luau/Analysis/src/Unifier.cpp

2973 lines
100 KiB
C++
Raw Normal View History

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/Unifier.h"
#include "Luau/Common.h"
#include "Luau/Instantiation.h"
#include "Luau/RecursionCounter.h"
#include "Luau/Scope.h"
#include "Luau/StringUtils.h"
#include "Luau/TimeTrace.h"
#include "Luau/ToString.h"
#include "Luau/TypePack.h"
#include "Luau/TypeUtils.h"
#include "Luau/Type.h"
#include "Luau/VisitType.h"
#include <algorithm>
LUAU_FASTINT(LuauTypeInferTypePackLoopLimit)
LUAU_FASTFLAG(LuauErrorRecoveryType)
LUAU_FASTFLAGVARIABLE(LuauInstantiateInSubtyping, false)
LUAU_FASTFLAGVARIABLE(LuauUninhabitedSubAnything2, false)
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 14:06:22 -04:00
LUAU_FASTFLAGVARIABLE(LuauVariadicAnyCanBeGeneric, false)
LUAU_FASTFLAGVARIABLE(LuauMaintainScopesInUnifier, false)
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
LUAU_FASTFLAGVARIABLE(LuauTransitiveSubtyping, false)
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 14:06:22 -04:00
LUAU_FASTFLAGVARIABLE(LuauOccursIsntAlwaysFailure, false)
LUAU_FASTFLAG(LuauClassTypeVarsInSubstitution)
LUAU_FASTFLAG(DebugLuauDeferredConstraintResolution)
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
LUAU_FASTFLAG(LuauNormalizeBlockedTypes)
LUAU_FASTFLAG(LuauNegatedClassTypes)
LUAU_FASTFLAG(LuauNegatedTableTypes)
namespace Luau
{
struct PromoteTypeLevels final : TypeOnceVisitor
{
TxnLog& log;
2022-02-11 14:02:09 -05:00
const TypeArena* typeArena = nullptr;
TypeLevel minLevel;
Scope* outerScope = nullptr;
bool useScopes;
PromoteTypeLevels(TxnLog& log, const TypeArena* typeArena, TypeLevel minLevel, Scope* outerScope, bool useScopes)
2022-03-11 11:55:02 -05:00
: log(log)
2022-02-11 14:02:09 -05:00
, typeArena(typeArena)
, minLevel(minLevel)
, outerScope(outerScope)
, useScopes(useScopes)
{
}
template<typename TID, typename T>
void promote(TID ty, T* t)
{
if (FFlag::DebugLuauDeferredConstraintResolution && !t)
return;
LUAU_ASSERT(t);
if (useScopes)
{
if (subsumesStrict(outerScope, t->scope))
log.changeScope(ty, NotNull{outerScope});
}
else
{
if (minLevel.subsumesStrict(t->level))
{
log.changeLevel(ty, minLevel);
}
}
}
2022-05-05 20:03:43 -04:00
bool visit(TypeId ty) override
{
2022-02-11 14:02:09 -05:00
// Type levels of types from other modules are already global, so we don't need to promote anything inside
2022-03-24 18:04:14 -04:00
if (ty->owningArena != typeArena)
2022-02-11 14:02:09 -05:00
return false;
return true;
}
2022-05-05 20:03:43 -04:00
bool visit(TypePackId tp) override
{
// Type levels of types from other modules are already global, so we don't need to promote anything inside
if (tp->owningArena != typeArena)
return false;
return true;
}
bool visit(TypeId ty, const FreeType&) override
{
// Surprise, it's actually a BoundType that hasn't been committed yet.
// Calling getMutable on this will trigger an assertion.
if (!log.is<FreeType>(ty))
return true;
promote(ty, log.getMutable<FreeType>(ty));
return true;
}
bool visit(TypeId ty, const FunctionType&) override
{
2022-02-11 14:02:09 -05:00
// Type levels of types from other modules are already global, so we don't need to promote anything inside
2022-03-24 18:04:14 -04:00
if (ty->owningArena != typeArena)
2022-02-11 14:02:09 -05:00
return false;
// Surprise, it's actually a BoundTypePack that hasn't been committed yet.
// Calling getMutable on this will trigger an assertion.
if (!log.is<FunctionType>(ty))
return true;
promote(ty, log.getMutable<FunctionType>(ty));
return true;
}
bool visit(TypeId ty, const TableType& ttv) override
{
2022-02-11 14:02:09 -05:00
// Type levels of types from other modules are already global, so we don't need to promote anything inside
2022-03-24 18:04:14 -04:00
if (ty->owningArena != typeArena)
2022-02-11 14:02:09 -05:00
return false;
if (ttv.state != TableState::Free && ttv.state != TableState::Generic)
return true;
// Surprise, it's actually a BoundTypePack that hasn't been committed yet.
// Calling getMutable on this will trigger an assertion.
if (!log.is<TableType>(ty))
return true;
promote(ty, log.getMutable<TableType>(ty));
return true;
}
2022-05-05 20:03:43 -04:00
bool visit(TypePackId tp, const FreeTypePack&) override
{
// Surprise, it's actually a BoundTypePack that hasn't been committed yet.
// Calling getMutable on this will trigger an assertion.
2022-03-11 11:55:02 -05:00
if (!log.is<FreeTypePack>(tp))
return true;
2022-03-11 11:55:02 -05:00
promote(tp, log.getMutable<FreeTypePack>(tp));
return true;
}
};
static void promoteTypeLevels(TxnLog& log, const TypeArena* typeArena, TypeLevel minLevel, Scope* outerScope, bool useScopes, TypeId ty)
{
2022-02-11 14:02:09 -05:00
// Type levels of types from other modules are already global, so we don't need to promote anything inside
2022-03-24 18:04:14 -04:00
if (ty->owningArena != typeArena)
2022-02-11 14:02:09 -05:00
return;
PromoteTypeLevels ptl{log, typeArena, minLevel, outerScope, useScopes};
ptl.traverse(ty);
}
void promoteTypeLevels(TxnLog& log, const TypeArena* typeArena, TypeLevel minLevel, Scope* outerScope, bool useScopes, TypePackId tp)
{
2022-02-11 14:02:09 -05:00
// Type levels of types from other modules are already global, so we don't need to promote anything inside
2022-03-24 18:04:14 -04:00
if (tp->owningArena != typeArena)
2022-02-11 14:02:09 -05:00
return;
PromoteTypeLevels ptl{log, typeArena, minLevel, outerScope, useScopes};
ptl.traverse(tp);
}
struct SkipCacheForType final : TypeOnceVisitor
{
2022-02-11 14:02:09 -05:00
SkipCacheForType(const DenseHashMap<TypeId, bool>& skipCacheForType, const TypeArena* typeArena)
: skipCacheForType(skipCacheForType)
2022-02-11 14:02:09 -05:00
, typeArena(typeArena)
{
}
bool visit(TypeId, const FreeType&) override
{
result = true;
return false;
}
bool visit(TypeId, const BoundType&) override
{
result = true;
return false;
}
bool visit(TypeId, const GenericType&) override
{
result = true;
return false;
}
bool visit(TypeId, const BlockedType&) override
{
result = true;
return false;
}
bool visit(TypeId, const PendingExpansionType&) override
{
result = true;
return false;
}
bool visit(TypeId ty, const TableType&) override
{
2022-02-11 14:02:09 -05:00
// Types from other modules don't contain mutable elements and are ok to cache
2022-03-24 18:04:14 -04:00
if (ty->owningArena != typeArena)
2022-02-11 14:02:09 -05:00
return false;
TableType& ttv = *getMutable<TableType>(ty);
if (ttv.boundTo)
{
result = true;
return false;
}
if (ttv.state != TableState::Sealed)
{
result = true;
return false;
}
return true;
}
2022-05-05 20:03:43 -04:00
bool visit(TypeId ty) override
{
2022-02-11 14:02:09 -05:00
// Types from other modules don't contain mutable elements and are ok to cache
2022-03-24 18:04:14 -04:00
if (ty->owningArena != typeArena)
2022-02-11 14:02:09 -05:00
return false;
const bool* prev = skipCacheForType.find(ty);
if (prev && *prev)
{
result = true;
return false;
}
return true;
}
2022-05-05 20:03:43 -04:00
bool visit(TypePackId tp) override
{
2022-02-11 14:02:09 -05:00
// Types from other modules don't contain mutable elements and are ok to cache
2022-03-24 18:04:14 -04:00
if (tp->owningArena != typeArena)
2022-02-11 14:02:09 -05:00
return false;
return true;
}
2022-05-05 20:03:43 -04:00
bool visit(TypePackId tp, const FreeTypePack&) override
{
result = true;
return false;
}
2022-05-05 20:03:43 -04:00
bool visit(TypePackId tp, const BoundTypePack&) override
{
result = true;
return false;
}
2022-05-05 20:03:43 -04:00
bool visit(TypePackId tp, const GenericTypePack&) override
{
result = true;
return false;
}
bool visit(TypePackId tp, const BlockedTypePack&) override
{
result = true;
return false;
}
const DenseHashMap<TypeId, bool>& skipCacheForType;
2022-02-11 14:02:09 -05:00
const TypeArena* typeArena = nullptr;
bool result = false;
};
2022-02-24 18:53:37 -05:00
bool Widen::isDirty(TypeId ty)
{
return log->is<SingletonType>(ty);
2022-02-24 18:53:37 -05:00
}
bool Widen::isDirty(TypePackId)
{
return false;
}
TypeId Widen::clean(TypeId ty)
{
LUAU_ASSERT(isDirty(ty));
auto stv = log->getMutable<SingletonType>(ty);
2022-02-24 18:53:37 -05:00
LUAU_ASSERT(stv);
if (get<StringSingleton>(stv))
return builtinTypes->stringType;
2022-02-24 18:53:37 -05:00
else
{
// If this assert trips, it's likely we now have number singletons.
LUAU_ASSERT(get<BooleanSingleton>(stv));
return builtinTypes->booleanType;
2022-02-24 18:53:37 -05:00
}
}
TypePackId Widen::clean(TypePackId)
{
throw InternalCompilerError("Widen attempted to clean a dirty type pack?");
2022-02-24 18:53:37 -05:00
}
bool Widen::ignoreChildren(TypeId ty)
{
if (FFlag::LuauClassTypeVarsInSubstitution && get<ClassType>(ty))
return true;
return !log->is<UnionType>(ty);
2022-02-24 18:53:37 -05:00
}
TypeId Widen::operator()(TypeId ty)
{
return substitute(ty).value_or(ty);
}
TypePackId Widen::operator()(TypePackId tp)
{
return substitute(tp).value_or(tp);
}
Sync to upstream/release/566 (#853) * Fixed incorrect lexeme generated for string parts in the middle of an interpolated string (Fixes https://github.com/Roblox/luau/issues/744) * DeprecatedApi lint can report some issues without type inference information * Fixed performance of autocomplete requests when suggestions have large intersection types (Solves https://github.com/Roblox/luau/discussions/847) * Marked `table.getn`/`foreach`/`foreachi` as deprecated ([RFC: Deprecate table.getn/foreach/foreachi](https://github.com/Roblox/luau/blob/master/rfcs/deprecate-table-getn-foreach.md)) * With -O2 optimization level, we now optimize builtin calls based on known argument/return count. Note that this change can be observable if `getfenv/setfenv` is used to substitute a builtin, especially if arity is different. Fastcall heavy tests show a 1-2% improvement. * Luau can now be built with clang-cl (Fixes https://github.com/Roblox/luau/issues/736) We also made many improvements to our experimental components. For our new type solver: * Overhauled data flow analysis system, fixed issues with 'repeat' loops, global variables and type annotations * Type refinements now work on generic table indexing with a string literal * Type refinements will properly track potentially 'nil' values (like t[x] for a missing key) and their further refinements * Internal top table type is now isomorphic to `{}` which fixes issues when `typeof(v) == 'table'` type refinement is handled * References to non-existent types in type annotations no longer resolve to 'error' type like in old solver * Improved handling of class unions in property access expressions * Fixed default type packs * Unsealed tables can now have metatables * Restored expected types for function arguments And for native code generation: * Added min and max IR instructions mapping to vminsd/vmaxsd on x64 * We now speculatively extract direct execution fast-paths based on expected types of expressions which provides better optimization opportunities inside a single basic block * Translated existing math fastcalls to IR form to improve tag guard removal and constant propagation
2023-03-03 15:21:14 -05:00
std::optional<TypeError> hasUnificationTooComplex(const ErrorVec& errors)
{
auto isUnificationTooComplex = [](const TypeError& te) {
return nullptr != get<UnificationTooComplex>(te);
};
auto it = std::find_if(errors.begin(), errors.end(), isUnificationTooComplex);
if (it == errors.end())
return std::nullopt;
else
return *it;
}
// Used for tagged union matching heuristic, returns first singleton type field
static std::optional<std::pair<Luau::Name, const SingletonType*>> getTableMatchTag(TypeId type)
{
2022-02-24 18:53:37 -05:00
if (auto ttv = getTableType(type))
{
2022-02-24 18:53:37 -05:00
for (auto&& [name, prop] : ttv->props)
2022-02-04 11:45:57 -05:00
{
if (auto sing = get<SingletonType>(follow(prop.type())))
2022-02-24 18:53:37 -05:00
return {{name, sing}};
2022-02-04 11:45:57 -05:00
}
}
return std::nullopt;
}
// TODO: Inline and clip with FFlag::DebugLuauDeferredConstraintResolution
template<typename TY_A, typename TY_B>
static bool subsumes(bool useScopes, TY_A* left, TY_B* right)
{
if (useScopes)
return subsumes(left->scope, right->scope);
else
return left->level.subsumes(right->level);
}
TypeMismatch::Context Unifier::mismatchContext()
{
switch (variance)
{
case Covariant:
return TypeMismatch::CovariantContext;
case Invariant:
return TypeMismatch::InvariantContext;
default:
LUAU_ASSERT(false); // This codepath should be unreachable.
return TypeMismatch::CovariantContext;
}
}
Unifier::Unifier(NotNull<Normalizer> normalizer, Mode mode, NotNull<Scope> scope, const Location& location, Variance variance, TxnLog* parentLog)
: types(normalizer->arena)
, builtinTypes(normalizer->builtinTypes)
, normalizer(normalizer)
, mode(mode)
, scope(scope)
, log(parentLog)
, location(location)
, variance(variance)
, sharedState(*normalizer->sharedState)
{
LUAU_ASSERT(sharedState.iceHandler);
}
void Unifier::tryUnify(TypeId subTy, TypeId superTy, bool isFunctionCall, bool isIntersection)
{
sharedState.counters.iterationCount = 0;
tryUnify_(subTy, superTy, isFunctionCall, isIntersection);
}
static bool isBlocked(const TxnLog& log, TypeId ty)
{
ty = log.follow(ty);
return get<BlockedType>(ty) || get<PendingExpansionType>(ty);
}
void Unifier::tryUnify_(TypeId subTy, TypeId superTy, bool isFunctionCall, bool isIntersection)
{
RecursionLimiter _ra(&sharedState.counters.recursionCount, sharedState.counters.recursionLimit);
++sharedState.counters.iterationCount;
if (sharedState.counters.iterationLimit > 0 && sharedState.counters.iterationLimit < sharedState.counters.iterationCount)
2022-04-14 19:57:43 -04:00
{
reportError(location, UnificationTooComplex{});
return;
}
2022-03-11 11:55:02 -05:00
superTy = log.follow(superTy);
subTy = log.follow(subTy);
if (superTy == subTy)
return;
auto superFree = log.getMutable<FreeType>(superTy);
auto subFree = log.getMutable<FreeType>(subTy);
if (superFree && subFree && subsumes(useScopes, superFree, subFree))
{
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 14:06:22 -04:00
if (!occursCheck(subTy, superTy, /* reversed = */ false))
log.replace(subTy, BoundType(superTy));
return;
}
else if (superFree && subFree)
{
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 14:06:22 -04:00
if (!occursCheck(superTy, subTy, /* reversed = */ true))
{
if (subsumes(useScopes, superFree, subFree))
{
2022-03-11 11:55:02 -05:00
log.changeLevel(subTy, superFree->level);
}
2022-03-11 11:55:02 -05:00
log.replace(superTy, BoundType(subTy));
}
return;
}
else if (superFree)
{
// Unification can't change the level of a generic.
auto subGeneric = log.getMutable<GenericType>(subTy);
if (subGeneric && !subsumes(useScopes, subGeneric, superFree))
{
// TODO: a more informative error message? CLI-39912
reportError(location, GenericError{"Generic subtype escaping scope"});
return;
}
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 14:06:22 -04:00
if (!occursCheck(superTy, subTy, /* reversed = */ true))
{
promoteTypeLevels(log, types, superFree->level, superFree->scope, useScopes, subTy);
Widen widen{types, builtinTypes};
log.replace(superTy, BoundType(widen(subTy)));
}
return;
}
else if (subFree)
{
// Normally, if the subtype is free, it should not be bound to any, unknown, or error types.
