pathfinder/utils/tile-svg/src/main.rs

2133 lines
74 KiB
Rust

// pathfinder/utils/tile-svg/main.rs
//
// Copyright © 2018 The Pathfinder Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[macro_use]
extern crate bitflags;
#[cfg(test)]
extern crate quickcheck;
#[cfg(test)]
extern crate rand;
use byteorder::{LittleEndian, WriteBytesExt};
use clap::{App, Arg};
use euclid::{Point2D, Rect, Size2D, Transform2D, Vector2D};
use fixedbitset::FixedBitSet;
use jemallocator;
use lyon_geom::cubic_bezier::Flattened;
use lyon_geom::{CubicBezierSegment, LineSegment, QuadraticBezierSegment};
use lyon_path::PathEvent;
use lyon_path::iterator::PathIter;
use pathfinder_path_utils::stroke::{StrokeStyle, StrokeToFillIter};
use quick_xml::Reader;
use quick_xml::events::{BytesStart, Event};
use std::cmp::Ordering;
use std::collections::BinaryHeap;
use std::fmt::{self, Debug, Formatter};
use std::fs::File;
use std::io::{self, BufReader, BufWriter, Write};
use std::mem;
use std::ops::Range;
use std::path::{Path, PathBuf};
use std::str::FromStr;
use std::time::Instant;
use svgtypes::{Color as SvgColor, PathParser, PathSegment as SvgPathSegment, TransformListParser};
use svgtypes::{TransformListToken};
#[global_allocator]
static ALLOC: jemallocator::Jemalloc = jemallocator::Jemalloc;
// TODO(pcwalton): Make this configurable.
const SCALE_FACTOR: f32 = 1.0;
// TODO(pcwalton): Make this configurable.
const FLATTENING_TOLERANCE: f32 = 3.0;
fn main() {
let matches =
App::new("tile-svg").arg(Arg::with_name("runs").short("r")
.long("runs")
.value_name("COUNT")
.takes_value(true)
.help("Run a benchmark with COUNT runs"))
.arg(Arg::with_name("INPUT").help("Path to the SVG file to render")
.required(true)
.index(1))
.arg(Arg::with_name("OUTPUT").help("Path to the output PF3 data")
.required(false)
.index(2))
.get_matches();
let runs: usize = match matches.value_of("runs") {
Some(runs) => runs.parse().unwrap(),
None => 1,
};
let input_path = PathBuf::from(matches.value_of("INPUT").unwrap());
let output_path = matches.value_of("OUTPUT").map(PathBuf::from);
let scene = Scene::from_path(&input_path);
println!("Scene bounds: {:?}", scene.bounds);
let start_time = Instant::now();
let mut built_scene = BuiltScene::new();
for _ in 0..runs {
built_scene = scene.build();
}
let elapsed_time = Instant::now() - start_time;
let elapsed_ms = elapsed_time.as_secs() as f64 * 1000.0 +
elapsed_time.subsec_micros() as f64 / 1000.0;
println!("{:.3}ms elapsed", elapsed_ms / runs as f64);
println!("{} fill primitives generated", built_scene.fills.len());
println!("{} tiles ({} solid, {} mask) generated",
built_scene.solid_tiles.len() + built_scene.mask_tiles.len(),
built_scene.solid_tiles.len(),
built_scene.mask_tiles.len());
/*
println!("solid tiles:");
for (index, tile) in built_scene.solid_tiles.iter().enumerate() {
println!("... {}: {:?}", index, tile);
}
println!("fills:");
for (index, fill) in built_scene.fills.iter().enumerate() {
println!("... {}: {:?}", index, fill);
}
*/
if let Some(output_path) = output_path {
built_scene.write(&mut BufWriter::new(File::create(output_path).unwrap())).unwrap();
}
}
#[derive(Debug)]
struct Scene {
objects: Vec<PathObject>,
styles: Vec<ComputedStyle>,
bounds: Rect<f32>,
view_box: Option<Rect<f32>>,
}
#[derive(Debug)]
struct PathObject {
outline: Outline,
style: StyleId,
color: ColorU,
name: String,
}
#[derive(Debug)]
struct ComputedStyle {
fill_color: Option<SvgColor>,
stroke_width: f32,
stroke_color: Option<SvgColor>,
transform: Transform2D<f32>,
}
#[derive(Default)]
struct GroupStyle {
fill_color: Option<SvgColor>,
stroke_width: Option<f32>,
stroke_color: Option<SvgColor>,
transform: Option<Transform2D<f32>>,
}
impl ComputedStyle {
fn new() -> ComputedStyle {
ComputedStyle {
fill_color: None,
stroke_width: 1.0,
stroke_color: None,
transform: Transform2D::identity(),
}
}
}
#[derive(Clone, Copy, PartialEq, Debug)]
struct StyleId(u32);
impl Scene {
fn new() -> Scene {
Scene { objects: vec![], styles: vec![], bounds: Rect::zero(), view_box: None }
}
fn from_path(path: &Path) -> Scene {
let mut reader = Reader::from_file(&path).unwrap();
let global_transform = Transform2D::create_scale(SCALE_FACTOR, SCALE_FACTOR);
let mut xml_buffer = vec![];
let mut group_styles = vec![];
let mut style = None;
let mut scene = Scene::new();
loop {
match reader.read_event(&mut xml_buffer) {
Ok(Event::Start(ref event)) |
Ok(Event::Empty(ref event)) if event.name() == b"path" => {
scene.push_group_style(&mut reader, event, &mut group_styles, &mut style);
let attributes = event.attributes();
let (mut encoded_path, mut name) = (String::new(), String::new());
for attribute in attributes {
let attribute = attribute.unwrap();
if attribute.key == b"d" {
encoded_path = reader.decode(&attribute.value).to_string();
} else if attribute.key == b"id" {
name = reader.decode(&attribute.value).to_string();
}
}
let computed_style = scene.ensure_style(&mut style, &mut group_styles);
scene.push_svg_path(&encoded_path, computed_style, name);
group_styles.pop();
style = None;
}
Ok(Event::Start(ref event)) if event.name() == b"g" => {
scene.push_group_style(&mut reader, event, &mut group_styles, &mut style);
}
Ok(Event::End(ref event)) if event.name() == b"g" => {
group_styles.pop();
style = None;
}
Ok(Event::Start(ref event)) if event.name() == b"svg" => {
let attributes = event.attributes();
for attribute in attributes {
let attribute = attribute.unwrap();
if attribute.key == b"viewBox" {
let view_box = reader.decode(&attribute.value);
let mut elements = view_box.split_whitespace()
.map(|value| f32::from_str(value).unwrap());
let view_box = Rect::new(Point2D::new(elements.next().unwrap(),
elements.next().unwrap()),
Size2D::new(elements.next().unwrap(),
elements.next().unwrap()));
scene.view_box = Some(global_transform.transform_rect(&view_box));
}
}
}
Ok(Event::Eof) | Err(_) => break,
Ok(_) => {}
}
xml_buffer.clear();
}
return scene;
}
fn push_group_style(&mut self,
reader: &mut Reader<BufReader<File>>,
event: &BytesStart,
group_styles: &mut Vec<GroupStyle>,
style: &mut Option<StyleId>) {
let mut group_style = GroupStyle::default();
let attributes = event.attributes();
for attribute in attributes {
let attribute = attribute.unwrap();
match attribute.key {
b"fill" => {
let value = reader.decode(&attribute.value);
if let Ok(color) = SvgColor::from_str(&value) {
group_style.fill_color = Some(color);
}
}
b"stroke" => {
let value = reader.decode(&attribute.value);
if let Ok(color) = SvgColor::from_str(&value) {
group_style.stroke_color = Some(color)
}
}
b"transform" => {
let value = reader.decode(&attribute.value);
let mut current_transform = Transform2D::identity();
let transform_list_parser = TransformListParser::from(&*value);
for transform in transform_list_parser {
match transform {
Ok(TransformListToken::Matrix { a, b, c, d, e, f }) => {
let transform: Transform2D<f32> =
Transform2D::row_major(a, b, c, d, e, f).cast();
current_transform = current_transform.pre_mul(&transform)
}
_ => {}
}
}
group_style.transform = Some(current_transform);
}
b"stroke-width" => {
if let Ok(width) = reader.decode(&attribute.value).parse() {
group_style.stroke_width = Some(width)
}
}
_ => {}
}
}
group_styles.push(group_style);
*style = None;
}
fn ensure_style(&mut self, current_style: &mut Option<StyleId>, group_styles: &[GroupStyle])
-> StyleId {
if let Some(current_style) = *current_style {
return current_style
}
let mut computed_style = ComputedStyle::new();
for group_style in group_styles {
if let Some(fill_color) = group_style.fill_color {
computed_style.fill_color = Some(fill_color)
}
if let Some(stroke_width) = group_style.stroke_width {
computed_style.stroke_width = stroke_width
}
if let Some(stroke_color) = group_style.stroke_color {
computed_style.stroke_color = Some(stroke_color)
}
if let Some(transform) = group_style.transform {
