec2 spanP0 = mix(mix(p0, cp, t.x), mix(cp, p1, t.x), t.x);
vec2 spanP1 = mix(mix(p0, cp, t.y), mix(cp, p1, t.y), t.y);
p0 = spanP0;
p1 = spanP1;
t = vec2(0.0, 1.0);
// Set up Liang-Barsky clipping.
vec4 p = (p1 - p0).xxyy, q = pixelExtents - p0.xxyy;
// Compute area.
gl_FragColor = vec4(computeCoverage(p0, p1, p0, p1, t, pixelExtents, p, q, uLowerPart));
}