// But for bug compatibility, we'll only apply this rule to unknown. Doing this will silence cascading type errors.
if (log.get<UnknownType>(superTy))
return;
2022-07-07 21:22:39 -04:00
// Unification can't change the level of a generic.
auto superGeneric = log.getMutable<GenericType>(superTy);
if (superGeneric && !subsumes(useScopes, superGeneric, subFree))
{
// TODO: a more informative error message? CLI-39912
reportError(location, GenericError{"Generic supertype escaping scope"});
return;
}
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 14:06:22 -04:00
if (!occursCheck(subTy, superTy, /* reversed = */ false))
{
promoteTypeLevels(log, types, subFree->level, subFree->scope, useScopes, superTy);
log.replace(subTy, BoundType(superTy));
}
return;
}
if (log.get<AnyType>(superTy))
return tryUnifyWithAny(subTy, builtinTypes->anyType);
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
if (!FFlag::LuauTransitiveSubtyping && log.get<ErrorType>(superTy))
return tryUnifyWithAny(subTy, builtinTypes->errorType);
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
if (!FFlag::LuauTransitiveSubtyping && log.get<UnknownType>(superTy))
return tryUnifyWithAny(subTy, builtinTypes->unknownType);
2022-04-14 19:57:43 -04:00
if (log.get<AnyType>(subTy))
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
{
if (FFlag::LuauTransitiveSubtyping && normalize)
{
// TODO: there are probably cheaper ways to check if any <: T.
const NormalizedType* superNorm = normalizer->normalize(superTy);
if (!log.get<AnyType>(superNorm->tops))
failure = true;
}
else
failure = true;
return tryUnifyWithAny(superTy, builtinTypes->anyType);
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
}
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
if (!FFlag::LuauTransitiveSubtyping && log.get<ErrorType>(subTy))
return tryUnifyWithAny(superTy, builtinTypes->errorType);
if (log.get<NeverType>(subTy))
return tryUnifyWithAny(superTy, builtinTypes->neverType);
2022-07-07 21:22:39 -04:00
auto& cache = sharedState.cachedUnify;
// What if the types are immutable and we proved their relation before
2022-04-21 17:44:27 -04:00
bool cacheEnabled = !isFunctionCall && !isIntersection && variance == Invariant;
2022-03-24 18:04:14 -04:00
2022-04-21 17:44:27 -04:00
if (cacheEnabled)
2022-03-24 18:04:14 -04:00
{
2022-04-21 17:44:27 -04:00
if (cache.contains({subTy, superTy}))
return;
2022-03-24 18:04:14 -04:00
2022-04-21 17:44:27 -04:00
if (auto error = sharedState.cachedUnifyError.find({subTy, superTy}))
{
reportError(location, *error);
2022-03-24 18:04:14 -04:00
return;
2022-04-21 17:44:27 -04:00
}
2022-03-24 18:04:14 -04:00
}
// If we have seen this pair of types before, we are currently recursing into cyclic types.
// Here, we assume that the types unify. If they do not, we will find out as we roll back
// the stack.
2022-03-11 11:55:02 -05:00
if (log.haveSeen(superTy, subTy))
return;
2022-03-11 11:55:02 -05:00
log.pushSeen(superTy, subTy);
2022-03-24 18:04:14 -04:00
size_t errorCount = errors.size();
if (isBlocked(log, subTy) && isBlocked(log, superTy))
{
blockedTypes.push_back(subTy);
blockedTypes.push_back(superTy);
}
else if (isBlocked(log, subTy))
blockedTypes.push_back(subTy);
else if (isBlocked(log, superTy))
blockedTypes.push_back(superTy);
else if (const UnionType* subUnion = log.getMutable<UnionType>(subTy))
{
tryUnifyUnionWithType(subTy, subUnion, superTy);
2022-02-04 11:45:57 -05:00
}
else if (const IntersectionType* uv = log.getMutable<IntersectionType>(superTy))
2022-02-04 11:45:57 -05:00
{
tryUnifyTypeWithIntersection(subTy, superTy, uv);
}
else if (const UnionType* uv = log.getMutable<UnionType>(superTy))
{
tryUnifyTypeWithUnion(subTy, superTy, uv, cacheEnabled, isFunctionCall);
}
else if (const IntersectionType* uv = log.getMutable<IntersectionType>(subTy))
2022-02-04 11:45:57 -05:00
{
tryUnifyIntersectionWithType(subTy, uv, superTy, cacheEnabled, isFunctionCall);
}
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
else if (FFlag::LuauTransitiveSubtyping && log.get<AnyType>(subTy))
{
tryUnifyWithAny(superTy, builtinTypes->unknownType);
failure = true;
}
else if (FFlag::LuauTransitiveSubtyping && log.get<ErrorType>(subTy) && log.get<ErrorType>(superTy))
{
// error <: error
}
else if (FFlag::LuauTransitiveSubtyping && log.get<ErrorType>(superTy))
{
tryUnifyWithAny(subTy, builtinTypes->errorType);
failure = true;
}
else if (FFlag::LuauTransitiveSubtyping && log.get<ErrorType>(subTy))
{
tryUnifyWithAny(superTy, builtinTypes->errorType);
failure = true;
}
else if (FFlag::LuauTransitiveSubtyping && log.get<UnknownType>(superTy))
{
// At this point, all the supertypes of `error` have been handled,
// and if `error </: T` then `T <: unknown`.
tryUnifyWithAny(subTy, builtinTypes->unknownType);
}
else if (FFlag::LuauTransitiveSubtyping && log.get<UnknownType>(superTy))
{
tryUnifyWithAny(subTy, builtinTypes->unknownType);
}
else if (log.getMutable<PrimitiveType>(superTy) && log.getMutable<PrimitiveType>(subTy))
2022-02-04 11:45:57 -05:00
tryUnifyPrimitives(subTy, superTy);
else if ((log.getMutable<PrimitiveType>(superTy) || log.getMutable<SingletonType>(superTy)) && log.getMutable<SingletonType>(subTy))
2022-02-04 11:45:57 -05:00
tryUnifySingletons(subTy, superTy);
else if (auto ptv = get<PrimitiveType>(superTy); ptv && ptv->type == PrimitiveType::Function && get<FunctionType>(subTy))
{
// Ok. Do nothing. forall functions F, F <: function
}
else if (FFlag::LuauNegatedTableTypes && isPrim(superTy, PrimitiveType::Table) && (get<TableType>(subTy) || get<MetatableType>(subTy)))
{
// Ok, do nothing: forall tables T, T <: table
}
else if (log.getMutable<FunctionType>(superTy) && log.getMutable<FunctionType>(subTy))
2022-02-04 11:45:57 -05:00
tryUnifyFunctions(subTy, superTy, isFunctionCall);
Sync to upstream/release/566 (#853) * Fixed incorrect lexeme generated for string parts in the middle of an interpolated string (Fixes https://github.com/Roblox/luau/issues/744) * DeprecatedApi lint can report some issues without type inference information * Fixed performance of autocomplete requests when suggestions have large intersection types (Solves https://github.com/Roblox/luau/discussions/847) * Marked `table.getn`/`foreach`/`foreachi` as deprecated ([RFC: Deprecate table.getn/foreach/foreachi](https://github.com/Roblox/luau/blob/master/rfcs/deprecate-table-getn-foreach.md)) * With -O2 optimization level, we now optimize builtin calls based on known argument/return count. Note that this change can be observable if `getfenv/setfenv` is used to substitute a builtin, especially if arity is different. Fastcall heavy tests show a 1-2% improvement. * Luau can now be built with clang-cl (Fixes https://github.com/Roblox/luau/issues/736) We also made many improvements to our experimental components. For our new type solver: * Overhauled data flow analysis system, fixed issues with 'repeat' loops, global variables and type annotations * Type refinements now work on generic table indexing with a string literal * Type refinements will properly track potentially 'nil' values (like t[x] for a missing key) and their further refinements * Internal top table type is now isomorphic to `{}` which fixes issues when `typeof(v) == 'table'` type refinement is handled * References to non-existent types in type annotations no longer resolve to 'error' type like in old solver * Improved handling of class unions in property access expressions * Fixed default type packs * Unsealed tables can now have metatables * Restored expected types for function arguments And for native code generation: * Added min and max IR instructions mapping to vminsd/vmaxsd on x64 * We now speculatively extract direct execution fast-paths based on expected types of expressions which provides better optimization opportunities inside a single basic block * Translated existing math fastcalls to IR form to improve tag guard removal and constant propagation
2023-03-03 15:21:14 -05:00
else if (auto table = log.get<PrimitiveType>(superTy); table && table->type == PrimitiveType::Table)
tryUnify(subTy, builtinTypes->emptyTableType, isFunctionCall, isIntersection);
else if (auto table = log.get<PrimitiveType>(subTy); table && table->type == PrimitiveType::Table)
tryUnify(builtinTypes->emptyTableType, superTy, isFunctionCall, isIntersection);
else if (log.getMutable<TableType>(superTy) && log.getMutable<TableType>(subTy))
2022-02-04 11:45:57 -05:00
{
tryUnifyTables(subTy, superTy, isIntersection);
}
else if (log.get<TableType>(superTy) && (log.get<PrimitiveType>(subTy) || log.get<SingletonType>(subTy)))
2022-07-14 18:52:26 -04:00
{
tryUnifyScalarShape(subTy, superTy, /*reversed*/ false);
}
else if (log.get<TableType>(subTy) && (log.get<PrimitiveType>(superTy) || log.get<SingletonType>(superTy)))
2022-07-14 18:52:26 -04:00
{
tryUnifyScalarShape(subTy, superTy, /*reversed*/ true);
}
2022-02-04 11:45:57 -05:00
// tryUnifyWithMetatable assumes its first argument is a MetatableType. The check is otherwise symmetrical.
else if (log.getMutable<MetatableType>(superTy))
2022-02-04 11:45:57 -05:00
tryUnifyWithMetatable(subTy, superTy, /*reversed*/ false);
else if (log.getMutable<MetatableType>(subTy))
2022-02-04 11:45:57 -05:00
tryUnifyWithMetatable(superTy, subTy, /*reversed*/ true);
else if (log.getMutable<ClassType>(superTy))
2022-02-04 11:45:57 -05:00
tryUnifyWithClass(subTy, superTy, /*reversed*/ false);
// Unification of nonclasses with classes is almost, but not quite symmetrical.
// The order in which we perform this test is significant in the case that both types are classes.
else if (log.getMutable<ClassType>(subTy))
2022-02-04 11:45:57 -05:00
tryUnifyWithClass(subTy, superTy, /*reversed*/ true);
Sync to upstream/release/562 (#828) * Fixed rare use-after-free in analysis during table unification A lot of work these past months went into two new Luau components: * A near full rewrite of the typechecker using a new deferred constraint resolution system * Native code generation for AoT/JiT compilation of VM bytecode into x64 (avx)/arm64 instructions Both of these components are far from finished and we don't provide documentation on building and using them at this point. However, curious community members expressed interest in learning about changes that go into these components each week, so we are now listing them here in the 'sync' pull request descriptions. --- New typechecker can be enabled by setting DebugLuauDeferredConstraintResolution flag to 'true'. It is considered unstable right now, so try it at your own risk. Even though it already provides better type inference than the current one in some cases, our main goal right now is to reach feature parity with current typechecker. Features which improve over the capabilities of the current typechecker are marked as '(NEW)'. Changes to new typechecker: * Regular for loop index and parameters are now typechecked * Invalid type annotations on local variables are ignored to improve autocomplete * Fixed missing autocomplete type suggestions for function arguments * Type reduction is now performed to produce simpler types to be presented to the user (error messages, custom LSPs) * Internally, complex types like '((number | string) & ~(false?)) | string' can be produced, which is just 'string | number' when simplified * Fixed spots where support for unknown and never types was missing * (NEW) Length operator '#' is now valid to use on top table type, this type comes up when doing typeof(x) == "table" guards and isn't available in current typechecker --- Changes to native code generation: * Additional math library fast calls are now lowered to x64: math.ldexp, math.round, math.frexp, math.modf, math.sign and math.clamp
2023-02-03 14:26:13 -05:00
else if (log.get<NegationType>(superTy) || log.get<NegationType>(subTy))
tryUnifyNegations(subTy, superTy);
Sync to upstream/release/566 (#853) * Fixed incorrect lexeme generated for string parts in the middle of an interpolated string (Fixes https://github.com/Roblox/luau/issues/744) * DeprecatedApi lint can report some issues without type inference information * Fixed performance of autocomplete requests when suggestions have large intersection types (Solves https://github.com/Roblox/luau/discussions/847) * Marked `table.getn`/`foreach`/`foreachi` as deprecated ([RFC: Deprecate table.getn/foreach/foreachi](https://github.com/Roblox/luau/blob/master/rfcs/deprecate-table-getn-foreach.md)) * With -O2 optimization level, we now optimize builtin calls based on known argument/return count. Note that this change can be observable if `getfenv/setfenv` is used to substitute a builtin, especially if arity is different. Fastcall heavy tests show a 1-2% improvement. * Luau can now be built with clang-cl (Fixes https://github.com/Roblox/luau/issues/736) We also made many improvements to our experimental components. For our new type solver: * Overhauled data flow analysis system, fixed issues with 'repeat' loops, global variables and type annotations * Type refinements now work on generic table indexing with a string literal * Type refinements will properly track potentially 'nil' values (like t[x] for a missing key) and their further refinements * Internal top table type is now isomorphic to `{}` which fixes issues when `typeof(v) == 'table'` type refinement is handled * References to non-existent types in type annotations no longer resolve to 'error' type like in old solver * Improved handling of class unions in property access expressions * Fixed default type packs * Unsealed tables can now have metatables * Restored expected types for function arguments And for native code generation: * Added min and max IR instructions mapping to vminsd/vmaxsd on x64 * We now speculatively extract direct execution fast-paths based on expected types of expressions which provides better optimization opportunities inside a single basic block * Translated existing math fastcalls to IR form to improve tag guard removal and constant propagation
2023-03-03 15:21:14 -05:00
else if (FFlag::LuauUninhabitedSubAnything2 && checkInhabited && !normalizer->isInhabited(subTy))
{
}
2022-02-04 11:45:57 -05:00
else
reportError(location, TypeMismatch{superTy, subTy, mismatchContext()});
2022-04-21 17:44:27 -04:00
if (cacheEnabled)
2022-03-24 18:04:14 -04:00
cacheResult(subTy, superTy, errorCount);
2022-03-11 11:55:02 -05:00
log.popSeen(superTy, subTy);
2022-02-04 11:45:57 -05:00
}
void Unifier::tryUnifyUnionWithType(TypeId subTy, const UnionType* subUnion, TypeId superTy)
2022-02-04 11:45:57 -05:00
{
// A | B <: T if and only if A <: T and B <: T
2022-02-04 11:45:57 -05:00
bool failed = false;
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
bool errorsSuppressed = true;
2022-02-04 11:45:57 -05:00
std::optional<TypeError> unificationTooComplex;
std::optional<TypeError> firstFailedOption;
std::vector<TxnLog> logs;
for (TypeId type : subUnion->options)
2022-02-04 11:45:57 -05:00
{
Unifier innerState = makeChildUnifier();
innerState.tryUnify_(type, superTy);
if (FFlag::DebugLuauDeferredConstraintResolution)
logs.push_back(std::move(innerState.log));
2022-02-04 11:45:57 -05:00
if (auto e = hasUnificationTooComplex(innerState.errors))
unificationTooComplex = e;
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
else if (FFlag::LuauTransitiveSubtyping ? innerState.failure : !innerState.errors.empty())
{
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
// If errors were suppressed, we store the log up, so we can commit it if no other option succeeds.
if (FFlag::LuauTransitiveSubtyping && innerState.errors.empty())
logs.push_back(std::move(innerState.log));
2022-02-04 11:45:57 -05:00
// 'nil' option is skipped from extended report because we present the type in a special way - 'T?'