computed_style.transform = computed_style.transform.pre_mul(&transform)
}
}
let id = StyleId(self.styles.len() as u32);
self.styles.push(computed_style);
id
}
fn get_style(&self, style: StyleId) -> &ComputedStyle {
&self.styles[style.0 as usize]
}
fn build(&self) -> BuiltScene {
let mut built_scene = BuiltScene::new();
for (index, object) in self.objects.iter().enumerate() {
let mut tiler = Tiler::from_outline(&object.outline,
object.color,
&self.view_box,
&mut built_scene);
tiler.generate_tiles();
// TODO(pcwalton)
}
built_scene
}
fn push_svg_path(&mut self, value: &str, style: StyleId, name: String) {
if self.get_style(style).stroke_width > 0.0 {
let computed_style = self.get_style(style);
let mut path_parser = PathParser::from(&*value);
let path = SvgPathToPathEvents::new(&mut path_parser);
let path = PathIter::new(path);
let path = StrokeToFillIter::new(path, StrokeStyle::new(computed_style.stroke_width));
let path = MonotonicConversionIter::new(path);
let outline = Outline::from_path_events(path, computed_style);
let color = match computed_style.stroke_color {
None => ColorU::black(),
Some(color) => ColorU::from_svg_color(color),
};
self.bounds = self.bounds.union(&outline.bounds);
self.objects.push(PathObject::new(outline, color, style, name.clone()));
}
if self.get_style(style).fill_color.is_some() {
let computed_style = self.get_style(style);
let mut path_parser = PathParser::from(&*value);
let path = SvgPathToPathEvents::new(&mut path_parser);
let path = MonotonicConversionIter::new(path);
let outline = Outline::from_path_events(path, computed_style);
let color = match computed_style.fill_color {
None => ColorU::black(),
Some(color) => ColorU::from_svg_color(color),
};
self.bounds = self.bounds.union(&outline.bounds);
self.objects.push(PathObject::new(outline, color, style, name));
}
}
}
impl PathObject {
fn new(outline: Outline, color: ColorU, style: StyleId, name: String) -> PathObject {
PathObject { outline, color, style, name }
}
}
// Outlines
#[derive(Debug)]
struct Outline {
contours: Vec<Contour>,
bounds: Rect<f32>,
}
struct Contour {
points: Vec<Point2D<f32>>,
flags: Vec<PointFlags>,
}
bitflags! {
struct PointFlags: u8 {
const CONTROL_POINT_0 = 0x01;
const CONTROL_POINT_1 = 0x02;
}
}
impl Outline {
fn new() -> Outline {
Outline {
contours: vec![],
bounds: Rect::zero(),
}
}
fn from_path_events<I>(path_events: I, style: &ComputedStyle) -> Outline
where I: Iterator<Item = PathEvent> {
let mut outline = Outline::new();
let mut current_contour = Contour::new();
let mut bounding_points = None;
let global_transform = Transform2D::create_scale(SCALE_FACTOR, SCALE_FACTOR);
let transform = global_transform.pre_mul(&style.transform);
for path_event in path_events {
match path_event {
PathEvent::MoveTo(to) => {
if !current_contour.is_empty() {
outline.contours.push(mem::replace(&mut current_contour, Contour::new()))
}
current_contour.push_transformed_point(&to,
PointFlags::empty(),
&transform,
&mut bounding_points);
}
PathEvent::LineTo(to) => {
current_contour.push_transformed_point(&to,
PointFlags::empty(),
&transform,
&mut bounding_points);
}
PathEvent::QuadraticTo(ctrl, to) => {
current_contour.push_transformed_point(&ctrl,
PointFlags::CONTROL_POINT_0,
&transform,
&mut bounding_points);
current_contour.push_transformed_point(&to,
PointFlags::empty(),
&transform,
&mut bounding_points);
}
PathEvent::CubicTo(ctrl0, ctrl1, to) => {
current_contour.push_transformed_point(&ctrl0,
PointFlags::CONTROL_POINT_0,
&transform,
&mut bounding_points);
current_contour.push_transformed_point(&ctrl1,
PointFlags::CONTROL_POINT_1,
&transform,
&mut bounding_points);
current_contour.push_transformed_point(&to,
PointFlags::empty(),
&transform,
&mut bounding_points);
}
PathEvent::Close => {
if !current_contour.is_empty() {
outline.contours.push(mem::replace(&mut current_contour, Contour::new()));
}
}
PathEvent::Arc(..) => unimplemented!("arcs"),
}
}
if !current_contour.is_empty() {
outline.contours.push(current_contour)
}
if let Some((upper_left, lower_right)) = bounding_points {
outline.bounds = Rect::from_points([upper_left, lower_right].into_iter())
}
outline
}
fn segment_after(&self, endpoint_index: PointIndex) -> Segment {
self.contours[endpoint_index.contour_index].segment_after(endpoint_index.point_index)
}
fn point_is_logically_above(&self, a: &PointIndex, b: &PointIndex) -> bool {
let a_y = self.contours[a.contour_index].points[a.point_index].y;
let b_y = self.contours[b.contour_index].points[b.point_index].y;
match a_y.partial_cmp(&b_y) {
Some(Ordering::Less) => true,
Some(Ordering::Greater) => false,
None | Some(Ordering::Equal) => {
match a.contour_index.cmp(&b.contour_index) {
Ordering::Less => true,
Ordering::Greater => false,
Ordering::Equal => a.point_index < b.point_index,
}
}
}
}
fn get(&self, point_index: &PointIndex) -> Point2D<f32> {
self.contours[point_index.contour_index].points[point_index.point_index]
}
}
impl Contour {
fn new() -> Contour {
Contour { points: vec![], flags: vec![] }
}
fn iter(&self) -> ContourIter {
ContourIter { contour: self, index: 0 }
}
fn is_empty(&self) -> bool {
self.points.is_empty()
}
fn push_transformed_point(&mut self,
point: &Point2D<f32>,
flags: PointFlags,
transform: &Transform2D<f32>,
bounding_points: &mut Option<(Point2D<f32>, Point2D<f32>)>) {
let point = transform.transform_point(point);
self.points.push(point);
self.flags.push(flags);
match *bounding_points {
Some((ref mut upper_left, ref mut lower_right)) => {
*upper_left = upper_left.min(point);
*lower_right = lower_right.max(point);
}
None => *bounding_points = Some((point, point)),
}
}
fn segment_after(&self, point_index: usize) -> Segment {
debug_assert!(self.point_is_endpoint(point_index));
let mut segment = Segment::new();
segment.from = self.points[point_index];
segment.flags |= SegmentFlags::HAS_ENDPOINTS;
let point1_index = self.add_to_point_index(point_index, 1);
if self.point_is_endpoint(point1_index) {
segment.to = self.points[point1_index];
} else {
segment.ctrl0 = self.points[point1_index];
segment.flags |= SegmentFlags::HAS_CONTROL_POINT_0;
let point2_index = self.add_to_point_index(point_index, 2);
if self.point_is_endpoint(point2_index) {
segment.to = self.points[point2_index];
} else {
segment.ctrl1 = self.points[point2_index];
segment.flags |= SegmentFlags::HAS_CONTROL_POINT_1;
let point3_index = self.add_to_point_index(point_index, 3);
segment.to = self.points[point3_index];
}
}
segment
}
fn point_is_endpoint(&self, point_index: usize) -> bool {
!self.flags[point_index].intersects(PointFlags::CONTROL_POINT_0 |
PointFlags::CONTROL_POINT_1)
}
fn add_to_point_index(&self, point_index: usize, addend: usize) -> usize {
let (index, limit) = (point_index + addend, self.points.len());
if index >= limit {
index - limit
} else {
index
}
}
fn point_is_logically_above(&self, a: usize, b: usize) -> bool {
let (a_y, b_y) = (self.points[a].y, self.points[b].y);
match a_y.partial_cmp(&b_y) {
Some(Ordering::Less) => true,
Some(Ordering::Greater) => false,
None | Some(Ordering::Equal) => a < b,
}
}
fn prev_endpoint_index_of(&self, mut point_index: usize) -> usize {
loop {
point_index = self.prev_point_index_of(point_index);
if self.point_is_endpoint(point_index) {
return point_index
}
}
}
fn next_endpoint_index_of(&self, mut point_index: usize) -> usize {
loop {
point_index = self.next_point_index_of(point_index);
if self.point_is_endpoint(point_index) {
return point_index
}
}
}
fn prev_point_index_of(&self, point_index: usize) -> usize {
if point_index == 0 {
self.points.len() - 1
} else {
point_index - 1
}
}
fn next_point_index_of(&self, point_index: usize) -> usize {
if point_index == self.points.len() - 1 {
0
} else {
point_index + 1
}
}
}
impl Debug for Contour {
fn fmt(&self, formatter: &mut Formatter) -> fmt::Result {
formatter.write_str("[")?;
if formatter.alternate() {
formatter.write_str("\n")?
}
for (index, segment) in self.iter().enumerate() {
if index > 0 {
formatter.write_str(",")?;
}
if formatter.alternate() {
formatter.write_str("\n ")?;
} else {
formatter.write_str(" ")?;
}
segment.fmt(formatter)?;
}
if formatter.alternate() {
formatter.write_str("\n")?
}
formatter.write_str("]")
}
}
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, PartialOrd, Ord)]
struct PointIndex {
contour_index: usize,
point_index: usize,
}
struct ContourIter<'a> {
contour: &'a Contour,
index: usize,
}
impl<'a> Iterator for ContourIter<'a> {
type Item = PathEvent;
fn next(&mut self) -> Option<PathEvent> {
let contour = self.contour;
if self.index == contour.points.len() + 1 {
return None
}
if self.index == contour.points.len() {
self.index += 1;
return Some(PathEvent::Close)
}
let point0_index = self.index;
let point0 = contour.points[point0_index];
self.index += 1;
if point0_index == 0 {
return Some(PathEvent::MoveTo(point0))
}
if contour.point_is_endpoint(point0_index) {
return Some(PathEvent::LineTo(point0))
}
let point1_index = self.index;
let point1 = contour.points[point1_index];
self.index += 1;
if contour.point_is_endpoint(point1_index) {
return Some(PathEvent::QuadraticTo(point0, point1))
}
let point2_index = self.index;
let point2 = contour.points[point2_index];
self.index += 1;
debug_assert!(contour.point_is_endpoint(point2_index));
Some(PathEvent::CubicTo(point0, point1, point2))
}
}
#[derive(Clone, Copy, Debug, PartialEq)]
struct Segment {
from: Point2D<f32>,
ctrl0: Point2D<f32>,
ctrl1: Point2D<f32>,
to: Point2D<f32>,
flags: SegmentFlags,
}
impl Segment {
fn new() -> Segment {
Segment {
from: Point2D::zero(),
ctrl0: Point2D::zero(),
ctrl1: Point2D::zero(),
to: Point2D::zero(),
flags: SegmentFlags::empty(),
}
}
fn from_line(line: &LineSegment<f32>) -> Segment {
Segment {
from: line.from,
ctrl0: Point2D::zero(),
ctrl1: Point2D::zero(),
to: line.to,
flags: SegmentFlags::HAS_ENDPOINTS,
}
}
fn from_quadratic(curve: &QuadraticBezierSegment<f32>) -> Segment {
Segment {
from: curve.from,
ctrl0: curve.ctrl,
ctrl1: Point2D::zero(),
to: curve.to,
flags: SegmentFlags::HAS_ENDPOINTS | SegmentFlags::HAS_CONTROL_POINT_0
}
}
fn from_cubic(curve: &CubicBezierSegment<f32>) -> Segment {
Segment {
from: curve.from,
ctrl0: curve.ctrl1,
ctrl1: curve.ctrl2,
to: curve.to,
flags: SegmentFlags::HAS_ENDPOINTS | SegmentFlags::HAS_CONTROL_POINT_0 |
SegmentFlags::HAS_CONTROL_POINT_1,
}
}
fn as_line_segment(&self) -> Option<LineSegment<f32>> {
if !self.flags.contains(SegmentFlags::HAS_CONTROL_POINT_0) {
Some(LineSegment { from: self.from, to: self.to })
} else {
None
}
}
// FIXME(pcwalton): We should basically never use this function.
fn as_cubic_segment(&self) -> Option<CubicBezierSegment<f32>> {
if !self.flags.contains(SegmentFlags::HAS_CONTROL_POINT_0) {
None
} else if !self.flags.contains(SegmentFlags::HAS_CONTROL_POINT_1) {
Some((QuadraticBezierSegment {
from: self.from,
ctrl: self.ctrl0,
to: self.to,
}).to_cubic())
} else {
Some(CubicBezierSegment {
from: self.from,
ctrl1: self.ctrl0,
ctrl2: self.ctrl1,
to: self.to,
})
}
}
fn is_degenerate(&self) -> bool {
return f32::abs(self.to.x - self.from.x) < EPSILON ||
f32::abs(self.to.y - self.from.y) < EPSILON;
const EPSILON: f32 = 0.0001;
}
fn clip_x(&self, range: Range<f32>) -> Option<Segment> {
// Trivial cases.
if (self.from.x <= range.start && self.to.x <= range.start) ||
(self.from.x >= range.end && self.to.x >= range.end) {
return None
}
let (start, end) = (f32::min(self.from.x, self.to.x), f32::max(self.from.x, self.to.x));
if start >= range.start && end <= range.end {
return Some(*self)
}
// FIXME(pcwalton): Reduce code duplication!
if let Some(mut line_segment) = self.as_line_segment() {
if let Some(t) = LineAxis::from_x(&line_segment).solve_for_t(range.start) {
let (prev, next) = line_segment.split(t);
if line_segment.from.x < line_segment.to.x {
line_segment = next
} else {
line_segment = prev
}
}
if let Some(t) = LineAxis::from_x(&line_segment).solve_for_t(range.end) {
let (prev, next) = line_segment.split(t);
if line_segment.from.x < line_segment.to.x {
line_segment = prev
} else {
line_segment = next
}
}
let clipped = Segment::from_line(&line_segment);
return Some(clipped);
}
// TODO(pcwalton): Don't degree elevate!
let mut cubic_segment = self.as_cubic_segment().unwrap();
if let Some(t) = CubicAxis::from_x(&cubic_segment).solve_for_t(range.start) {
let (prev, next) = cubic_segment.split(t);
if cubic_segment.from.x < cubic_segment.to.x {
cubic_segment = next
} else {
cubic_segment = prev
}
}
if let Some(t) = CubicAxis::from_x(&cubic_segment).solve_for_t(range.end) {
let (prev, next) = cubic_segment.split(t);
if cubic_segment.from.x < cubic_segment.to.x {
cubic_segment = prev
} else {
cubic_segment = next
}
}
let clipped = Segment::from_cubic(&cubic_segment);
return Some(clipped);
}
fn split_y(&self, y: f32) -> (Option<Segment>, Option<Segment>) {
//println!("split_y({:?}, {:?})", self, y);
// Trivial cases.
if self.from.y <= y && self.to.y <= y {
return (Some(*self), None)
}
if self.from.y >= y && self.to.y >= y {
return (None, Some(*self))
}
// TODO(pcwalton): Reduce code duplication?
let (prev, next) = match self.as_line_segment() {
Some(line_segment) => {
let t = LineAxis::from_y(&line_segment).solve_for_t(y).unwrap();
let (prev, next) = line_segment.split(t);
//println!("... split line at {}: {:?}, {:?}", t, prev, next);
(Segment::from_line(&prev), Segment::from_line(&next))
}
None => {
// TODO(pcwalton): Don't degree elevate!