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
else if (!firstFailedOption && !isNil(type))
2022-02-04 11:45:57 -05:00
firstFailedOption = {innerState.errors.front()};
2022-02-04 11:45:57 -05:00
failed = true;
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
errorsSuppressed &= innerState.errors.empty();
2022-02-04 11:45:57 -05:00
}
2022-03-04 11:36:33 -05:00
}
if (FFlag::DebugLuauDeferredConstraintResolution)
log.concatAsUnion(combineLogsIntoUnion(std::move(logs)), NotNull{types});
else
{
// even if A | B <: T fails, we want to bind some options of T with A | B iff A | B was a subtype of that option.
auto tryBind = [this, subTy](TypeId superOption) {
superOption = log.follow(superOption);
2022-05-05 20:03:43 -04:00
// just skip if the superOption is not free-ish.
auto ttv = log.getMutable<TableType>(superOption);
if (!log.is<FreeType>(superOption) && (!ttv || ttv->state != TableState::Free))
return;
// If superOption is already present in subTy, do nothing. Nothing new has been learned, but the subtype
// test is successful.
if (auto subUnion = get<UnionType>(subTy))
{
if (end(subUnion) != std::find(begin(subUnion), end(subUnion), superOption))
return;
}
// Since we have already checked if S <: T, checking it again will not queue up the type for replacement.
// So we'll have to do it ourselves. We assume they unified cleanly if they are still in the seen set.
if (log.haveSeen(subTy, superOption))
{
// TODO: would it be nice for TxnLog::replace to do this?
if (log.is<TableType>(superOption))
log.bindTable(superOption, subTy);
else
log.replace(superOption, *subTy);
}
};
if (auto superUnion = log.getMutable<UnionType>(superTy))
2022-03-04 11:36:33 -05:00
{
for (TypeId ty : superUnion)
tryBind(ty);
2022-03-04 11:36:33 -05:00
}
else
tryBind(superTy);
}
2022-02-04 11:45:57 -05:00
if (unificationTooComplex)
reportError(*unificationTooComplex);
else if (failed)
{
2022-02-04 11:45:57 -05:00
if (firstFailedOption)
reportError(location, TypeMismatch{superTy, subTy, "Not all union options are compatible.", *firstFailedOption, mismatchContext()});
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
else if (!FFlag::LuauTransitiveSubtyping || !errorsSuppressed)
reportError(location, TypeMismatch{superTy, subTy, mismatchContext()});
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
failure = true;
2022-02-04 11:45:57 -05:00
}
}
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
struct DEPRECATED_BlockedTypeFinder : TypeOnceVisitor
{
std::unordered_set<TypeId> blockedTypes;
bool visit(TypeId ty, const BlockedType&) override
{
blockedTypes.insert(ty);
return true;
}
};
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
bool Unifier::DEPRECATED_blockOnBlockedTypes(TypeId subTy, TypeId superTy)
{
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
LUAU_ASSERT(!FFlag::LuauNormalizeBlockedTypes);
DEPRECATED_BlockedTypeFinder blockedTypeFinder;
blockedTypeFinder.traverse(subTy);
blockedTypeFinder.traverse(superTy);
if (!blockedTypeFinder.blockedTypes.empty())
{
blockedTypes.insert(end(blockedTypes), begin(blockedTypeFinder.blockedTypes), end(blockedTypeFinder.blockedTypes));
return true;
}
return false;
}
void Unifier::tryUnifyTypeWithUnion(TypeId subTy, TypeId superTy, const UnionType* uv, bool cacheEnabled, bool isFunctionCall)
2022-02-04 11:45:57 -05:00
{
// T <: A | B if T <: A or T <: B
bool found = false;
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
bool errorsSuppressed = false;
2022-02-04 11:45:57 -05:00
std::optional<TypeError> unificationTooComplex;
2022-02-04 11:45:57 -05:00
size_t failedOptionCount = 0;
std::optional<TypeError> failedOption;
2022-02-04 11:45:57 -05:00
bool foundHeuristic = false;
size_t startIndex = 0;
2022-02-04 11:45:57 -05:00
if (const std::string* subName = getName(subTy))
{
for (size_t i = 0; i < uv->options.size(); ++i)
{
2022-02-04 11:45:57 -05:00
const std::string* optionName = getName(uv->options[i]);
if (optionName && *optionName == *subName)
{
2022-02-04 11:45:57 -05:00
foundHeuristic = true;
startIndex = i;
break;
}
}
2022-02-04 11:45:57 -05:00
}
2022-02-04 11:45:57 -05:00
if (auto subMatchTag = getTableMatchTag(subTy))
{
for (size_t i = 0; i < uv->options.size(); ++i)
{
2022-02-04 11:45:57 -05:00
auto optionMatchTag = getTableMatchTag(uv->options[i]);
if (optionMatchTag && optionMatchTag->first == subMatchTag->first && *optionMatchTag->second == *subMatchTag->second)
{
2022-02-04 11:45:57 -05:00
foundHeuristic = true;
startIndex = i;
break;
}
}
2022-02-04 11:45:57 -05:00
}
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
if (FFlag::LuauTransitiveSubtyping && !foundHeuristic)
{
for (size_t i = 0; i < uv->options.size(); ++i)
{
TypeId type = uv->options[i];
if (subTy == type)
{
foundHeuristic = true;
startIndex = i;
break;
}
}
}
2022-02-04 11:45:57 -05:00
if (!foundHeuristic && cacheEnabled)
{
auto& cache = sharedState.cachedUnify;
for (size_t i = 0; i < uv->options.size(); ++i)
{
2022-02-04 11:45:57 -05:00
TypeId type = uv->options[i];
2022-04-21 17:44:27 -04:00
if (cache.contains({subTy, type}))
2022-03-24 18:04:14 -04:00
{
2022-04-21 17:44:27 -04:00
startIndex = i;
break;
}
2022-02-04 11:45:57 -05:00
}
}
std::vector<TxnLog> logs;
2022-02-04 11:45:57 -05:00
for (size_t i = 0; i < uv->options.size(); ++i)
{
TypeId type = uv->options[(i + startIndex) % uv->options.size()];
Unifier innerState = makeChildUnifier();
innerState.normalize = false;
2022-02-04 11:45:57 -05:00
innerState.tryUnify_(subTy, type, isFunctionCall);
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
if (FFlag::LuauTransitiveSubtyping ? !innerState.failure : innerState.errors.empty())
2022-02-04 11:45:57 -05:00
{
found = true;
if (FFlag::DebugLuauDeferredConstraintResolution)
logs.push_back(std::move(innerState.log));
else
{
log.concat(std::move(innerState.log));
break;
}
2022-02-04 11:45:57 -05:00
}
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
else if (FFlag::LuauTransitiveSubtyping && innerState.errors.empty())
{
errorsSuppressed = true;
}
2022-02-04 11:45:57 -05:00
else if (auto e = hasUnificationTooComplex(innerState.errors))
{
2022-02-04 11:45:57 -05:00
unificationTooComplex = e;
}
2022-02-04 11:45:57 -05:00
else if (!isNil(type))
{
2022-02-04 11:45:57 -05:00
failedOptionCount++;
if (!failedOption)
failedOption = {innerState.errors.front()};
}
}
2022-02-04 11:45:57 -05:00
if (FFlag::DebugLuauDeferredConstraintResolution)
log.concatAsUnion(combineLogsIntoUnion(std::move(logs)), NotNull{types});
2022-02-04 11:45:57 -05:00
if (unificationTooComplex)
{
reportError(*unificationTooComplex);
}
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
else if (FFlag::LuauTransitiveSubtyping && !found && normalize)
{
// It is possible that T <: A | B even though T </: A and T </:B
// for example boolean <: true | false.
// We deal with this by type normalization.
const NormalizedType* subNorm = normalizer->normalize(subTy);
const NormalizedType* superNorm = normalizer->normalize(superTy);
Unifier innerState = makeChildUnifier();
if (!subNorm || !superNorm)
return reportError(location, UnificationTooComplex{});
else if ((failedOptionCount == 1 || foundHeuristic) && failedOption)
innerState.tryUnifyNormalizedTypes(
subTy, superTy, *subNorm, *superNorm, "None of the union options are compatible. For example:", *failedOption);
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
else
innerState.tryUnifyNormalizedTypes(subTy, superTy, *subNorm, *superNorm, "none of the union options are compatible");
if (!innerState.failure)
log.concat(std::move(innerState.log));
else if (errorsSuppressed || innerState.errors.empty())
failure = true;
else
reportError(std::move(innerState.errors.front()));
}
else if (!found && normalize)
{
// We cannot normalize a type that contains blocked types. We have to
// stop for now if we find any.
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
if (!FFlag::LuauNormalizeBlockedTypes && DEPRECATED_blockOnBlockedTypes(subTy, superTy))
return;
// It is possible that T <: A | B even though T </: A and T </:B
// for example boolean <: true | false.
// We deal with this by type normalization.
const NormalizedType* subNorm = normalizer->normalize(subTy);
const NormalizedType* superNorm = normalizer->normalize(superTy);
if (!subNorm || !superNorm)
reportError(location, UnificationTooComplex{});
else if ((failedOptionCount == 1 || foundHeuristic) && failedOption)
tryUnifyNormalizedTypes(subTy, superTy, *subNorm, *superNorm, "None of the union options are compatible. For example:", *failedOption);
else
tryUnifyNormalizedTypes(subTy, superTy, *subNorm, *superNorm, "none of the union options are compatible");
}
2022-02-04 11:45:57 -05:00
else if (!found)
{
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
if (FFlag::LuauTransitiveSubtyping && errorsSuppressed)
failure = true;
else if ((failedOptionCount == 1 || foundHeuristic) && failedOption)
reportError(
location, TypeMismatch{superTy, subTy, "None of the union options are compatible. For example:", *failedOption, mismatchContext()});
2022-02-04 11:45:57 -05:00
else
reportError(location, TypeMismatch{superTy, subTy, "none of the union options are compatible", mismatchContext()});
2022-02-04 11:45:57 -05:00
}
}
void Unifier::tryUnifyTypeWithIntersection(TypeId subTy, TypeId superTy, const IntersectionType* uv)
2022-02-04 11:45:57 -05:00
{
std::optional<TypeError> unificationTooComplex;
std::optional<TypeError> firstFailedOption;
std::vector<TxnLog> logs;
// T <: A & B if and only if T <: A and T <: B
2022-02-04 11:45:57 -05:00
for (TypeId type : uv->parts)
{
Unifier innerState = makeChildUnifier();
innerState.tryUnify_(subTy, type, /*isFunctionCall*/ false, /*isIntersection*/ true);
2022-02-04 11:45:57 -05:00
if (auto e = hasUnificationTooComplex(innerState.errors))
unificationTooComplex = e;
else if (!innerState.errors.empty())
{
if (!firstFailedOption)
firstFailedOption = {innerState.errors.front()};
}
if (FFlag::DebugLuauDeferredConstraintResolution)
logs.push_back(std::move(innerState.log));
else
log.concat(std::move(innerState.log));
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
failure |= innerState.failure;
}
if (FFlag::DebugLuauDeferredConstraintResolution)
log.concat(combineLogsIntoIntersection(std::move(logs)));
2022-02-04 11:45:57 -05:00
if (unificationTooComplex)
reportError(*unificationTooComplex);
else if (firstFailedOption)
reportError(location, TypeMismatch{superTy, subTy, "Not all intersection parts are compatible.", *firstFailedOption, mismatchContext()});
2022-02-04 11:45:57 -05:00
}
Sync to upstream/release/562 (#828) * Fixed rare use-after-free in analysis during table unification A lot of work these past months went into two new Luau components: * A near full rewrite of the typechecker using a new deferred constraint resolution system * Native code generation for AoT/JiT compilation of VM bytecode into x64 (avx)/arm64 instructions Both of these components are far from finished and we don't provide documentation on building and using them at this point. However, curious community members expressed interest in learning about changes that go into these components each week, so we are now listing them here in the 'sync' pull request descriptions. --- New typechecker can be enabled by setting DebugLuauDeferredConstraintResolution flag to 'true'. It is considered unstable right now, so try it at your own risk. Even though it already provides better type inference than the current one in some cases, our main goal right now is to reach feature parity with current typechecker. Features which improve over the capabilities of the current typechecker are marked as '(NEW)'. Changes to new typechecker: * Regular for loop index and parameters are now typechecked * Invalid type annotations on local variables are ignored to improve autocomplete * Fixed missing autocomplete type suggestions for function arguments * Type reduction is now performed to produce simpler types to be presented to the user (error messages, custom LSPs) * Internally, complex types like '((number | string) & ~(false?)) | string' can be produced, which is just 'string | number' when simplified * Fixed spots where support for unknown and never types was missing * (NEW) Length operator '#' is now valid to use on top table type, this type comes up when doing typeof(x) == "table" guards and isn't available in current typechecker --- Changes to native code generation: * Additional math library fast calls are now lowered to x64: math.ldexp, math.round, math.frexp, math.modf, math.sign and math.clamp
2023-02-03 14:26:13 -05:00
struct NegationTypeFinder : TypeOnceVisitor
{
bool found = false;
bool visit(TypeId ty) override
{
return !found;
}
bool visit(TypeId ty, const NegationType&) override
{
found = true;
return !found;
}
};
void Unifier::tryUnifyIntersectionWithType(TypeId subTy, const IntersectionType* uv, TypeId superTy, bool cacheEnabled, bool isFunctionCall)
2022-02-04 11:45:57 -05:00
{
2022-06-30 19:52:43 -04:00
// A & B <: T if A <: T or B <: T
2022-02-04 11:45:57 -05:00
bool found = false;
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
bool errorsSuppressed = false;
2022-02-04 11:45:57 -05:00
std::optional<TypeError> unificationTooComplex;
2022-02-04 11:45:57 -05:00
size_t startIndex = 0;
if (cacheEnabled)
{
auto& cache = sharedState.cachedUnify;
for (size_t i = 0; i < uv->parts.size(); ++i)
{
2022-02-04 11:45:57 -05:00
TypeId type = uv->parts[i];
2022-04-21 17:44:27 -04:00
if (cache.contains({type, superTy}))
2022-03-24 18:04:14 -04:00
{
2022-04-21 17:44:27 -04:00
startIndex = i;
break;
}
}
2022-02-04 11:45:57 -05:00
}
Sync to upstream/release/562 (#828) * Fixed rare use-after-free in analysis during table unification A lot of work these past months went into two new Luau components: * A near full rewrite of the typechecker using a new deferred constraint resolution system * Native code generation for AoT/JiT compilation of VM bytecode into x64 (avx)/arm64 instructions Both of these components are far from finished and we don't provide documentation on building and using them at this point. However, curious community members expressed interest in learning about changes that go into these components each week, so we are now listing them here in the 'sync' pull request descriptions. --- New typechecker can be enabled by setting DebugLuauDeferredConstraintResolution flag to 'true'. It is considered unstable right now, so try it at your own risk. Even though it already provides better type inference than the current one in some cases, our main goal right now is to reach feature parity with current typechecker. Features which improve over the capabilities of the current typechecker are marked as '(NEW)'. Changes to new typechecker: * Regular for loop index and parameters are now typechecked * Invalid type annotations on local variables are ignored to improve autocomplete * Fixed missing autocomplete type suggestions for function arguments * Type reduction is now performed to produce simpler types to be presented to the user (error messages, custom LSPs) * Internally, complex types like '((number | string) & ~(false?)) | string' can be produced, which is just 'string | number' when simplified * Fixed spots where support for unknown and never types was missing * (NEW) Length operator '#' is now valid to use on top table type, this type comes up when doing typeof(x) == "table" guards and isn't available in current typechecker --- Changes to native code generation: * Additional math library fast calls are now lowered to x64: math.ldexp, math.round, math.frexp, math.modf, math.sign and math.clamp
2023-02-03 14:26:13 -05:00
if (FFlag::DebugLuauDeferredConstraintResolution && normalize)
{
// We cannot normalize a type that contains blocked types. We have to
// stop for now if we find any.
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
if (!FFlag::LuauNormalizeBlockedTypes && DEPRECATED_blockOnBlockedTypes(subTy, superTy))
return;
Sync to upstream/release/562 (#828) * Fixed rare use-after-free in analysis during table unification A lot of work these past months went into two new Luau components: * A near full rewrite of the typechecker using a new deferred constraint resolution system * Native code generation for AoT/JiT compilation of VM bytecode into x64 (avx)/arm64 instructions Both of these components are far from finished and we don't provide documentation on building and using them at this point. However, curious community members expressed interest in learning about changes that go into these components each week, so we are now listing them here in the 'sync' pull request descriptions. --- New typechecker can be enabled by setting DebugLuauDeferredConstraintResolution flag to 'true'. It is considered unstable right now, so try it at your own risk. Even though it already provides better type inference than the current one in some cases, our main goal right now is to reach feature parity with current typechecker. Features which improve over the capabilities of the current typechecker are marked as '(NEW)'. Changes to new typechecker: * Regular for loop index and parameters are now typechecked * Invalid type annotations on local variables are ignored to improve autocomplete * Fixed missing autocomplete type suggestions for function arguments * Type reduction is now performed to produce simpler types to be presented to the user (error messages, custom LSPs) * Internally, complex types like '((number | string) & ~(false?)) | string' can be produced, which is just 'string | number' when simplified * Fixed spots where support for unknown and never types was missing * (NEW) Length operator '#' is now valid to use on top table type, this type comes up when doing typeof(x) == "table" guards and isn't available in current typechecker --- Changes to native code generation: * Additional math library fast calls are now lowered to x64: math.ldexp, math.round, math.frexp, math.modf, math.sign and math.clamp
2023-02-03 14:26:13 -05:00
// Sometimes a negation type is inside one of the types, e.g. { p: number } & { p: ~number }.
NegationTypeFinder finder;
finder.traverse(subTy);
if (finder.found)
{
// It is possible that A & B <: T even though A </: T and B </: T
// for example (string?) & ~nil <: string.
// We deal with this by type normalization.
const NormalizedType* subNorm = normalizer->normalize(subTy);
const NormalizedType* superNorm = normalizer->normalize(superTy);
if (subNorm && superNorm)
tryUnifyNormalizedTypes(subTy, superTy, *subNorm, *superNorm, "none of the intersection parts are compatible");
else
reportError(location, UnificationTooComplex{});
return;
}
}
std::vector<TxnLog> logs;
2022-02-04 11:45:57 -05:00
for (size_t i = 0; i < uv->parts.size(); ++i)
{
TypeId type = uv->parts[(i + startIndex) % uv->parts.size()];
Unifier innerState = makeChildUnifier();
innerState.normalize = false;
2022-02-04 11:45:57 -05:00
innerState.tryUnify_(type, superTy, isFunctionCall);
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
// TODO: This sets errorSuppressed to true if any of the parts is error-suppressing,
// in paricular any & T is error-suppressing. Really, errorSuppressed should be true if
// all of the parts are error-suppressing, but that fails to typecheck lua-apps.
2022-02-04 11:45:57 -05:00
if (innerState.errors.empty())
{
2022-02-04 11:45:57 -05:00
found = true;
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
errorsSuppressed = innerState.failure;
if (FFlag::DebugLuauDeferredConstraintResolution || (FFlag::LuauTransitiveSubtyping && innerState.failure))
logs.push_back(std::move(innerState.log));
else
{
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
errorsSuppressed = false;
log.concat(std::move(innerState.log));
break;
}
2022-02-04 11:45:57 -05:00
}
else if (auto e = hasUnificationTooComplex(innerState.errors))
{
unificationTooComplex = e;
}
2022-02-04 11:45:57 -05:00
}
if (FFlag::DebugLuauDeferredConstraintResolution)
log.concat(combineLogsIntoIntersection(std::move(logs)));
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
else if (FFlag::LuauTransitiveSubtyping && errorsSuppressed)
log.concat(std::move(logs.front()));
2022-02-04 11:45:57 -05:00
if (unificationTooComplex)
reportError(*unificationTooComplex);
else if (!found && normalize)
{
// We cannot normalize a type that contains blocked types. We have to
// stop for now if we find any.
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
if (!FFlag::LuauNormalizeBlockedTypes && DEPRECATED_blockOnBlockedTypes(subTy, superTy))
return;
// It is possible that A & B <: T even though A </: T and B </: T
// for example string? & number? <: nil.
// We deal with this by type normalization.
const NormalizedType* subNorm = normalizer->normalize(subTy);
const NormalizedType* superNorm = normalizer->normalize(superTy);
if (subNorm && superNorm)
tryUnifyNormalizedTypes(subTy, superTy, *subNorm, *superNorm, "none of the intersection parts are compatible");
else
reportError(location, UnificationTooComplex{});
}
2022-02-04 11:45:57 -05:00
else if (!found)
{
reportError(location, TypeMismatch{superTy, subTy, "none of the intersection parts are compatible", mismatchContext()});
}
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
else if (errorsSuppressed)
failure = true;
}
void Unifier::tryUnifyNormalizedTypes(
TypeId subTy, TypeId superTy, const NormalizedType& subNorm, const NormalizedType& superNorm, std::string reason, std::optional<TypeError> error)
{
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
if (!FFlag::LuauTransitiveSubtyping && get<UnknownType>(superNorm.tops))
return;
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
else if (get<AnyType>(superNorm.tops))
return;
else if (get<AnyType>(subNorm.tops))
{
failure = true;
return;
}
else if (!FFlag::LuauTransitiveSubtyping && get<UnknownType>(subNorm.tops))
return reportError(location, TypeMismatch{superTy, subTy, reason, error, mismatchContext()});
if (get<ErrorType>(subNorm.errors))
if (!get<ErrorType>(superNorm.errors))
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
{
failure = true;
if (!FFlag::LuauTransitiveSubtyping)
reportError(location, TypeMismatch{superTy, subTy, reason, error, mismatchContext()});
return;
}
if (FFlag::LuauTransitiveSubtyping && get<UnknownType>(superNorm.tops))
return;
if (FFlag::LuauTransitiveSubtyping && get<UnknownType>(subNorm.tops))
return reportError(location, TypeMismatch{superTy, subTy, reason, error, mismatchContext()});
if (get<PrimitiveType>(subNorm.booleans))
{
if (!get<PrimitiveType>(superNorm.booleans))
return reportError(location, TypeMismatch{superTy, subTy, reason, error, mismatchContext()});
}
else if (const SingletonType* stv = get<SingletonType>(subNorm.booleans))
{
if (!get<PrimitiveType>(superNorm.booleans) && stv != get<SingletonType>(superNorm.booleans))
return reportError(location, TypeMismatch{superTy, subTy, reason, error, mismatchContext()});
}
if (get<PrimitiveType>(subNorm.nils))
if (!get<PrimitiveType>(superNorm.nils))
return reportError(location, TypeMismatch{superTy, subTy, reason, error, mismatchContext()});
if (get<PrimitiveType>(subNorm.numbers))
if (!get<PrimitiveType>(superNorm.numbers))
return reportError(location, TypeMismatch{superTy, subTy, reason, error, mismatchContext()});
if (!isSubtype(subNorm.strings, superNorm.strings))
return reportError(location, TypeMismatch{superTy, subTy, reason, error, mismatchContext()});
if (get<PrimitiveType>(subNorm.threads))
if (!get<PrimitiveType>(superNorm.errors))
return reportError(location, TypeMismatch{superTy, subTy, reason, error, mismatchContext()});
if (FFlag::LuauNegatedClassTypes)
{
for (const auto& [subClass, _] : subNorm.classes.classes)
{
bool found = false;
const ClassType* subCtv = get<ClassType>(subClass);
LUAU_ASSERT(subCtv);
for (const auto& [superClass, superNegations] : superNorm.classes.classes)
{
const ClassType* superCtv = get<ClassType>(superClass);
LUAU_ASSERT(superCtv);
if (isSubclass(subCtv, superCtv))
{
found = true;
for (TypeId negation : superNegations)
{
const ClassType* negationCtv = get<ClassType>(negation);
LUAU_ASSERT(negationCtv);
if (isSubclass(subCtv, negationCtv))
{
found = false;
break;
}
}
if (found)
break;
}
}
if (FFlag::DebugLuauDeferredConstraintResolution)
{
for (TypeId superTable : superNorm.tables)
{
Unifier innerState = makeChildUnifier();
innerState.tryUnify(subClass, superTable);
if (innerState.errors.empty())
{
found = true;
log.concat(std::move(innerState.log));
break;
}
else if (auto e = hasUnificationTooComplex(innerState.errors))
return reportError(*e);
}
}
if (!found)
{
return reportError(location, TypeMismatch{superTy, subTy, reason, error, mismatchContext()});
}
}
}
else
{
for (TypeId subClass : subNorm.DEPRECATED_classes)
{
bool found = false;
const ClassType* subCtv = get<ClassType>(subClass);
for (TypeId superClass : superNorm.DEPRECATED_classes)
{
const ClassType* superCtv = get<ClassType>(superClass);
if (isSubclass(subCtv, superCtv))
{
found = true;
break;
}
}
if (!found)
return reportError(location, TypeMismatch{superTy, subTy, reason, error, mismatchContext()});
}
}
for (TypeId subTable : subNorm.tables)
{
bool found = false;
for (TypeId superTable : superNorm.tables)
{
if (FFlag::LuauNegatedTableTypes && isPrim(superTable, PrimitiveType::Table))
{
found = true;
break;
}
Unifier innerState = makeChildUnifier();
innerState.tryUnify(subTable, superTable);
if (innerState.errors.empty())
{
found = true;
log.concat(std::move(innerState.log));
break;
}
else if (auto e = hasUnificationTooComplex(innerState.errors))
return reportError(*e);
}
if (!found)
return reportError(location, TypeMismatch{superTy, subTy, reason, error, mismatchContext()});
}
if (!subNorm.functions.isNever())
{
if (superNorm.functions.isNever())
return reportError(location, TypeMismatch{superTy, subTy, reason, error, mismatchContext()});
for (TypeId superFun : superNorm.functions.parts)
{
Unifier innerState = makeChildUnifier();
const FunctionType* superFtv = get<FunctionType>(superFun);
if (!superFtv)
return reportError(location, TypeMismatch{superTy, subTy, reason, error, mismatchContext()});
TypePackId tgt = innerState.tryApplyOverloadedFunction(subTy, subNorm.functions, superFtv->argTypes);
innerState.tryUnify_(tgt, superFtv->retTypes);
if (innerState.errors.empty())
log.concat(std::move(innerState.log));
else if (auto e = hasUnificationTooComplex(innerState.errors))
return reportError(*e);
else
return reportError(location, TypeMismatch{superTy, subTy, reason, error, mismatchContext()});
}
}
for (auto& [tyvar, subIntersect] : subNorm.tyvars)
{
auto found = superNorm.tyvars.find(tyvar);
if (found == superNorm.tyvars.end())
tryUnifyNormalizedTypes(subTy, superTy, *subIntersect, superNorm, reason, error);
else
tryUnifyNormalizedTypes(subTy, superTy, *subIntersect, *found->second, reason, error);
if (!errors.empty())
return;
}
}
TypePackId Unifier::tryApplyOverloadedFunction(TypeId function, const NormalizedFunctionType& overloads, TypePackId args)
{
if (overloads.isNever())
{
reportError(location, CannotCallNonFunction{function});
return builtinTypes->errorRecoveryTypePack();
}
std::optional<TypePackId> result;
const FunctionType* firstFun = nullptr;
for (TypeId overload : overloads.parts)
{
if (const FunctionType* ftv = get<FunctionType>(overload))
{
// TODO: instantiate generics?
if (ftv->generics.empty() && ftv->genericPacks.empty())
{
if (!firstFun)
firstFun = ftv;
Unifier innerState = makeChildUnifier();
innerState.tryUnify_(args, ftv->argTypes);
if (innerState.errors.empty())
{
log.concat(std::move(innerState.log));
if (result)
{
innerState.log.clear();
innerState.tryUnify_(*result, ftv->retTypes);
if (innerState.errors.empty())
log.concat(std::move(innerState.log));
// Annoyingly, since we don't support intersection of generic type packs,
// the intersection may fail. We rather arbitrarily use the first matching overload
// in that case.
else if (std::optional<TypePackId> intersect = normalizer->intersectionOfTypePacks(*result, ftv->retTypes))
result = intersect;
}
else
result = ftv->retTypes;
}
else if (auto e = hasUnificationTooComplex(innerState.errors))
{
reportError(*e);
return builtinTypes->errorRecoveryTypePack(args);
}
}
}
}
if (result)
return *result;
else if (firstFun)
{
// TODO: better error reporting?