let mut cubic_segment = self.as_cubic_segment().unwrap();
let t = CubicAxis::from_y(&cubic_segment).solve_for_t(y);
let t = t.expect("Failed to solve cubic for Y!");
let (prev, next) = cubic_segment.split(t);
(Segment::from_cubic(&prev), Segment::from_cubic(&next))
}
};
if self.from.y < self.to.y {
(Some(prev), Some(next))
} else {
(Some(next), Some(prev))
}
}
#[inline(never)]
fn generate_fill_primitives(&self,
strip_origin: &Point2D<f32>,
primitives: &mut Vec<FillPrimitive>) {
if let Some(ref line_segment) = self.as_line_segment() {
//println!("generate_fill_primitives({:?}, {:?})", strip_origin, line_segment);
generate_fill_primitives_for_line(line_segment, strip_origin, primitives);
return;
}
// TODO(pcwalton): Don't degree elevate!
let segment = self.as_cubic_segment().unwrap();
let flattener = Flattened::new(segment, FLATTENING_TOLERANCE);
let mut from = self.from;
for to in flattener {
generate_fill_primitives_for_line(&LineSegment { from, to }, strip_origin, primitives);
from = to;
}
fn generate_fill_primitives_for_line(segment: &LineSegment<f32>,
strip_origin: &Point2D<f32>,
primitives: &mut Vec<FillPrimitive>) {
let mut segment = *segment;
// TODO(pcwalton): Factor this point-to-tile logic out. It keeps getting repeated…
let mut from_tile_index =
f32::max(0.0, f32::floor((segment.from.x - strip_origin.x) / TILE_WIDTH)) as u32;
loop {
let tile_offset =
Vector2D::new(from_tile_index as f32 * TILE_WIDTH + strip_origin.x,
strip_origin.y);
let to_tile_index =
f32::max(0.0, f32::floor((segment.to.x - strip_origin.x) / TILE_WIDTH)) as u32;
if from_tile_index == to_tile_index {
/*println!("... ... pushing LAST fill primitive {}: {:?} @ {:?}",
primitives.len(),
segment,
tile_offset);*/
primitives.push(FillPrimitive {
from: segment.from - tile_offset,
to: segment.to - tile_offset,
tile_index: from_tile_index,
});
break;
}
// Split line at tile boundary.
let (next_tile_index, split_x) = if segment.from.x < segment.to.x {
(from_tile_index + 1, tile_offset.x + TILE_WIDTH)
} else {
(from_tile_index - 1, tile_offset.x)
};
let (prev_segment, next_segment) = segment.split_at_x(split_x);
/*println!("... ... pushing fill primitive {}: {:?} @ {:?}",
primitives.len(),
prev_segment,
tile_offset);*/
primitives.push(FillPrimitive {
from: prev_segment.from - tile_offset,
to: prev_segment.to - tile_offset,
tile_index: from_tile_index,
});
from_tile_index = next_tile_index;
segment = next_segment;
}
}
}
fn is_none(&self) -> bool {
!self.flags.contains(SegmentFlags::HAS_ENDPOINTS)
}
fn min_x(&self) -> f32 { f32::min(self.from.x, self.to.x) }
fn min_y(&self) -> f32 { f32::min(self.from.y, self.to.y) }
fn winding(&self) -> i32 {
match self.from.x.partial_cmp(&self.to.x) {
Some(Ordering::Less) => -1,
Some(Ordering::Greater) => 1,
Some(Ordering::Equal) | None => 0,
}
}
}
struct ClippedSegments {
min: Option<Segment>,
max: Option<Segment>,
}
bitflags! {
struct SegmentFlags: u8 {
const HAS_ENDPOINTS = 0x01;
const HAS_CONTROL_POINT_0 = 0x02;
const HAS_CONTROL_POINT_1 = 0x04;
}
}
// Tiling
const TILE_WIDTH: f32 = 16.0;
const TILE_HEIGHT: f32 = 16.0;
struct Tiler<'o, 'p> {
outline: &'o Outline,
fill_color: ColorU,
built_scene: &'p mut BuiltScene,
view_box: Option<Rect<f32>>,
point_queue: BinaryHeap<QueuedEndpoint>,
active_edges: Vec<ActiveEdge>,
}
impl<'o, 'p> Tiler<'o, 'p> {
fn from_outline(outline: &'o Outline,
fill_color: ColorU,
view_box: &Option<Rect<f32>>,
built_scene: &'p mut BuiltScene)
-> Tiler<'o, 'p> {
Tiler {
outline,
fill_color,
built_scene,
view_box: *view_box,
point_queue: BinaryHeap::new(),
active_edges: Vec::new(),
}
}
#[inline(never)]
fn generate_tiles(&mut self) {
// Initialize the point queue.
self.init_point_queue();
// Clip to the view box.
let mut bounds = self.outline.bounds;
if let Some(view_box) = self.view_box {
let max_x = f32::min(view_box.max_x(), bounds.max_x());
let max_y = f32::min(view_box.max_y(), bounds.max_y());
bounds.origin.x = f32::max(view_box.origin.x, bounds.origin.x);
bounds.size.width = f32::max(0.0, max_x - bounds.origin.x);
bounds.size.height = f32::max(0.0, max_y - bounds.origin.y);
}
self.active_edges.clear();
let mut strip_origin =
Point2D::new(f32::floor(bounds.origin.x / TILE_WIDTH) * TILE_WIDTH,
f32::floor(bounds.origin.y / TILE_HEIGHT) * TILE_HEIGHT);
let strip_right_extent = f32::ceil(bounds.max_x() / TILE_WIDTH) * TILE_WIDTH;
let tiles_across = ((strip_right_extent - strip_origin.x) / TILE_WIDTH) as usize;
let mut strip_fills = vec![];
let mut strip_tiles = Vec::with_capacity(tiles_across);
let mut used_strip_tiles = FixedBitSet::with_capacity(tiles_across);
// Generate strips.
while strip_origin.y < bounds.max_y() {
// Determine strip bounds.
let strip_extent = Point2D::new(strip_right_extent, strip_origin.y + TILE_HEIGHT);
let strip_bounds = Rect::new(strip_origin,
Size2D::new(strip_right_extent - strip_origin.x,
strip_extent.y - strip_origin.y));
// We can skip a bunch of steps if we're above the viewport.
let above_view_box = match self.view_box {
Some(ref view_box) => strip_extent.y <= view_box.origin.y,
None => false,
};
// Reset strip info.
strip_fills.clear();
strip_tiles.clear();
used_strip_tiles.clear();
// Allocate tiles.
let mut tile_left = strip_origin.x;
while tile_left < strip_right_extent {
let strip_origin = Point2D::new(tile_left, strip_origin.y);
strip_tiles.push(MaskTilePrimitive::new(&strip_origin, self.fill_color));
tile_left += TILE_WIDTH;
}
/*
// Populate tile strip with active intervals.
// TODO(pcwalton): Use only the active edge list!
let mut strip_tile_index = 0;
for interval in &self.active_intervals.ranges {
while strip_tile_index < strip_tiles.len() {
let tile_left = strip_tiles[strip_tile_index].position.x;
let tile_right = tile_left + TILE_WIDTH;
let tile_interval = intersect_ranges(tile_left..tile_right,
interval.start..interval.end);
if interval.winding != 0.0 {
if tile_interval == (tile_left..tile_right) {
strip_tiles[strip_tile_index].backdrop = interval.winding
} else if tile_interval.start < tile_interval.end {
let left = Point2D::new(tile_interval.start - tile_left, 0.0);
let right = Point2D::new(tile_interval.end - tile_left, 0.0);
strip_fills.push(FillPrimitive {
from: if interval.winding < 0.0 { left } else { right },
to: if interval.winding < 0.0 { right } else { left },
tile_index: strip_tile_index as u32,
});
used_strip_tiles.insert(strip_tile_index);
}
}
if tile_right > interval.end {
break
}
strip_tile_index += 1;
}
}
*/
// Process old active edges.
let (mut strip_tile_index, mut current_left) = (0, strip_bounds.origin.x);
let mut winding = 0;
for active_edge in &mut self.active_edges {
// Move over to the correct tile, filling in as we go.