// The logic for error reporting overload resolution
// is currently over in TypeInfer.cpp, should we move it?
reportError(location, GenericError{"No matching overload."});
return builtinTypes->errorRecoveryTypePack(firstFun->retTypes);
}
else
{
reportError(location, CannotCallNonFunction{function});
return builtinTypes->errorRecoveryTypePack();
}
}
2022-03-24 18:04:14 -04:00
bool Unifier::canCacheResult(TypeId subTy, TypeId superTy)
{
bool* superTyInfo = sharedState.skipCacheForType.find(superTy);
if (superTyInfo && *superTyInfo)
2022-03-24 18:04:14 -04:00
return false;
bool* subTyInfo = sharedState.skipCacheForType.find(subTy);
if (subTyInfo && *subTyInfo)
2022-03-24 18:04:14 -04:00
return false;
auto skipCacheFor = [this](TypeId ty) {
2022-02-11 14:02:09 -05:00
SkipCacheForType visitor{sharedState.skipCacheForType, types};
visitor.traverse(ty);
sharedState.skipCacheForType[ty] = visitor.result;
return visitor.result;
};
if (!superTyInfo && skipCacheFor(superTy))
2022-03-24 18:04:14 -04:00
return false;
if (!subTyInfo && skipCacheFor(subTy))
2022-03-24 18:04:14 -04:00
return false;
return true;
}
void Unifier::cacheResult(TypeId subTy, TypeId superTy, size_t prevErrorCount)
{
if (errors.size() == prevErrorCount)
{
if (canCacheResult(subTy, superTy))
sharedState.cachedUnify.insert({subTy, superTy});
}
else if (errors.size() == prevErrorCount + 1)
{
if (canCacheResult(subTy, superTy))
sharedState.cachedUnifyError[{subTy, superTy}] = errors.back().data;
}
}
struct WeirdIter
{
TypePackId packId;
TxnLog& log;
TypePack* pack;
size_t index;
bool growing;
TypeLevel level;
Scope* scope = nullptr;
WeirdIter(TypePackId packId, TxnLog& log)
: packId(packId)
, log(log)
, pack(log.getMutable<TypePack>(packId))
, index(0)
, growing(false)
{
while (pack && pack->head.empty() && pack->tail)
{
packId = *pack->tail;
pack = log.getMutable<TypePack>(packId);
}
}
WeirdIter(const WeirdIter&) = default;
TypeId& operator*()
{
LUAU_ASSERT(good());
return pack->head[index];
}
bool good() const
{
return pack != nullptr && index < pack->head.size();
}
bool advance()
{
if (!pack)
return good();
if (index < pack->head.size())
++index;
if (growing || index < pack->head.size())
return good();
if (pack->tail)
{
packId = log.follow(*pack->tail);
pack = log.getMutable<TypePack>(packId);
index = 0;
}
return good();
}
bool canGrow() const
{
return nullptr != log.getMutable<FreeTypePack>(packId);
}
void grow(TypePackId newTail)
{
LUAU_ASSERT(canGrow());
LUAU_ASSERT(log.getMutable<TypePack>(newTail));
auto freePack = log.getMutable<FreeTypePack>(packId);
level = freePack->level;
if (FFlag::LuauMaintainScopesInUnifier && freePack->scope != nullptr)
scope = freePack->scope;
2022-04-14 19:57:43 -04:00
log.replace(packId, BoundTypePack(newTail));
packId = newTail;
pack = log.getMutable<TypePack>(newTail);
index = 0;
growing = true;
}
void pushType(TypeId ty)
{
LUAU_ASSERT(pack);
PendingTypePack* pendingPack = log.queue(packId);
if (TypePack* pending = getMutable<TypePack>(pendingPack))
{
pending->head.push_back(ty);
// We've potentially just replaced the TypePack* that we need to look
// in. We need to replace pack.
pack = pending;
}
else
{
LUAU_ASSERT(!"Pending state for this pack was not a TypePack");
}
}
};
ErrorVec Unifier::canUnify(TypeId subTy, TypeId superTy)
{
Unifier s = makeChildUnifier();
s.tryUnify_(subTy, superTy);
return s.errors;
}
ErrorVec Unifier::canUnify(TypePackId subTy, TypePackId superTy, bool isFunctionCall)
{
Unifier s = makeChildUnifier();
s.tryUnify_(subTy, superTy, isFunctionCall);
return s.errors;
}
void Unifier::tryUnify(TypePackId subTp, TypePackId superTp, bool isFunctionCall)
{
sharedState.counters.iterationCount = 0;
tryUnify_(subTp, superTp, isFunctionCall);
}
/*
* This is quite tricky: we are walking two rope-like structures and unifying corresponding elements.
* If one is longer than the other, but the short end is free, we grow it to the required length.
*/
void Unifier::tryUnify_(TypePackId subTp, TypePackId superTp, bool isFunctionCall)
{
RecursionLimiter _ra(&sharedState.counters.recursionCount, sharedState.counters.recursionLimit);
++sharedState.counters.iterationCount;
if (sharedState.counters.iterationLimit > 0 && sharedState.counters.iterationLimit < sharedState.counters.iterationCount)
2022-04-14 19:57:43 -04:00
{
reportError(location, UnificationTooComplex{});
return;
}
2022-03-11 11:55:02 -05:00
superTp = log.follow(superTp);
subTp = log.follow(subTp);
while (auto tp = log.getMutable<TypePack>(subTp))
{
if (tp->head.empty() && tp->tail)
subTp = log.follow(*tp->tail);
else
break;
}
while (auto tp = log.getMutable<TypePack>(superTp))
{
if (tp->head.empty() && tp->tail)
superTp = log.follow(*tp->tail);
else
break;
}
if (superTp == subTp)
return;
2022-04-28 21:24:24 -04:00
if (log.haveSeen(superTp, subTp))
2022-03-11 11:55:02 -05:00
return;
if (log.getMutable<FreeTypePack>(superTp))
{
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 14:06:22 -04:00
if (!occursCheck(superTp, subTp, /* reversed = */ true))
{
Widen widen{types, builtinTypes};
2022-03-17 20:46:04 -04:00
log.replace(superTp, Unifiable::Bound<TypePackId>(widen(subTp)));
}
2022-03-11 11:55:02 -05:00
}
else if (log.getMutable<FreeTypePack>(subTp))
2022-03-11 11:55:02 -05:00
{
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 14:06:22 -04:00
if (!occursCheck(subTp, superTp, /* reversed = */ false))
{
2022-03-11 11:55:02 -05:00
log.replace(subTp, Unifiable::Bound<TypePackId>(superTp));
}
2022-03-11 11:55:02 -05:00
}
else if (log.getMutable<Unifiable::Error>(superTp))
tryUnifyWithAny(subTp, superTp);
else if (log.getMutable<Unifiable::Error>(subTp))
tryUnifyWithAny(superTp, subTp);
else if (log.getMutable<VariadicTypePack>(superTp))
tryUnifyVariadics(subTp, superTp, false);
else if (log.getMutable<VariadicTypePack>(subTp))
tryUnifyVariadics(superTp, subTp, true);
else if (log.getMutable<TypePack>(superTp) && log.getMutable<TypePack>(subTp))
{
auto superTpv = log.getMutable<TypePack>(superTp);
auto subTpv = log.getMutable<TypePack>(subTp);
2022-03-11 11:55:02 -05:00
// If the size of two heads does not match, but both packs have free tail
// We set the sentinel variable to say so to avoid growing it forever.
2022-04-14 19:57:43 -04:00
auto [superTypes, superTail] = flatten(superTp, log);
auto [subTypes, subTail] = flatten(subTp, log);
2022-03-11 11:55:02 -05:00
bool noInfiniteGrowth = (superTypes.size() != subTypes.size()) && (superTail && log.getMutable<FreeTypePack>(*superTail)) &&
(subTail && log.getMutable<FreeTypePack>(*subTail));
auto superIter = WeirdIter(superTp, log);
auto subIter = WeirdIter(subTp, log);
2022-03-04 11:36:33 -05:00
if (FFlag::LuauMaintainScopesInUnifier)
{
superIter.scope = scope.get();
subIter.scope = scope.get();
}
auto mkFreshType = [this](Scope* scope, TypeLevel level) {
return types->freshType(scope, level);
2022-03-11 11:55:02 -05:00
};
const TypePackId emptyTp = types->addTypePack(TypePack{{}, std::nullopt});
int loopCount = 0;
do
{
2022-03-11 11:55:02 -05:00
if (FInt::LuauTypeInferTypePackLoopLimit > 0 && loopCount >= FInt::LuauTypeInferTypePackLoopLimit)
ice("Detected possibly infinite TypePack growth");
2022-03-11 11:55:02 -05:00
++loopCount;
if (superIter.good() && subIter.growing)
{
subIter.pushType(mkFreshType(subIter.scope, subIter.level));
}
2022-03-11 11:55:02 -05:00
if (subIter.good() && superIter.growing)
{
superIter.pushType(mkFreshType(superIter.scope, superIter.level));
}
2022-03-11 11:55:02 -05:00
if (superIter.good() && subIter.good())
{
tryUnify_(*subIter, *superIter);
2022-03-11 11:55:02 -05:00
if (!errors.empty() && !firstPackErrorPos)
firstPackErrorPos = loopCount;
2022-03-11 11:55:02 -05:00
superIter.advance();
subIter.advance();
continue;
}
2022-03-11 11:55:02 -05:00
// If both are at the end, we're done
if (!superIter.good() && !subIter.good())
{
const bool lFreeTail = superTpv->tail && log.getMutable<FreeTypePack>(log.follow(*superTpv->tail)) != nullptr;
const bool rFreeTail = subTpv->tail && log.getMutable<FreeTypePack>(log.follow(*subTpv->tail)) != nullptr;
if (lFreeTail && rFreeTail)
{
tryUnify_(*subTpv->tail, *superTpv->tail);
}
else if (lFreeTail)
{
2022-03-11 11:55:02 -05:00
tryUnify_(emptyTp, *superTpv->tail);
}
2022-03-11 11:55:02 -05:00
else if (rFreeTail)
{
2022-03-11 11:55:02 -05:00
tryUnify_(emptyTp, *subTpv->tail);
}
else if (subTpv->tail && superTpv->tail)
{
if (log.getMutable<VariadicTypePack>(superIter.packId))
tryUnifyVariadics(subIter.packId, superIter.packId, false, int(subIter.index));
else if (log.getMutable<VariadicTypePack>(subIter.packId))
tryUnifyVariadics(superIter.packId, subIter.packId, true, int(superIter.index));
else
tryUnify_(*subTpv->tail, *superTpv->tail);
}
2022-03-11 11:55:02 -05:00
break;
}
2022-03-11 11:55:02 -05:00
// If both tails are free, bind one to the other and call it a day
if (superIter.canGrow() && subIter.canGrow())
return tryUnify_(*subIter.pack->tail, *superIter.pack->tail);
2022-03-11 11:55:02 -05:00
// If just one side is free on its tail, grow it to fit the other side.
// FIXME: The tail-most tail of the growing pack should be the same as the tail-most tail of the non-growing pack.
if (superIter.canGrow())
superIter.grow(types->addTypePack(TypePackVar(TypePack{})));
else if (subIter.canGrow())
subIter.grow(types->addTypePack(TypePackVar(TypePack{})));
else
{
// A union type including nil marks an optional argument
if (superIter.good() && isOptional(*superIter))
{
2022-03-11 11:55:02 -05:00
superIter.advance();
continue;
}
else if (subIter.good() && isOptional(*subIter))
{
2022-03-11 11:55:02 -05:00
subIter.advance();
continue;
}
2022-03-11 11:55:02 -05:00
if (log.getMutable<VariadicTypePack>(superIter.packId))
{
tryUnifyVariadics(subIter.packId, superIter.packId, false, int(subIter.index));
return;
}
if (log.getMutable<VariadicTypePack>(subIter.packId))
{
2022-03-11 11:55:02 -05:00
tryUnifyVariadics(superIter.packId, subIter.packId, true, int(superIter.index));
return;
}
if (!isFunctionCall && subIter.good())
2022-03-11 11:55:02 -05:00
{
// Sometimes it is ok to pass too many arguments
return;
}
2022-03-11 11:55:02 -05:00
// This is a bit weird because we don't actually know expected vs actual. We just know
// subtype vs supertype. If we are checking the values returned by a function, we swap
// these to produce the expected error message.
size_t expectedSize = size(superTp);
size_t actualSize = size(subTp);
if (ctx == CountMismatch::FunctionResult || ctx == CountMismatch::ExprListResult)
2022-03-11 11:55:02 -05:00
std::swap(expectedSize, actualSize);
reportError(location, CountMismatch{expectedSize, std::nullopt, actualSize, ctx});
2022-03-11 11:55:02 -05:00
while (superIter.good())
{
tryUnify_(*superIter, builtinTypes->errorRecoveryType());
2022-03-11 11:55:02 -05:00
superIter.advance();
}
2022-03-11 11:55:02 -05:00
while (subIter.good())
{
tryUnify_(*subIter, builtinTypes->errorRecoveryType());
2022-03-11 11:55:02 -05:00
subIter.advance();
}
2022-03-11 11:55:02 -05:00
return;
}
} while (!noInfiniteGrowth);
}
else
{
reportError(location, TypePackMismatch{subTp, superTp});
2022-03-11 11:55:02 -05:00
}
}
2022-03-11 11:55:02 -05:00
void Unifier::tryUnifyPrimitives(TypeId subTy, TypeId superTy)
{
const PrimitiveType* superPrim = get<PrimitiveType>(superTy);
const PrimitiveType* subPrim = get<PrimitiveType>(subTy);
2022-03-11 11:55:02 -05:00
if (!superPrim || !subPrim)
ice("passed non primitive types to unifyPrimitives");
2022-03-11 11:55:02 -05:00
if (superPrim->type != subPrim->type)
reportError(location, TypeMismatch{superTy, subTy, mismatchContext()});
2022-03-11 11:55:02 -05:00
}
2022-03-11 11:55:02 -05:00
void Unifier::tryUnifySingletons(TypeId subTy, TypeId superTy)
{
const PrimitiveType* superPrim = get<PrimitiveType>(superTy);
const SingletonType* superSingleton = get<SingletonType>(superTy);
const SingletonType* subSingleton = get<SingletonType>(subTy);
2022-03-11 11:55:02 -05:00
if ((!superPrim && !superSingleton) || !subSingleton)
ice("passed non singleton/primitive types to unifySingletons");
if (superSingleton && *superSingleton == *subSingleton)
return;
if (superPrim && superPrim->type == PrimitiveType::Boolean && get<BooleanSingleton>(subSingleton) && variance == Covariant)
return;
if (superPrim && superPrim->type == PrimitiveType::String && get<StringSingleton>(subSingleton) && variance == Covariant)
return;
reportError(location, TypeMismatch{superTy, subTy, mismatchContext()});
}
void Unifier::tryUnifyFunctions(TypeId subTy, TypeId superTy, bool isFunctionCall)
{
FunctionType* superFunction = log.getMutable<FunctionType>(superTy);
FunctionType* subFunction = log.getMutable<FunctionType>(subTy);
if (!superFunction || !subFunction)
ice("passed non-function types to unifyFunction");
size_t numGenerics = superFunction->generics.size();
size_t numGenericPacks = superFunction->genericPacks.size();
bool shouldInstantiate = (numGenerics == 0 && subFunction->generics.size() > 0) || (numGenericPacks == 0 && subFunction->genericPacks.size() > 0);
// TODO: This is unsound when the context is invariant, but the annotation burden without allowing it and without
// read-only properties is too high for lua-apps. Read-only properties _should_ resolve their issue by allowing
// generic methods in tables to be marked read-only.