// FIXME(pcwalton): Do subtile fills!!
let mut tile_left = strip_bounds.origin.x + (strip_tile_index as f32) * TILE_WIDTH;
while strip_tile_index < strip_tiles.len() {
let tile_right = tile_left + TILE_WIDTH;
let segment_left = active_edge.segment.min_x();
if tile_left > segment_left {
break
}
strip_tiles[strip_tile_index].backdrop = winding as f32;
current_left = tile_right;
tile_left = tile_right;
strip_tile_index += 1;
}
// Do subtile fill.
let min_x = active_edge.segment.min_x();
let edge_winding = active_edge.segment.winding();
if current_left < min_x && strip_tile_index < strip_tiles.len() {
let left = Point2D::new(current_left - tile_left, 0.0);
let right = Point2D::new(current_left - min_x, 0.0);
strip_fills.push(FillPrimitive {
from: if edge_winding < 0 { left } else { right },
to: if edge_winding < 0 { right } else { left },
tile_index: strip_tile_index as u32,
});
used_strip_tiles.insert(strip_tile_index);
current_left = right.x;
}
// Update winding.
winding += edge_winding;
// Process the edge.
let fills = if above_view_box { None } else { Some(&mut strip_fills) };
process_active_edge(&mut active_edge.segment,
&strip_bounds,
fills,
&mut used_strip_tiles);
}
// Add new active edges.
loop {
match self.point_queue.peek() {
Some(queued_endpoint) if queued_endpoint.y < strip_extent.y => {}
Some(_) | None => break,
}
let outline = &self.outline;
let point_index = self.point_queue.pop().unwrap().point_index;
let contour = &outline.contours[point_index.contour_index];
let prev_endpoint_index = contour.prev_endpoint_index_of(point_index.point_index);
let next_endpoint_index = contour.next_endpoint_index_of(point_index.point_index);
if contour.point_is_logically_above(point_index.point_index, prev_endpoint_index) {
let fills = if above_view_box { None } else { Some(&mut strip_fills) };
process_active_segment(contour,
prev_endpoint_index,
&mut self.active_edges,
&strip_bounds,
fills,
&mut used_strip_tiles);
self.point_queue.push(QueuedEndpoint {
point_index: PointIndex {
contour_index: point_index.contour_index,
point_index: prev_endpoint_index,
},
y: contour.points[prev_endpoint_index].y,
});
}
if contour.point_is_logically_above(point_index.point_index, next_endpoint_index) {
let fills = if above_view_box { None } else { Some(&mut strip_fills) };
process_active_segment(contour,
point_index.point_index,
&mut self.active_edges,
&strip_bounds,
fills,
&mut used_strip_tiles);
self.point_queue.push(QueuedEndpoint {
point_index: PointIndex {
contour_index: point_index.contour_index,
point_index: next_endpoint_index,
},
y: contour.points[next_endpoint_index].y,
});
}
}
// Finalize tiles.
if !above_view_box {
// Flush tiles.
let first_tile_index = self.built_scene.mask_tiles.len() as u32;
//println!("--- first tile index {} ---", first_tile_index);
for (tile_index, tile) in strip_tiles.iter().enumerate() {
if used_strip_tiles.contains(tile_index) {
/*println!("mask index {} -> {}",
tile_index,
self.built_scene.mask_tiles.len());*/
self.built_scene.mask_tiles.push(*tile);
} else if tile.backdrop != 0.0 {
self.built_scene.solid_tiles.push(SolidTilePrimitive {
position: tile.position,
color: tile.color,
});
}
}
// Flush fills.
//
// TODO(pcwalton): Don't use a temporary vector to hold these.
for fill in &strip_fills {
let real_tile_index = first_tile_index +
used_strip_tiles.count_ones(0..(fill.tile_index as usize)) as u32;
/*println!("flush fill, mask index {} -> {}",
fill.tile_index,
real_tile_index);*/
self.built_scene.fills.push(FillPrimitive {
from: fill.from,
to: fill.to,
tile_index: real_tile_index,
});
}
}
// Sort active edges.
self.active_edges.retain(|edge| !edge.segment.is_none());
self.active_edges.sort_unstable_by(|edge_a, edge_b| {
edge_a.segment.min_x().partial_cmp(&edge_b.segment.min_x()).unwrap()
});
strip_origin.y = strip_extent.y;
}
}
#[inline(never)]
fn init_point_queue(&mut self) {
// Find MIN points.
self.point_queue.clear();
for (contour_index, contour) in self.outline.contours.iter().enumerate() {
let mut cur_endpoint_index = 0;
let mut prev_endpoint_index = contour.prev_endpoint_index_of(cur_endpoint_index);
let mut next_endpoint_index = contour.next_endpoint_index_of(cur_endpoint_index);
while cur_endpoint_index < next_endpoint_index {
if contour.point_is_logically_above(cur_endpoint_index, prev_endpoint_index) &&
contour.point_is_logically_above(cur_endpoint_index, next_endpoint_index) {
self.point_queue.push(QueuedEndpoint {
point_index: PointIndex {
contour_index,
point_index: cur_endpoint_index,
},
y: contour.points[cur_endpoint_index].y,
});
}
prev_endpoint_index = cur_endpoint_index;
cur_endpoint_index = next_endpoint_index;
next_endpoint_index = contour.next_endpoint_index_of(cur_endpoint_index);
}
}
}
}
fn process_active_segment(contour: &Contour,
from_endpoint_index: usize,
active_edges: &mut Vec<ActiveEdge>,
strip_bounds: &Rect<f32>,
fills: Option<&mut Vec<FillPrimitive>>,
used_tiles: &mut FixedBitSet) {
let segment = contour.segment_after(from_endpoint_index);
if segment.is_degenerate() {
return
}
//println!("processing new active edge: {:?}", segment);
//println!("... is not degenerate ...");
let strip_range = (strip_bounds.origin.x)..(strip_bounds.max_x());
let mut segment = match segment.clip_x(strip_range.clone()) {
Some(segment) => segment,
None => return,
};
//println!("... clipped to {:?}: {:?}", strip_range, segment);
process_active_edge(&mut segment, &strip_bounds, fills, used_tiles);
if !segment.is_none() {
active_edges.push(ActiveEdge::new(segment));
}
}
fn process_active_edge(active_edge: &mut Segment,
strip_bounds: &Rect<f32>,
mut fills: Option<&mut Vec<FillPrimitive>>,
used_tiles: &mut FixedBitSet) {
let strip_extent = strip_bounds.bottom_right();
// TODO(pcwalton): Maybe these shouldn't be Options?
let (upper_segment, lower_segment) = active_edge.split_y(strip_extent.y);
*active_edge = Segment::new();
if let Some(segment) = upper_segment {
if let Some(ref mut fills) = fills {
//println!("process_active_edge: generating fill primitives for {:?}", segment);
segment.generate_fill_primitives(&strip_bounds.origin, *fills);
}
// FIXME(pcwalton): Assumes x-monotonicity!
// FIXME(pcwalton): Don't hardcode a view box left of 0!
let mut min_x = f32::min(segment.from.x, segment.to.x);
let mut max_x = f32::max(segment.from.x, segment.to.x);
min_x = clamp(min_x, 0.0, strip_extent.x);
max_x = clamp(max_x, 0.0, strip_extent.x);
let tile_left = f32::floor(min_x / TILE_WIDTH) * TILE_WIDTH;
let tile_right = f32::ceil(max_x / TILE_WIDTH) * TILE_WIDTH;
let left_tile_index = (tile_left - strip_bounds.origin.x) as u32 / TILE_WIDTH as u32;
let right_tile_index = (tile_right - strip_bounds.origin.x) as u32 / TILE_WIDTH as u32;
// Set used bits.