if (FFlag::LuauInstantiateInSubtyping && shouldInstantiate)
{
Instantiation instantiation{&log, types, scope->level, scope};
std::optional<TypeId> instantiated = instantiation.substitute(subTy);
if (instantiated.has_value())
{
subFunction = log.getMutable<FunctionType>(*instantiated);
if (!subFunction)
ice("instantiation made a function type into a non-function type in unifyFunction");
numGenerics = std::min(superFunction->generics.size(), subFunction->generics.size());
numGenericPacks = std::min(superFunction->genericPacks.size(), subFunction->genericPacks.size());
}
else
{
reportError(location, UnificationTooComplex{});
}
}
else if (numGenerics != subFunction->generics.size())
{
numGenerics = std::min(superFunction->generics.size(), subFunction->generics.size());
reportError(location, TypeMismatch{superTy, subTy, "different number of generic type parameters", mismatchContext()});
}
if (numGenericPacks != subFunction->genericPacks.size())
{
numGenericPacks = std::min(superFunction->genericPacks.size(), subFunction->genericPacks.size());
reportError(location, TypeMismatch{superTy, subTy, "different number of generic type pack parameters", mismatchContext()});
}
for (size_t i = 0; i < numGenerics; i++)
{
2022-03-11 11:55:02 -05:00
log.pushSeen(superFunction->generics[i], subFunction->generics[i]);
}
2022-04-28 21:24:24 -04:00
for (size_t i = 0; i < numGenericPacks; i++)
2022-03-04 11:36:33 -05:00
{
2022-04-28 21:24:24 -04:00
log.pushSeen(superFunction->genericPacks[i], subFunction->genericPacks[i]);
2022-03-04 11:36:33 -05:00
}
CountMismatch::Context context = ctx;
if (!isFunctionCall)
{
Unifier innerState = makeChildUnifier();
innerState.ctx = CountMismatch::Arg;
innerState.tryUnify_(superFunction->argTypes, subFunction->argTypes, isFunctionCall);
bool reported = !innerState.errors.empty();
if (auto e = hasUnificationTooComplex(innerState.errors))
reportError(*e);
else if (!innerState.errors.empty() && innerState.firstPackErrorPos)
reportError(location, TypeMismatch{superTy, subTy, format("Argument #%d type is not compatible.", *innerState.firstPackErrorPos),
innerState.errors.front(), mismatchContext()});
else if (!innerState.errors.empty())
reportError(location, TypeMismatch{superTy, subTy, "", innerState.errors.front(), mismatchContext()});
innerState.ctx = CountMismatch::FunctionResult;
2022-06-16 21:05:14 -04:00
innerState.tryUnify_(subFunction->retTypes, superFunction->retTypes);
if (!reported)
{
if (auto e = hasUnificationTooComplex(innerState.errors))
reportError(*e);
2022-06-16 21:05:14 -04:00
else if (!innerState.errors.empty() && size(superFunction->retTypes) == 1 && finite(superFunction->retTypes))
reportError(location, TypeMismatch{superTy, subTy, "Return type is not compatible.", innerState.errors.front(), mismatchContext()});
else if (!innerState.errors.empty() && innerState.firstPackErrorPos)
reportError(location, TypeMismatch{superTy, subTy, format("Return #%d type is not compatible.", *innerState.firstPackErrorPos),
innerState.errors.front(), mismatchContext()});
else if (!innerState.errors.empty())
reportError(location, TypeMismatch{superTy, subTy, "", innerState.errors.front(), mismatchContext()});
}
2022-03-11 11:55:02 -05:00
log.concat(std::move(innerState.log));
}
else
{
ctx = CountMismatch::Arg;
tryUnify_(superFunction->argTypes, subFunction->argTypes, isFunctionCall);
ctx = CountMismatch::FunctionResult;
2022-06-16 21:05:14 -04:00
tryUnify_(subFunction->retTypes, superFunction->retTypes);
}
2022-06-23 21:56:00 -04:00
// Updating the log may have invalidated the function pointers
superFunction = log.getMutable<FunctionType>(superTy);
subFunction = log.getMutable<FunctionType>(subTy);
2022-03-17 20:46:04 -04:00
ctx = context;
2022-04-28 21:24:24 -04:00
for (int i = int(numGenericPacks) - 1; 0 <= i; i--)
2022-03-04 11:36:33 -05:00
{
2022-04-28 21:24:24 -04:00
log.popSeen(superFunction->genericPacks[i], subFunction->genericPacks[i]);
2022-03-04 11:36:33 -05:00
}
for (int i = int(numGenerics) - 1; 0 <= i; i--)
{
2022-03-11 11:55:02 -05:00
log.popSeen(superFunction->generics[i], subFunction->generics[i]);
}
}
namespace
{
struct Resetter
{
explicit Resetter(Variance* variance)
: oldValue(*variance)
, variance(variance)
{
}
Variance oldValue;
Variance* variance;
~Resetter()
{
*variance = oldValue;
}
};
} // namespace
void Unifier::tryUnifyTables(TypeId subTy, TypeId superTy, bool isIntersection)
{
Sync to upstream/release/566 (#853) * Fixed incorrect lexeme generated for string parts in the middle of an interpolated string (Fixes https://github.com/Roblox/luau/issues/744) * DeprecatedApi lint can report some issues without type inference information * Fixed performance of autocomplete requests when suggestions have large intersection types (Solves https://github.com/Roblox/luau/discussions/847) * Marked `table.getn`/`foreach`/`foreachi` as deprecated ([RFC: Deprecate table.getn/foreach/foreachi](https://github.com/Roblox/luau/blob/master/rfcs/deprecate-table-getn-foreach.md)) * With -O2 optimization level, we now optimize builtin calls based on known argument/return count. Note that this change can be observable if `getfenv/setfenv` is used to substitute a builtin, especially if arity is different. Fastcall heavy tests show a 1-2% improvement. * Luau can now be built with clang-cl (Fixes https://github.com/Roblox/luau/issues/736) We also made many improvements to our experimental components. For our new type solver: * Overhauled data flow analysis system, fixed issues with 'repeat' loops, global variables and type annotations * Type refinements now work on generic table indexing with a string literal * Type refinements will properly track potentially 'nil' values (like t[x] for a missing key) and their further refinements * Internal top table type is now isomorphic to `{}` which fixes issues when `typeof(v) == 'table'` type refinement is handled * References to non-existent types in type annotations no longer resolve to 'error' type like in old solver * Improved handling of class unions in property access expressions * Fixed default type packs * Unsealed tables can now have metatables * Restored expected types for function arguments And for native code generation: * Added min and max IR instructions mapping to vminsd/vmaxsd on x64 * We now speculatively extract direct execution fast-paths based on expected types of expressions which provides better optimization opportunities inside a single basic block * Translated existing math fastcalls to IR form to improve tag guard removal and constant propagation
2023-03-03 15:21:14 -05:00
if (isPrim(log.follow(subTy), PrimitiveType::Table))
subTy = builtinTypes->emptyTableType;
if (isPrim(log.follow(superTy), PrimitiveType::Table))
superTy = builtinTypes->emptyTableType;
Sync to upstream/release/562 (#828) * Fixed rare use-after-free in analysis during table unification A lot of work these past months went into two new Luau components: * A near full rewrite of the typechecker using a new deferred constraint resolution system * Native code generation for AoT/JiT compilation of VM bytecode into x64 (avx)/arm64 instructions Both of these components are far from finished and we don't provide documentation on building and using them at this point. However, curious community members expressed interest in learning about changes that go into these components each week, so we are now listing them here in the 'sync' pull request descriptions. --- New typechecker can be enabled by setting DebugLuauDeferredConstraintResolution flag to 'true'. It is considered unstable right now, so try it at your own risk. Even though it already provides better type inference than the current one in some cases, our main goal right now is to reach feature parity with current typechecker. Features which improve over the capabilities of the current typechecker are marked as '(NEW)'. Changes to new typechecker: * Regular for loop index and parameters are now typechecked * Invalid type annotations on local variables are ignored to improve autocomplete * Fixed missing autocomplete type suggestions for function arguments * Type reduction is now performed to produce simpler types to be presented to the user (error messages, custom LSPs) * Internally, complex types like '((number | string) & ~(false?)) | string' can be produced, which is just 'string | number' when simplified * Fixed spots where support for unknown and never types was missing * (NEW) Length operator '#' is now valid to use on top table type, this type comes up when doing typeof(x) == "table" guards and isn't available in current typechecker --- Changes to native code generation: * Additional math library fast calls are now lowered to x64: math.ldexp, math.round, math.frexp, math.modf, math.sign and math.clamp
2023-02-03 14:26:13 -05:00
TypeId activeSubTy = subTy;
TableType* superTable = log.getMutable<TableType>(superTy);
TableType* subTable = log.getMutable<TableType>(subTy);
2022-02-04 11:45:57 -05:00
if (!superTable || !subTable)
ice("passed non-table types to unifyTables");
std::vector<std::string> missingProperties;
std::vector<std::string> extraProperties;
if (FFlag::LuauInstantiateInSubtyping)
{
if (variance == Covariant && subTable->state == TableState::Generic && superTable->state != TableState::Generic)
{
Instantiation instantiation{&log, types, subTable->level, scope};
std::optional<TypeId> instantiated = instantiation.substitute(subTy);
if (instantiated.has_value())
{
activeSubTy = *instantiated;
subTable = log.getMutable<TableType>(activeSubTy);
if (!subTable)
ice("instantiation made a table type into a non-table type in tryUnifyTables");
}
else
{
reportError(location, UnificationTooComplex{});
}
}
}
// Optimization: First test that the property sets are compatible without doing any recursive unification
2022-03-04 11:36:33 -05:00
if (!subTable->indexer && subTable->state != TableState::Free)
{
for (const auto& [propName, superProp] : superTable->props)
{
auto subIter = subTable->props.find(propName);
2022-02-04 11:45:57 -05:00
if (subIter == subTable->props.end() && subTable->state == TableState::Unsealed && !isOptional(superProp.type()))
2022-05-19 20:02:24 -04:00
missingProperties.push_back(propName);
}
if (!missingProperties.empty())
{
reportError(location, MissingProperties{superTy, subTy, std::move(missingProperties)});
return;
}
}
// And vice versa if we're invariant
2022-04-14 19:57:43 -04:00
if (variance == Invariant && !superTable->indexer && superTable->state != TableState::Unsealed && superTable->state != TableState::Free)
{
for (const auto& [propName, subProp] : subTable->props)
{
auto superIter = superTable->props.find(propName);
2022-02-04 11:45:57 -05:00
2022-06-23 21:56:00 -04:00
if (superIter == superTable->props.end())
2022-05-19 20:02:24 -04:00
extraProperties.push_back(propName);
}
if (!extraProperties.empty())
{
reportError(location, MissingProperties{superTy, subTy, std::move(extraProperties), MissingProperties::Extra});
return;
}
}
// Width subtyping: any property in the supertype must be in the subtype,
// and the types must agree.
for (const auto& [name, prop] : superTable->props)
{
const auto& r = subTable->props.find(name);
if (r != subTable->props.end())
{
// TODO: read-only properties don't need invariance
Resetter resetter{&variance};
variance = Invariant;
Unifier innerState = makeChildUnifier();
innerState.tryUnify_(r->second.type(), prop.type());
checkChildUnifierTypeMismatch(innerState.errors, name, superTy, subTy);
2022-03-11 11:55:02 -05:00
if (innerState.errors.empty())
log.concat(std::move(innerState.log));
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
failure |= innerState.failure;
}
2022-03-04 11:36:33 -05:00
else if (subTable->indexer && maybeString(subTable->indexer->indexType))
{
// TODO: read-only indexers don't need invariance
// TODO: really we should only allow this if prop.type is optional.
Resetter resetter{&variance};
variance = Invariant;
Unifier innerState = makeChildUnifier();
innerState.tryUnify_(subTable->indexer->indexResultType, prop.type());
checkChildUnifierTypeMismatch(innerState.errors, name, superTy, subTy);
2022-03-11 11:55:02 -05:00
if (innerState.errors.empty())
log.concat(std::move(innerState.log));
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
failure |= innerState.failure;
}
else if (subTable->state == TableState::Unsealed && isOptional(prop.type()))
2022-03-04 11:36:33 -05:00
// This is sound because unsealed table types are precise, so `{ p : T } <: { p : T, q : U? }`
// since if `t : { p : T }` then we are guaranteed that `t.q` is `nil`.
// TODO: if the supertype is written to, the subtype may no longer be precise (alias analysis?)
{
}
else if (subTable->state == TableState::Free)
{
Sync to upstream/release/562 (#828) * Fixed rare use-after-free in analysis during table unification A lot of work these past months went into two new Luau components: * A near full rewrite of the typechecker using a new deferred constraint resolution system * Native code generation for AoT/JiT compilation of VM bytecode into x64 (avx)/arm64 instructions Both of these components are far from finished and we don't provide documentation on building and using them at this point. However, curious community members expressed interest in learning about changes that go into these components each week, so we are now listing them here in the 'sync' pull request descriptions. --- New typechecker can be enabled by setting DebugLuauDeferredConstraintResolution flag to 'true'. It is considered unstable right now, so try it at your own risk. Even though it already provides better type inference than the current one in some cases, our main goal right now is to reach feature parity with current typechecker. Features which improve over the capabilities of the current typechecker are marked as '(NEW)'. Changes to new typechecker: * Regular for loop index and parameters are now typechecked * Invalid type annotations on local variables are ignored to improve autocomplete * Fixed missing autocomplete type suggestions for function arguments * Type reduction is now performed to produce simpler types to be presented to the user (error messages, custom LSPs) * Internally, complex types like '((number | string) & ~(false?)) | string' can be produced, which is just 'string | number' when simplified * Fixed spots where support for unknown and never types was missing * (NEW) Length operator '#' is now valid to use on top table type, this type comes up when doing typeof(x) == "table" guards and isn't available in current typechecker --- Changes to native code generation: * Additional math library fast calls are now lowered to x64: math.ldexp, math.round, math.frexp, math.modf, math.sign and math.clamp
2023-02-03 14:26:13 -05:00
PendingType* pendingSub = log.queue(activeSubTy);
TableType* ttv = getMutable<TableType>(pendingSub);
2022-03-11 11:55:02 -05:00
LUAU_ASSERT(ttv);
ttv->props[name] = prop;
subTable = ttv;
}
else
missingProperties.push_back(name);
2022-03-11 11:55:02 -05:00
2022-04-28 21:24:24 -04:00
// Recursive unification can change the txn log, and invalidate the old
// table. If we detect that this has happened, we start over, with the updated
// txn log.
TypeId superTyNew = log.follow(superTy);
TypeId subTyNew = log.follow(activeSubTy);
// If one of the types stopped being a table altogether, we need to restart from the top
if ((superTy != superTyNew || activeSubTy != subTyNew) && errors.empty())
return tryUnify(subTy, superTy, false, isIntersection);
// Otherwise, restart only the table unification
TableType* newSuperTable = log.getMutable<TableType>(superTyNew);
TableType* newSubTable = log.getMutable<TableType>(subTyNew);
if (superTable != newSuperTable || subTable != newSubTable)
2022-03-11 11:55:02 -05:00
{
2022-04-28 21:24:24 -04:00
if (errors.empty())
return tryUnifyTables(subTy, superTy, isIntersection);
else
return;
2022-03-11 11:55:02 -05:00
}
}
for (const auto& [name, prop] : subTable->props)
{
if (superTable->props.count(name))
{
// If both lt and rt contain the property, then
// we're done since we already unified them above
}
2022-03-04 11:36:33 -05:00
else if (superTable->indexer && maybeString(superTable->indexer->indexType))
{
// TODO: read-only indexers don't need invariance
// TODO: really we should only allow this if prop.type is optional.
Resetter resetter{&variance};
variance = Invariant;
Unifier innerState = makeChildUnifier();
innerState.tryUnify_(superTable->indexer->indexResultType, prop.type());
checkChildUnifierTypeMismatch(innerState.errors, name, superTy, subTy);
2022-03-11 11:55:02 -05:00
if (innerState.errors.empty())
log.concat(std::move(innerState.log));
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
failure |= innerState.failure;
}
else if (superTable->state == TableState::Unsealed)
{
// TODO: this case is unsound when variance is Invariant, but without it lua-apps fails to typecheck.
// TODO: file a JIRA
// TODO: hopefully readonly/writeonly properties will fix this.
Property clone = prop;
clone.setType(deeplyOptional(clone.type()));
2022-03-11 11:55:02 -05:00
PendingType* pendingSuper = log.queue(superTy);
TableType* pendingSuperTtv = getMutable<TableType>(pendingSuper);
2022-03-11 11:55:02 -05:00
pendingSuperTtv->props[name] = clone;
superTable = pendingSuperTtv;
}
else if (variance == Covariant)
{
}
else if (superTable->state == TableState::Free)
{
2022-03-11 11:55:02 -05:00
PendingType* pendingSuper = log.queue(superTy);
TableType* pendingSuperTtv = getMutable<TableType>(pendingSuper);
2022-03-11 11:55:02 -05:00
pendingSuperTtv->props[name] = prop;
superTable = pendingSuperTtv;
}
else
extraProperties.push_back(name);
2022-03-11 11:55:02 -05:00
TypeId superTyNew = log.follow(superTy);
TypeId subTyNew = log.follow(activeSubTy);
// If one of the types stopped being a table altogether, we need to restart from the top
if ((superTy != superTyNew || activeSubTy != subTyNew) && errors.empty())
return tryUnify(subTy, superTy, false, isIntersection);
2022-04-28 21:24:24 -04:00
// Recursive unification can change the txn log, and invalidate the old
// table. If we detect that this has happened, we start over, with the updated
// txn log.
TableType* newSuperTable = log.getMutable<TableType>(superTyNew);
TableType* newSubTable = log.getMutable<TableType>(subTyNew);
Sync to upstream/release/562 (#828) * Fixed rare use-after-free in analysis during table unification A lot of work these past months went into two new Luau components: * A near full rewrite of the typechecker using a new deferred constraint resolution system * Native code generation for AoT/JiT compilation of VM bytecode into x64 (avx)/arm64 instructions Both of these components are far from finished and we don't provide documentation on building and using them at this point. However, curious community members expressed interest in learning about changes that go into these components each week, so we are now listing them here in the 'sync' pull request descriptions. --- New typechecker can be enabled by setting DebugLuauDeferredConstraintResolution flag to 'true'. It is considered unstable right now, so try it at your own risk. Even though it already provides better type inference than the current one in some cases, our main goal right now is to reach feature parity with current typechecker. Features which improve over the capabilities of the current typechecker are marked as '(NEW)'. Changes to new typechecker: * Regular for loop index and parameters are now typechecked * Invalid type annotations on local variables are ignored to improve autocomplete * Fixed missing autocomplete type suggestions for function arguments * Type reduction is now performed to produce simpler types to be presented to the user (error messages, custom LSPs) * Internally, complex types like '((number | string) & ~(false?)) | string' can be produced, which is just 'string | number' when simplified * Fixed spots where support for unknown and never types was missing * (NEW) Length operator '#' is now valid to use on top table type, this type comes up when doing typeof(x) == "table" guards and isn't available in current typechecker --- Changes to native code generation: * Additional math library fast calls are now lowered to x64: math.ldexp, math.round, math.frexp, math.modf, math.sign and math.clamp
2023-02-03 14:26:13 -05:00
if (superTable != newSuperTable || subTable != newSubTable)
2022-03-11 11:55:02 -05:00
{
2022-04-28 21:24:24 -04:00
if (errors.empty())
return tryUnifyTables(subTy, superTy, isIntersection);
else
return;
2022-03-11 11:55:02 -05:00
}
}
// Unify indexers
if (superTable->indexer && subTable->indexer)
{
// TODO: read-only indexers don't need invariance
Resetter resetter{&variance};
variance = Invariant;
Unifier innerState = makeChildUnifier();
2022-03-24 18:04:14 -04:00
2022-04-21 17:44:27 -04:00
innerState.tryUnify_(subTable->indexer->indexType, superTable->indexer->indexType);
2022-03-24 18:04:14 -04:00
2022-04-21 17:44:27 -04:00
bool reported = !innerState.errors.empty();
2022-03-24 18:04:14 -04:00
2022-04-21 17:44:27 -04:00
checkChildUnifierTypeMismatch(innerState.errors, "[indexer key]", superTy, subTy);
2022-03-24 18:04:14 -04:00
2022-04-21 17:44:27 -04:00
innerState.tryUnify_(subTable->indexer->indexResultType, superTable->indexer->indexResultType);
2022-03-24 18:04:14 -04:00
2022-04-21 17:44:27 -04:00
if (!reported)
checkChildUnifierTypeMismatch(innerState.errors, "[indexer value]", superTy, subTy);
2022-03-11 11:55:02 -05:00
if (innerState.errors.empty())
log.concat(std::move(innerState.log));
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
failure |= innerState.failure;
}
else if (superTable->indexer)
{
if (subTable->state == TableState::Unsealed || subTable->state == TableState::Free)
{
// passing/assigning a table without an indexer to something that has one
// e.g. table.insert(t, 1) where t is a non-sealed table and doesn't have an indexer.
// TODO: we only need to do this if the supertype's indexer is read/write
// since that can add indexed elements.
2022-03-11 11:55:02 -05:00
log.changeIndexer(subTy, superTable->indexer);
}
}
else if (subTable->indexer && variance == Invariant)
{
// Symmetric if we are invariant
if (superTable->state == TableState::Unsealed || superTable->state == TableState::Free)
{
2022-03-11 11:55:02 -05:00
log.changeIndexer(superTy, subTable->indexer);
}
}
2022-04-28 21:24:24 -04:00
// Changing the indexer can invalidate the table pointers.
superTable = log.getMutable<TableType>(log.follow(superTy));
subTable = log.getMutable<TableType>(log.follow(activeSubTy));
if (!superTable || !subTable)
return;
if (!missingProperties.empty())
{
reportError(location, MissingProperties{superTy, subTy, std::move(missingProperties)});
return;
}
if (!extraProperties.empty())
{
reportError(location, MissingProperties{superTy, subTy, std::move(extraProperties), MissingProperties::Extra});
return;
}
/*
* Types are commonly cyclic, so it is entirely possible
* for unifying a property of a table to change the table itself!
* We need to check for this and start over if we notice this occurring.
*
* I believe this is guaranteed to terminate eventually because this will
* only happen when a free table is bound to another table.
*/
if (superTable->boundTo || subTable->boundTo)
return tryUnify_(subTy, superTy);
if (superTable->state == TableState::Free)
{
2022-03-11 11:55:02 -05:00
log.bindTable(superTy, subTy);
}
else if (subTable->state == TableState::Free)
{
2022-03-11 11:55:02 -05:00
log.bindTable(subTy, superTy);
}
}
2022-07-14 18:52:26 -04:00
void Unifier::tryUnifyScalarShape(TypeId subTy, TypeId superTy, bool reversed)
{
TypeId osubTy = subTy;
TypeId osuperTy = superTy;
Sync to upstream/release/566 (#853) * Fixed incorrect lexeme generated for string parts in the middle of an interpolated string (Fixes https://github.com/Roblox/luau/issues/744) * DeprecatedApi lint can report some issues without type inference information * Fixed performance of autocomplete requests when suggestions have large intersection types (Solves https://github.com/Roblox/luau/discussions/847) * Marked `table.getn`/`foreach`/`foreachi` as deprecated ([RFC: Deprecate table.getn/foreach/foreachi](https://github.com/Roblox/luau/blob/master/rfcs/deprecate-table-getn-foreach.md)) * With -O2 optimization level, we now optimize builtin calls based on known argument/return count. Note that this change can be observable if `getfenv/setfenv` is used to substitute a builtin, especially if arity is different. Fastcall heavy tests show a 1-2% improvement. * Luau can now be built with clang-cl (Fixes https://github.com/Roblox/luau/issues/736) We also made many improvements to our experimental components. For our new type solver: * Overhauled data flow analysis system, fixed issues with 'repeat' loops, global variables and type annotations * Type refinements now work on generic table indexing with a string literal * Type refinements will properly track potentially 'nil' values (like t[x] for a missing key) and their further refinements * Internal top table type is now isomorphic to `{}` which fixes issues when `typeof(v) == 'table'` type refinement is handled * References to non-existent types in type annotations no longer resolve to 'error' type like in old solver * Improved handling of class unions in property access expressions * Fixed default type packs * Unsealed tables can now have metatables * Restored expected types for function arguments And for native code generation: * Added min and max IR instructions mapping to vminsd/vmaxsd on x64 * We now speculatively extract direct execution fast-paths based on expected types of expressions which provides better optimization opportunities inside a single basic block * Translated existing math fastcalls to IR form to improve tag guard removal and constant propagation
2023-03-03 15:21:14 -05:00
if (FFlag::LuauUninhabitedSubAnything2 && checkInhabited && !normalizer->isInhabited(subTy))
return;
2022-07-14 18:52:26 -04:00
if (reversed)
std::swap(subTy, superTy);
TableType* superTable = log.getMutable<TableType>(superTy);
if (!superTable || superTable->state != TableState::Free)
return reportError(location, TypeMismatch{osuperTy, osubTy, mismatchContext()});
2022-07-14 18:52:26 -04:00
auto fail = [&](std::optional<TypeError> e) {
std::string reason = "The former's metatable does not satisfy the requirements.";
if (e)
reportError(location, TypeMismatch{osuperTy, osubTy, reason, *e, mismatchContext()});
2022-07-14 18:52:26 -04:00
else
reportError(location, TypeMismatch{osuperTy, osubTy, reason, mismatchContext()});
2022-07-14 18:52:26 -04:00
};
// Given t1 where t1 = { lower: (t1) -> (a, b...) }
// It should be the case that `string <: t1` iff `(subtype's metatable).__index <: t1`
if (auto metatable = getMetatable(subTy, builtinTypes))
2022-07-14 18:52:26 -04:00
{
auto mttv = log.get<TableType>(*metatable);
2022-07-14 18:52:26 -04:00
if (!mttv)
fail(std::nullopt);
if (auto it = mttv->props.find("__index"); it != mttv->props.end())
{
TypeId ty = it->second.type();
2022-07-14 18:52:26 -04:00
Unifier child = makeChildUnifier();
child.tryUnify_(ty, superTy);
// To perform subtype <: free table unification, we have tried to unify (subtype's metatable) <: free table
// There is a chance that it was unified with the origial subtype, but then, (subtype's metatable) <: subtype could've failed
// Here we check if we have a new supertype instead of the original free table and try original subtype <: new supertype check
TypeId newSuperTy = child.log.follow(superTy);
if (superTy != newSuperTy && canUnify(subTy, newSuperTy).empty())
{
log.replace(superTy, BoundType{subTy});
return;
}
2022-07-14 18:52:26 -04:00
if (auto e = hasUnificationTooComplex(child.errors))
reportError(*e);
else if (!child.errors.empty())
fail(child.errors.front());
log.concat(std::move(child.log));
// To perform subtype <: free table unification, we have tried to unify (subtype's metatable) <: free table
// We return success because subtype <: free table which means that correct unification is to replace free table with the subtype
if (child.errors.empty())
log.replace(superTy, BoundType{subTy});
2022-07-14 18:52:26 -04:00
return;
}
else
{
return fail(std::nullopt);
}
}
reportError(location, TypeMismatch{osuperTy, osubTy, mismatchContext()});
2022-07-14 18:52:26 -04:00
return;
}
TypeId Unifier::deeplyOptional(TypeId ty, std::unordered_map<TypeId, TypeId> seen)
{
ty = follow(ty);
2022-05-19 20:02:24 -04:00
if (isOptional(ty))
return ty;
else if (const TableType* ttv = get<TableType>(ty))
{
TypeId& result = seen[ty];
if (result)
return result;
result = types->addType(*ttv);
TableType* resultTtv = getMutable<TableType>(result);
for (auto& [name, prop] : resultTtv->props)
prop.setType(deeplyOptional(prop.type(), seen));
return types->addType(UnionType{{builtinTypes->nilType, result}});
}
else
return types->addType(UnionType{{builtinTypes->nilType, ty}});
}
void Unifier::tryUnifyWithMetatable(TypeId subTy, TypeId superTy, bool reversed)
{
const MetatableType* superMetatable = get<MetatableType>(superTy);
if (!superMetatable)
ice("tryUnifyMetatable invoked with non-metatable Type");
TypeError mismatchError = TypeError{location, TypeMismatch{reversed ? subTy : superTy, reversed ? superTy : subTy, mismatchContext()}};
if (const MetatableType* subMetatable = log.getMutable<MetatableType>(subTy))
{
Unifier innerState = makeChildUnifier();
innerState.tryUnify_(subMetatable->table, superMetatable->table);
innerState.tryUnify_(subMetatable->metatable, superMetatable->metatable);
if (auto e = hasUnificationTooComplex(innerState.errors))
reportError(*e);
else if (!innerState.errors.empty())
reportError(
location, TypeMismatch{reversed ? subTy : superTy, reversed ? superTy : subTy, "", innerState.errors.front(), mismatchContext()});
2022-03-11 11:55:02 -05:00
log.concat(std::move(innerState.log));
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
failure |= innerState.failure;
}
else if (TableType* subTable = log.getMutable<TableType>(subTy))
{
switch (subTable->state)
{
case TableState::Free:
{
if (FFlag::DebugLuauDeferredConstraintResolution)
{
Unifier innerState = makeChildUnifier();
bool missingProperty = false;
for (const auto& [propName, prop] : subTable->props)
{
if (std::optional<TypeId> mtPropTy = findTablePropertyRespectingMeta(superTy, propName))
{
innerState.tryUnify(prop.type(), *mtPropTy);
}
else
{
reportError(mismatchError);
missingProperty = true;
break;
}
}
if (const TableType* superTable = log.get<TableType>(log.follow(superMetatable->table)))
{
// TODO: Unify indexers.