for tile_index in left_tile_index..right_tile_index {
used_tiles.insert(tile_index as usize);
}
}
match lower_segment {
Some(segment) => *active_edge = segment,
None => *active_edge = Segment::new(),
}
}
// Primitives
#[derive(Debug)]
struct BuiltScene {
fills: Vec<FillPrimitive>,
solid_tiles: Vec<SolidTilePrimitive>,
mask_tiles: Vec<MaskTilePrimitive>,
}
#[derive(Clone, Copy, Debug)]
struct FillPrimitive {
from: Point2D<f32>,
to: Point2D<f32>,
tile_index: u32,
}
#[derive(Clone, Copy, Debug)]
struct SolidTilePrimitive {
position: Point2D<f32>,
color: ColorU,
}
#[derive(Clone, Copy, Debug)]
struct MaskTilePrimitive {
position: Point2D<f32>,
color: ColorU,
backdrop: f32,
}
#[derive(Clone, Copy, Debug)]
struct ColorU {
r: u8,
g: u8,
b: u8,
a: u8,
}
impl BuiltScene {
fn new() -> BuiltScene {
BuiltScene { fills: vec![], solid_tiles: vec![], mask_tiles: vec![] }
}
fn write<W>(&self, writer: &mut W) -> io::Result<()> where W: Write {
writer.write_all(b"RIFF")?;
let fill_size = self.fills.len() * mem::size_of::<FillPrimitive>();
let solid_tiles_size = self.solid_tiles.len() * mem::size_of::<SolidTilePrimitive>();
let mask_tiles_size = self.mask_tiles.len() * mem::size_of::<MaskTilePrimitive>();
writer.write_u32::<LittleEndian>((4 +
8 + fill_size +
8 + solid_tiles_size +
8 + mask_tiles_size) as u32)?;
writer.write_all(b"PF3S")?;
writer.write_all(b"fill")?;
writer.write_u32::<LittleEndian>(fill_size as u32)?;
for fill_primitive in &self.fills {
write_point(writer, &fill_primitive.from)?;
write_point(writer, &fill_primitive.to)?;
writer.write_u32::<LittleEndian>(fill_primitive.tile_index)?;
}
writer.write_all(b"soli")?;
writer.write_u32::<LittleEndian>(solid_tiles_size as u32)?;
for &tile_primitive in &self.solid_tiles {
let color = tile_primitive.color;
write_point(writer, &tile_primitive.position)?;
writer.write_all(&[color.r, color.g, color.b, color.a]).unwrap();
}
writer.write_all(b"mask")?;
writer.write_u32::<LittleEndian>(mask_tiles_size as u32)?;
for &tile_primitive in &self.mask_tiles {
let color = tile_primitive.color;
write_point(writer, &tile_primitive.position)?;
writer.write_f32::<LittleEndian>(tile_primitive.backdrop)?;
writer.write_all(&[color.r, color.g, color.b, color.a]).unwrap();
}
return Ok(());
fn write_point<W>(writer: &mut W, point: &Point2D<f32>) -> io::Result<()> where W: Write {
writer.write_f32::<LittleEndian>(point.x)?;
writer.write_f32::<LittleEndian>(point.y)?;
Ok(())
}
}
}
impl SolidTilePrimitive {
fn new(position: &Point2D<f32>, color: ColorU) -> SolidTilePrimitive {
SolidTilePrimitive { position: *position, color }
}
}
impl MaskTilePrimitive {
fn new(position: &Point2D<f32>, color: ColorU) -> MaskTilePrimitive {
MaskTilePrimitive { position: *position, backdrop: 0.0, color }
}
}
impl ColorU {
fn black() -> ColorU {
ColorU { r: 0, g: 0, b: 0, a: 255 }
}
fn from_svg_color(svg_color: SvgColor) -> ColorU {
ColorU { r: svg_color.red, g: svg_color.green, b: svg_color.blue, a: 255 }
}
}
// Intervals
#[derive(Debug)]
struct Intervals {
ranges: Vec<IntervalRange>,
}
#[derive(Clone, Copy, Debug)]
struct IntervalRange {
start: f32,
end: f32,
winding: f32,
}
impl Intervals {
fn new(bounds: Range<f32>) -> Intervals {
Intervals {
ranges: vec![IntervalRange::new(bounds.start, bounds.end, 0.0)],
}
}
fn add(&mut self, range: IntervalRange) {
if range.is_empty() {
return
}
self.split_at(range.start);
self.split_at(range.end);
// Adjust winding numbers.
let mut index = 0;
while range.start != self.ranges[index].start {
index += 1
}
loop {
self.ranges[index].winding += range.winding;
if range.end == self.ranges[index].end {
break
}
index += 1
}
self.merge_adjacent();
}
fn reset(&mut self, start: f32, end: f32) {
self.ranges.truncate(1);
self.ranges[0] = IntervalRange::new(start, end, 0.0);
}
fn extent(&self) -> f32 {
self.ranges.last().unwrap().end
}
fn split_at(&mut self, value: f32) {
let (mut low, mut high) = (0, self.ranges.len());
loop {
let mid = low + (high - low) / 2;
let IntervalRange {
start: old_start,
end: old_end,
winding,
} = self.ranges[mid];
if value < old_start {
high = mid;
continue
}
if value > old_end {
low = mid + 1;
continue
}
if old_start < value && value < old_end {
self.ranges[mid] = IntervalRange::new(old_start, value, winding);
self.ranges.insert(mid + 1, IntervalRange::new(value, old_end, winding));
}
return
}
}
fn merge_adjacent(&mut self) {
let mut dest_range_index = 0;
let mut current_range = self.ranges[0];
for src_range_index in 1..self.ranges.len() {
if self.ranges[src_range_index].winding == current_range.winding {
current_range.end = self.ranges[src_range_index].end
} else {
self.ranges[dest_range_index] = current_range;
dest_range_index += 1;
current_range = self.ranges[src_range_index];
}
}
self.ranges[dest_range_index] = current_range;
dest_range_index += 1;
self.ranges.truncate(dest_range_index);
}
}
impl IntervalRange {
fn new(start: f32, end: f32, winding: f32) -> IntervalRange {
IntervalRange {
start,
end,
winding,
}
}
fn is_empty(&self) -> bool {
self.start == self.end
}
}
// SVG stuff
struct SvgPathToPathEvents<'a, I> where I: Iterator<Item = SvgPathSegment> {
iter: &'a mut I,
last_endpoint: Point2D<f32>,
last_ctrl_point: Option<Point2D<f32>>,
}
impl<'a, I> SvgPathToPathEvents<'a, I> where I: Iterator<Item = SvgPathSegment> {
fn new(iter: &'a mut I) -> SvgPathToPathEvents<'a, I> {
SvgPathToPathEvents { iter, last_endpoint: Point2D::zero(), last_ctrl_point: None }
}
}
impl<'a, I> Iterator for SvgPathToPathEvents<'a, I> where I: Iterator<Item = SvgPathSegment> {
type Item = PathEvent;
fn next(&mut self) -> Option<PathEvent> {
return match self.iter.next() {
None => None,
Some(SvgPathSegment::MoveTo { abs, x, y }) => {
let to = compute_point(x, y, abs, &self.last_endpoint);
self.last_endpoint = to;
self.last_ctrl_point = None;
Some(PathEvent::MoveTo(to))
}
Some(SvgPathSegment::LineTo { abs, x, y }) => {
let to = compute_point(x, y, abs, &self.last_endpoint);
self.last_endpoint = to;
self.last_ctrl_point = None;
Some(PathEvent::LineTo(to))
}
Some(SvgPathSegment::HorizontalLineTo { abs, x }) => {
let to = compute_point(x, 0.0, abs, &self.last_endpoint);
self.last_endpoint = to;
self.last_ctrl_point = None;
Some(PathEvent::LineTo(to))
}
Some(SvgPathSegment::VerticalLineTo { abs, y }) => {
let to = compute_point(0.0, y, abs, &self.last_endpoint);
self.last_endpoint = to;
self.last_ctrl_point = None;
Some(PathEvent::LineTo(to))
}
Some(SvgPathSegment::Quadratic { abs, x1, y1, x, y }) => {
let ctrl = compute_point(x1, y1, abs, &self.last_endpoint);
self.last_ctrl_point = Some(ctrl);
let to = compute_point(x, y, abs, &self.last_endpoint);
self.last_endpoint = to;
Some(PathEvent::QuadraticTo(ctrl, to))
}
Some(SvgPathSegment::SmoothQuadratic { abs, x, y }) => {
let ctrl = reflect_point(&self.last_endpoint, &self.last_ctrl_point);
self.last_ctrl_point = Some(ctrl);
let to = compute_point(x, y, abs, &self.last_endpoint);
self.last_endpoint = to;
Some(PathEvent::QuadraticTo(ctrl, to))
}
Some(SvgPathSegment::CurveTo { abs, x1, y1, x2, y2, x, y }) => {
let ctrl0 = compute_point(x1, y1, abs, &self.last_endpoint);
let ctrl1 = compute_point(x2, y2, abs, &self.last_endpoint);
self.last_ctrl_point = Some(ctrl1);
let to = compute_point(x, y, abs, &self.last_endpoint);
self.last_endpoint = to;
Some(PathEvent::CubicTo(ctrl0, ctrl1, to))
}
Some(SvgPathSegment::SmoothCurveTo { abs, x2, y2, x, y }) => {
let ctrl0 = reflect_point(&self.last_endpoint, &self.last_ctrl_point);
let ctrl1 = compute_point(x2, y2, abs, &self.last_endpoint);
self.last_ctrl_point = Some(ctrl1);
let to = compute_point(x, y, abs, &self.last_endpoint);
self.last_endpoint = to;
Some(PathEvent::CubicTo(ctrl0, ctrl1, to))
}
Some(SvgPathSegment::ClosePath { abs: _ }) => {
// FIXME(pcwalton): Current endpoint becomes path initial point!
self.last_ctrl_point = None;
Some(PathEvent::Close)
}
Some(SvgPathSegment::EllipticalArc { .. }) => unimplemented!("arcs"),
};
fn compute_point(x: f64, y: f64, abs: bool, last_endpoint: &Point2D<f32>)
-> Point2D<f32> {
let point = Point2D::new(x, y).to_f32();
if !abs {
*last_endpoint + point.to_vector()
} else {
point
}
}
fn reflect_point(last_endpoint: &Point2D<f32>, last_ctrl_point: &Option<Point2D<f32>>)
-> Point2D<f32> {
match *last_ctrl_point {
Some(ref last_ctrl_point) => {
let vector = *last_endpoint - *last_ctrl_point;
*last_endpoint + vector
}
None => *last_endpoint,
}
}
}
}
// Monotonic conversion utilities
// TODO(pcwalton): I think we only need to be monotonic in Y, maybe?
struct MonotonicConversionIter<I> where I: Iterator<Item = PathEvent> {
inner: I,
buffer: Option<PathEvent>,
last_point: Point2D<f32>,
}
impl<I> Iterator for MonotonicConversionIter<I> where I: Iterator<Item = PathEvent> {
type Item = PathEvent;
fn next(&mut self) -> Option<PathEvent> {
if self.buffer.is_none() {
match self.inner.next() {
None => return None,
Some(event) => self.buffer = Some(event),
}
}
match self.buffer.take().unwrap() {
PathEvent::MoveTo(to) => {
self.last_point = to;
Some(PathEvent::MoveTo(to))
}
PathEvent::LineTo(to) => {
self.last_point = to;
Some(PathEvent::LineTo(to))
}
PathEvent::CubicTo(ctrl0, ctrl1, to) => {
let segment = CubicBezierSegment {
from: self.last_point,
ctrl1: ctrl0,
ctrl2: ctrl1,
to,
};
if segment.is_monotonic() {
self.last_point = to;
return Some(PathEvent::CubicTo(ctrl0, ctrl1, to))
}
// FIXME(pcwalton): O(n^2)!
let mut t = None;
segment.for_each_monotonic_t(|split_t| {
if t.is_none() {
t = Some(split_t)
}
});
let t = t.unwrap();
if t_is_too_close_to_zero_or_one(t) {
self.last_point = to;
return Some(PathEvent::CubicTo(ctrl0, ctrl1, to))
}
let (prev, next) = segment.split(t);
self.last_point = next.from;
self.buffer = Some(PathEvent::CubicTo(next.ctrl1, next.ctrl2, next.to));
return Some(PathEvent::CubicTo(prev.ctrl1, prev.ctrl2, prev.to));
}
PathEvent::QuadraticTo(ctrl, to) => {
let segment = QuadraticBezierSegment { from: self.last_point, ctrl: ctrl, to };
if segment.is_monotonic() {
self.last_point = to;
return Some(PathEvent::QuadraticTo(ctrl, to))
}
// FIXME(pcwalton): O(n^2)!
let mut t = None;
segment.for_each_monotonic_t(|split_t| {
if t.is_none() {
t = Some(split_t)
}
});
let t = t.unwrap();
if t_is_too_close_to_zero_or_one(t) {
self.last_point = to;
return Some(PathEvent::QuadraticTo(ctrl, to))
}
let (prev, next) = segment.split(t);
self.last_point = next.from;
self.buffer = Some(PathEvent::QuadraticTo(next.ctrl, next.to));
return Some(PathEvent::QuadraticTo(prev.ctrl, prev.to));
}
PathEvent::Close => Some(PathEvent::Close),
PathEvent::Arc(a, b, c, d) => {
// FIXME(pcwalton): Make these monotonic too.
return Some(PathEvent::Arc(a, b, c, d))
}
}
}
}
impl<I> MonotonicConversionIter<I> where I: Iterator<Item = PathEvent> {
fn new(inner: I) -> MonotonicConversionIter<I> {
MonotonicConversionIter {
inner,
buffer: None,
last_point: Point2D::zero(),
}
}
}
// Path utilities
trait SolveT {
fn sample(&self, t: f32) -> f32;
fn sample_deriv(&self, t: f32) -> f32;
// TODO(pcwalton): Use Brent's method.
fn solve_for_t(&self, x: f32) -> Option<f32> {
const MAX_ITERATIONS: u32 = 64;
const TOLERANCE: f32 = 0.001;
let (mut min, mut max) = (0.0, 1.0);
let (mut x_min, x_max) = (self.sample(min) - x, self.sample(max) - x);
if (x_min < 0.0 && x_max < 0.0) || (x_min > 0.0 && x_max > 0.0) {
return None
}
let mut iteration = 0;
loop {
let mid = lerp(min, max, 0.5);
if iteration >= MAX_ITERATIONS || (max - min) * 0.5 < TOLERANCE {
return Some(mid)
}
let x_mid = self.sample(mid) - x;
if x_mid == 0.0 {
return Some(mid)
}
if (x_min < 0.0 && x_mid < 0.0) || (x_min > 0.0 && x_mid > 0.0) {
min = mid;
x_min = x_mid;
} else {
max = mid;
}
iteration += 1;
}
}
}
// FIXME(pcwalton): This is probably dumb and inefficient.
struct LineAxis { from: f32, to: f32 }
impl LineAxis {
fn from_x(segment: &LineSegment<f32>) -> LineAxis {
LineAxis { from: segment.from.x, to: segment.to.x }
}
fn from_y(segment: &LineSegment<f32>) -> LineAxis {
LineAxis { from: segment.from.y, to: segment.to.y }
}
}
impl SolveT for LineAxis {
fn sample(&self, t: f32) -> f32 {
lerp(self.from, self.to, t)
}
fn sample_deriv(&self, t: f32) -> f32 {
self.to - self.from
}
}
struct QuadraticAxis { from: f32, ctrl: f32, to: f32 }
impl QuadraticAxis {
fn from_x(segment: &QuadraticBezierSegment<f32>) -> QuadraticAxis {
QuadraticAxis { from: segment.from.x, ctrl: segment.ctrl.x, to: segment.to.x }
}
fn from_y(segment: &QuadraticBezierSegment<f32>) -> QuadraticAxis {
QuadraticAxis { from: segment.from.y, ctrl: segment.ctrl.y, to: segment.to.y }
}
}
impl SolveT for QuadraticAxis {
fn sample(&self, t: f32) -> f32 {
lerp(lerp(self.from, self.ctrl, t), lerp(self.ctrl, self.to, t), t)
}
fn sample_deriv(&self, t: f32) -> f32 {
2.0 * (self.to - 2.0 * self.ctrl + self.from)
}
}
struct CubicAxis { from: f32, ctrl0: f32, ctrl1: f32, to: f32 }
impl CubicAxis {
fn from_x(segment: &CubicBezierSegment<f32>) -> CubicAxis {
CubicAxis {
from: segment.from.x,
ctrl0: segment.ctrl1.x,
ctrl1: segment.ctrl2.x,
to: segment.to.x,
}
}
fn from_y(segment: &CubicBezierSegment<f32>) -> CubicAxis {
CubicAxis {
from: segment.from.y,
ctrl0: segment.ctrl1.y,
ctrl1: segment.ctrl2.y,
to: segment.to.y,
}
}
}
impl SolveT for CubicAxis {
fn sample(&self, t: f32) -> f32 {
// FIXME(pcwalton): Use Horner's method or something.
let p01 = lerp(self.from, self.ctrl0, t);
let p12 = lerp(self.ctrl0, self.ctrl1, t);
let p23 = lerp(self.ctrl1, self.to, t);
let (p012, p123) = (lerp(p01, p12, t), lerp(p12, p23, t));
lerp(p012, p123, t)
}
fn sample_deriv(&self, t: f32) -> f32 {
let inv_t = 1.0 - t;
3.0 * inv_t * inv_t * (self.ctrl0 - self.from) +
6.0 * inv_t * t * (self.ctrl1 - self.ctrl0) +
3.0 * t * t * (self.to - self.ctrl1)
}
}
// Heap
#[derive(Clone, Debug)]
pub struct Heap<T> {
array: Vec<T>,
}
impl<T> Heap<T> {
fn new() -> Heap<T> {
Heap { array: vec![] }
}
fn sift_up<C>(&mut self, mut index: usize, mut compare: C) where C: FnMut(&T, &T) -> Ordering {
while index != 0 {
let parent_index = self.parent_index(index);
if compare(&self.array[index], &self.array[parent_index]) == Ordering::Less {
self.array.swap(index, parent_index)
}
index = parent_index;
}
}
fn sift_down<C>(&mut self, mut index: usize, mut compare: C)
where C: FnMut(&T, &T) -> Ordering {
while self.first_child_index(index) < self.array.len() {
let min_child = self.min_child(index, |a, b| compare(a, b));
if compare(&self.array[index], &self.array[min_child]) == Ordering::Greater {
self.array.swap(index, min_child)
}
index = min_child;
}
}
fn min_child<C>(&mut self, index: usize, mut compare: C) -> usize
where C: FnMut(&T, &T) -> Ordering {
let first_child_index = self.first_child_index(index);
let last_child_index = self.last_child_index(index);
if last_child_index >= self.array.len() ||
compare(&self.array[first_child_index],
&self.array[last_child_index]) == Ordering::Less {
first_child_index
} else {
last_child_index
}
}
fn parent_index(&self, index: usize) -> usize { (index - 1) / 2 }
fn first_child_index(&self, index: usize) -> usize { index * 2 + 1 }
fn last_child_index(&self, index: usize) -> usize { index * 2 + 2 }
#[inline(never)]
fn push<C>(&mut self, value: T, mut compare: C) where C: FnMut(&T, &T) -> Ordering {
let index = self.array.len();
self.array.push(value);
self.sift_up(index, compare);
}
fn peek_min(&self) -> Option<&T> {
self.array.get(0)
}
#[inline(never)]
fn shift_min<C>(&mut self, mut compare: C) -> Option<T> where C: FnMut(&T, &T) -> Ordering {
if self.array.is_empty() {
None
} else {
let min = self.array.swap_remove(0);
self.sift_down(0, compare);
Some(min)
}
}
fn is_empty(&self) -> bool {
self.array.is_empty()
}
fn clear(&mut self) {
self.array.clear()
}
}
// Queued endpoints
#[derive(PartialEq)]
struct QueuedEndpoint {
point_index: PointIndex,
y: f32,
}
impl Eq for QueuedEndpoint {}
impl PartialOrd<QueuedEndpoint> for QueuedEndpoint {
fn partial_cmp(&self, other: &QueuedEndpoint) -> Option<Ordering> {
match other.y.partial_cmp(&self.y) {
Some(Ordering::Equal) | None => {
match other.point_index.contour_index.cmp(&self.point_index.contour_index) {
Ordering::Equal => {
Some(other.point_index.point_index.cmp(&self.point_index.point_index))
}
ordering => Some(ordering),
}
}
Some(ordering) => Some(ordering),
}
}
}
impl Ord for QueuedEndpoint {
fn cmp(&self, other: &QueuedEndpoint) -> Ordering {
match other.y.partial_cmp(&self.y) {
Some(Ordering::Equal) | None => {
match other.point_index.contour_index.cmp(&self.point_index.contour_index) {
Ordering::Equal => {
other.point_index.point_index.cmp(&self.point_index.point_index)
}
ordering => ordering,
}
}
Some(ordering) => ordering,
}
}
}
// Active edges
#[derive(Clone, PartialEq, Debug)]
struct ActiveEdge {
segment: Segment,
}
impl ActiveEdge {
fn new(segment: Segment) -> ActiveEdge {
ActiveEdge { segment }
}
}
impl Eq for ActiveEdge {}
impl PartialOrd<ActiveEdge> for ActiveEdge {
fn partial_cmp(&self, other: &ActiveEdge) -> Option<Ordering> {
let this_left = f32::min(self.segment.from.x, self.segment.to.x);
let other_left = f32::min(other.segment.from.x, other.segment.to.x);
other_left.partial_cmp(&this_left)
}
}
impl Ord for ActiveEdge {
fn cmp(&self, other: &ActiveEdge) -> Ordering {
let this_left = f32::min(self.segment.from.x, self.segment.to.x);
let other_left = f32::min(other.segment.from.x, other.segment.to.x);
other_left.partial_cmp(&this_left).unwrap_or(Ordering::Equal)
}
}
// Trivial utilities
fn lerp(a: f32, b: f32, t: f32) -> f32 {
a + (b - a) * t
}
fn clamp(x: f32, min: f32, max: f32) -> f32 {
f32::max(f32::min(x, max), min)
}
fn intersect_ranges(a: Range<f32>, b: Range<f32>) -> Range<f32> {
let (start, end) = (f32::max(a.start, b.start), f32::min(a.end, b.end));
if start < end {
start..end
} else {
start..start
}
}
fn t_is_too_close_to_zero_or_one(t: f32) -> bool {
const EPSILON: f32 = 0.001;
t < EPSILON || t > 1.0 - EPSILON
}
// Testing
#[cfg(test)]
mod test {
use crate::{Heap, IntervalRange, Intervals};
use quickcheck::{self, Arbitrary, Gen};
use rand::Rng;
use std::ops::Range;
#[test]
fn test_heap() {
quickcheck::quickcheck(prop_heap as fn(Vec<i32>) -> bool);
fn prop_heap(mut values: Vec<i32>) -> bool {
let mut heap = Heap::new();
for &value in &values {
heap.push(value, |a, b| a.cmp(&b))
}
values.sort();
let mut results = Vec::with_capacity(values.len());
while !heap.is_empty() {
results.push(heap.shift_min(|a, b| a.cmp(&b)).unwrap());
}
assert_eq!(&values, &results);
true
}
}
#[test]
fn test_intervals() {
quickcheck::quickcheck(prop_intervals as fn(Spec) -> bool);
fn prop_intervals(spec: Spec) -> bool {
let mut intervals = Intervals::new(spec.bounds.clone());
for range in spec.ranges {
intervals.add(range);
}
assert!(intervals.ranges.len() > 0);
assert_eq!(intervals.ranges[0].start, spec.bounds.start);
assert_eq!(intervals.ranges.last().unwrap().end, spec.bounds.end);
for prev_index in 0..(intervals.ranges.len() - 1) {
let next_index = prev_index + 1;
assert_eq!(intervals.ranges[prev_index].end, intervals.ranges[next_index].start);
assert_ne!(intervals.ranges[prev_index].winding,
intervals.ranges[next_index].winding);
}
true
}
#[derive(Clone, Debug)]
struct Spec {
bounds: Range<f32>,
ranges: Vec<IntervalRange>,
}
impl Arbitrary for Spec {
fn arbitrary<G>(g: &mut G) -> Spec where G: Gen {
const EPSILON: f32 = 0.0001;
let size = g.size();
let start = g.gen_range(EPSILON, size as f32);
let end = g.gen_range(start + EPSILON, size as f32);
let mut ranges = vec![];
let range_count = g.gen_range(0, size);
for _ in 0..range_count {
let (a, b) = (g.gen_range(start, end), g.gen_range(start, end));
let winding = g.gen_range(-(size as i32), size as i32) as f32;
ranges.push(IntervalRange::new(f32::min(a, b), f32::max(a, b), winding));
}
Spec {
bounds: start..end,
ranges,
}
}
}
}
}