}
if (auto e = hasUnificationTooComplex(innerState.errors))
reportError(*e);
else if (!innerState.errors.empty())
reportError(TypeError{location,
TypeMismatch{reversed ? subTy : superTy, reversed ? superTy : subTy, "", innerState.errors.front(), mismatchContext()}});
else if (!missingProperty)
{
log.concat(std::move(innerState.log));
log.bindTable(subTy, superTy);
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
failure |= innerState.failure;
}
}
else
{
tryUnify_(subTy, superMetatable->table);
log.bindTable(subTy, superTy);
}
break;
}
// We know the shape of sealed, unsealed, and generic tables; you can't add a metatable on to any of these.
case TableState::Sealed:
case TableState::Unsealed:
case TableState::Generic:
reportError(mismatchError);
}
}
else if (log.getMutable<AnyType>(subTy) || log.getMutable<ErrorType>(subTy))
{
}
else
{
reportError(mismatchError);
}
}
// Class unification is almost, but not quite symmetrical. We use the 'reversed' boolean to indicate which scenario we are evaluating.
void Unifier::tryUnifyWithClass(TypeId subTy, TypeId superTy, bool reversed)
{
if (reversed)
std::swap(superTy, subTy);
auto fail = [&]() {
if (!reversed)
reportError(location, TypeMismatch{superTy, subTy, mismatchContext()});
else
reportError(location, TypeMismatch{subTy, superTy, mismatchContext()});
};
const ClassType* superClass = get<ClassType>(superTy);
if (!superClass)
ice("tryUnifyClass invoked with non-class Type");
if (const ClassType* subClass = get<ClassType>(subTy))
{
switch (variance)
{
case Covariant:
if (!isSubclass(subClass, superClass))
return fail();
return;
case Invariant:
if (subClass != superClass)
return fail();
return;
}
ice("Illegal variance setting!");
}
else if (TableType* subTable = getMutable<TableType>(subTy))
{
/**
* A free table is something whose shape we do not exactly know yet.
* Thus, it is entirely reasonable that we might discover that it is being used as some class type.
* In this case, the free table must indeed be that exact class.
* For this to hold, the table must not have any properties that the class does not.
* Further, all properties of the table should unify cleanly with the matching class properties.
* TODO: What does it mean for the table to have an indexer? (probably failure?)
*
* Tables that are not free are known to be actual tables.
*/
if (subTable->state != TableState::Free)
return fail();
bool ok = true;
for (const auto& [propName, prop] : subTable->props)
{
const Property* classProp = lookupClassProp(superClass, propName);
if (!classProp)
{
ok = false;
reportError(location, UnknownProperty{superTy, propName});
}
else
{
Unifier innerState = makeChildUnifier();
innerState.tryUnify_(classProp->type(), prop.type());
checkChildUnifierTypeMismatch(innerState.errors, propName, reversed ? subTy : superTy, reversed ? superTy : subTy);
2022-03-11 11:55:02 -05:00
if (innerState.errors.empty())
{
2022-03-11 11:55:02 -05:00
log.concat(std::move(innerState.log));
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
failure |= innerState.failure;
}
else
{
2022-03-11 11:55:02 -05:00
ok = false;
}
}
}
if (subTable->indexer)
{
ok = false;
std::string msg = "Class " + superClass->name + " does not have an indexer";
reportError(location, GenericError{msg});
}
if (!ok)
return;
2022-03-11 11:55:02 -05:00
log.bindTable(subTy, superTy);
}
else
return fail();
}
Sync to upstream/release/562 (#828) * Fixed rare use-after-free in analysis during table unification A lot of work these past months went into two new Luau components: * A near full rewrite of the typechecker using a new deferred constraint resolution system * Native code generation for AoT/JiT compilation of VM bytecode into x64 (avx)/arm64 instructions Both of these components are far from finished and we don't provide documentation on building and using them at this point. However, curious community members expressed interest in learning about changes that go into these components each week, so we are now listing them here in the 'sync' pull request descriptions. --- New typechecker can be enabled by setting DebugLuauDeferredConstraintResolution flag to 'true'. It is considered unstable right now, so try it at your own risk. Even though it already provides better type inference than the current one in some cases, our main goal right now is to reach feature parity with current typechecker. Features which improve over the capabilities of the current typechecker are marked as '(NEW)'. Changes to new typechecker: * Regular for loop index and parameters are now typechecked * Invalid type annotations on local variables are ignored to improve autocomplete * Fixed missing autocomplete type suggestions for function arguments * Type reduction is now performed to produce simpler types to be presented to the user (error messages, custom LSPs) * Internally, complex types like '((number | string) & ~(false?)) | string' can be produced, which is just 'string | number' when simplified * Fixed spots where support for unknown and never types was missing * (NEW) Length operator '#' is now valid to use on top table type, this type comes up when doing typeof(x) == "table" guards and isn't available in current typechecker --- Changes to native code generation: * Additional math library fast calls are now lowered to x64: math.ldexp, math.round, math.frexp, math.modf, math.sign and math.clamp
2023-02-03 14:26:13 -05:00
void Unifier::tryUnifyNegations(TypeId subTy, TypeId superTy)
{
Sync to upstream/release/562 (#828) * Fixed rare use-after-free in analysis during table unification A lot of work these past months went into two new Luau components: * A near full rewrite of the typechecker using a new deferred constraint resolution system * Native code generation for AoT/JiT compilation of VM bytecode into x64 (avx)/arm64 instructions Both of these components are far from finished and we don't provide documentation on building and using them at this point. However, curious community members expressed interest in learning about changes that go into these components each week, so we are now listing them here in the 'sync' pull request descriptions. --- New typechecker can be enabled by setting DebugLuauDeferredConstraintResolution flag to 'true'. It is considered unstable right now, so try it at your own risk. Even though it already provides better type inference than the current one in some cases, our main goal right now is to reach feature parity with current typechecker. Features which improve over the capabilities of the current typechecker are marked as '(NEW)'. Changes to new typechecker: * Regular for loop index and parameters are now typechecked * Invalid type annotations on local variables are ignored to improve autocomplete * Fixed missing autocomplete type suggestions for function arguments * Type reduction is now performed to produce simpler types to be presented to the user (error messages, custom LSPs) * Internally, complex types like '((number | string) & ~(false?)) | string' can be produced, which is just 'string | number' when simplified * Fixed spots where support for unknown and never types was missing * (NEW) Length operator '#' is now valid to use on top table type, this type comes up when doing typeof(x) == "table" guards and isn't available in current typechecker --- Changes to native code generation: * Additional math library fast calls are now lowered to x64: math.ldexp, math.round, math.frexp, math.modf, math.sign and math.clamp
2023-02-03 14:26:13 -05:00
if (!log.get<NegationType>(subTy) && !log.get<NegationType>(superTy))
ice("tryUnifyNegations superTy or subTy must be a negation type");
// We cannot normalize a type that contains blocked types. We have to
// stop for now if we find any.
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
if (!FFlag::LuauNormalizeBlockedTypes && DEPRECATED_blockOnBlockedTypes(subTy, superTy))
return;
const NormalizedType* subNorm = normalizer->normalize(subTy);
const NormalizedType* superNorm = normalizer->normalize(superTy);
if (!subNorm || !superNorm)
return reportError(location, UnificationTooComplex{});
// T </: ~U iff T <: U
Unifier state = makeChildUnifier();
state.tryUnifyNormalizedTypes(subTy, superTy, *subNorm, *superNorm, "");
if (state.errors.empty())
reportError(location, TypeMismatch{superTy, subTy, mismatchContext()});
}
static void queueTypePack(std::vector<TypeId>& queue, DenseHashSet<TypePackId>& seenTypePacks, Unifier& state, TypePackId a, TypePackId anyTypePack)
{
while (true)
{
2022-03-11 11:55:02 -05:00
a = state.log.follow(a);
if (seenTypePacks.find(a))
break;
seenTypePacks.insert(a);
if (state.log.getMutable<FreeTypePack>(a))
{
state.log.replace(a, BoundTypePack{anyTypePack});
}
2022-03-11 11:55:02 -05:00
else if (auto tp = state.log.getMutable<TypePack>(a))
{
2022-03-11 11:55:02 -05:00
queue.insert(queue.end(), tp->head.begin(), tp->head.end());
if (tp->tail)
a = *tp->tail;
else
break;
}
}
}
void Unifier::tryUnifyVariadics(TypePackId subTp, TypePackId superTp, bool reversed, int subOffset)
{
2022-03-11 11:55:02 -05:00
const VariadicTypePack* superVariadic = log.getMutable<VariadicTypePack>(superTp);
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 14:06:22 -04:00
const TypeId variadicTy = follow(superVariadic->ty);
if (!superVariadic)
ice("passed non-variadic pack to tryUnifyVariadics");
if (const VariadicTypePack* subVariadic = log.get<VariadicTypePack>(subTp))
{
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 14:06:22 -04:00
tryUnify_(reversed ? variadicTy : subVariadic->ty, reversed ? subVariadic->ty : variadicTy);
}
else if (log.get<TypePack>(subTp))
{
TypePackIterator subIter = begin(subTp, &log);
TypePackIterator subEnd = end(subTp);
std::advance(subIter, subOffset);
while (subIter != subEnd)
{
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 14:06:22 -04:00
tryUnify_(reversed ? variadicTy : *subIter, reversed ? *subIter : variadicTy);
++subIter;
}
if (std::optional<TypePackId> maybeTail = subIter.tail())
{
TypePackId tail = follow(*maybeTail);
if (get<FreeTypePack>(tail))
{
2022-03-11 11:55:02 -05:00
log.replace(tail, BoundTypePack(superTp));
}
else if (const VariadicTypePack* vtp = get<VariadicTypePack>(tail))
{
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 14:06:22 -04:00
tryUnify_(vtp->ty, variadicTy);
}
else if (get<GenericTypePack>(tail))
{
reportError(location, GenericError{"Cannot unify variadic and generic packs"});
}
else if (get<Unifiable::Error>(tail))
{
// Nothing to do here.
}
else
{
ice("Unknown TypePack kind");
}
}
}
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 14:06:22 -04:00
else if (FFlag::LuauVariadicAnyCanBeGeneric && get<AnyType>(variadicTy) && log.get<GenericTypePack>(subTp))
{
// Nothing to do. This is ok.
}
else
{
reportError(location, GenericError{"Failed to unify variadic packs"});
}
}
static void tryUnifyWithAny(std::vector<TypeId>& queue, Unifier& state, DenseHashSet<TypeId>& seen, DenseHashSet<TypePackId>& seenTypePacks,
2022-02-11 14:02:09 -05:00
const TypeArena* typeArena, TypeId anyType, TypePackId anyTypePack)
{
while (!queue.empty())
{
2022-03-11 11:55:02 -05:00
TypeId ty = state.log.follow(queue.back());
queue.pop_back();
2022-02-11 14:02:09 -05:00
2022-03-11 11:55:02 -05:00
// Types from other modules don't have free types
2022-03-24 18:04:14 -04:00
if (ty->owningArena != typeArena)
2022-03-11 11:55:02 -05:00
continue;
2022-02-11 14:02:09 -05:00
2022-03-11 11:55:02 -05:00
if (seen.find(ty))
continue;
2022-03-11 11:55:02 -05:00
seen.insert(ty);
if (state.log.getMutable<FreeType>(ty))
2022-03-11 11:55:02 -05:00
{
2022-07-07 21:22:39 -04:00
// TODO: Only bind if the anyType isn't any, unknown, or error (?)
state.log.replace(ty, BoundType{anyType});
}
else if (auto fun = state.log.getMutable<FunctionType>(ty))
{
2022-03-11 11:55:02 -05:00
queueTypePack(queue, seenTypePacks, state, fun->argTypes, anyTypePack);
2022-06-16 21:05:14 -04:00
queueTypePack(queue, seenTypePacks, state, fun->retTypes, anyTypePack);
2022-03-11 11:55:02 -05:00
}
else if (auto table = state.log.getMutable<TableType>(ty))
2022-03-11 11:55:02 -05:00
{
for (const auto& [_name, prop] : table->props)
queue.push_back(prop.type());
2022-03-11 11:55:02 -05:00
if (table->indexer)
{
2022-03-11 11:55:02 -05:00
queue.push_back(table->indexer->indexType);
queue.push_back(table->indexer->indexResultType);
}
}
else if (auto mt = state.log.getMutable<MetatableType>(ty))
2022-03-11 11:55:02 -05:00
{
queue.push_back(mt->table);
queue.push_back(mt->metatable);
}
else if (state.log.getMutable<ClassType>(ty))
2022-03-11 11:55:02 -05:00
{
// ClassTypes never contain free types.
2022-03-11 11:55:02 -05:00
}
else if (auto union_ = state.log.getMutable<UnionType>(ty))
2022-03-11 11:55:02 -05:00
queue.insert(queue.end(), union_->options.begin(), union_->options.end());
else if (auto intersection = state.log.getMutable<IntersectionType>(ty))
2022-03-11 11:55:02 -05:00
queue.insert(queue.end(), intersection->parts.begin(), intersection->parts.end());
else
{
} // Primitives, any, errors, and generics are left untouched.
}
}
void Unifier::tryUnifyWithAny(TypeId subTy, TypeId anyTy)
{
LUAU_ASSERT(get<AnyType>(anyTy) || get<ErrorType>(anyTy) || get<UnknownType>(anyTy) || get<NeverType>(anyTy));
// These types are not visited in general loop below
if (log.get<PrimitiveType>(subTy) || log.get<AnyType>(subTy) || log.get<ClassType>(subTy))
return;
TypePackId anyTp = types->addTypePack(TypePackVar{VariadicTypePack{anyTy}});
std::vector<TypeId> queue = {subTy};
sharedState.tempSeenTy.clear();
sharedState.tempSeenTp.clear();
Luau::tryUnifyWithAny(queue, *this, sharedState.tempSeenTy, sharedState.tempSeenTp, types, anyTy, anyTp);
}
void Unifier::tryUnifyWithAny(TypePackId subTy, TypePackId anyTp)
{
LUAU_ASSERT(get<Unifiable::Error>(anyTp));
const TypeId anyTy = builtinTypes->errorRecoveryType();
std::vector<TypeId> queue;
sharedState.tempSeenTy.clear();
sharedState.tempSeenTp.clear();
queueTypePack(queue, sharedState.tempSeenTp, *this, subTy, anyTp);
2022-02-11 14:02:09 -05:00
Luau::tryUnifyWithAny(queue, *this, sharedState.tempSeenTy, sharedState.tempSeenTp, types, anyTy, anyTp);
}
std::optional<TypeId> Unifier::findTablePropertyRespectingMeta(TypeId lhsType, Name name)
{
return Luau::findTablePropertyRespectingMeta(builtinTypes, errors, lhsType, name, location);
}
TxnLog Unifier::combineLogsIntoIntersection(std::vector<TxnLog> logs)
{
LUAU_ASSERT(FFlag::DebugLuauDeferredConstraintResolution);
TxnLog result;
for (TxnLog& log : logs)
result.concatAsIntersections(std::move(log), NotNull{types});
return result;
}
TxnLog Unifier::combineLogsIntoUnion(std::vector<TxnLog> logs)
{
LUAU_ASSERT(FFlag::DebugLuauDeferredConstraintResolution);
TxnLog result;
for (TxnLog& log : logs)
result.concatAsUnion(std::move(log), NotNull{types});
return result;
}
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 14:06:22 -04:00
bool Unifier::occursCheck(TypeId needle, TypeId haystack, bool reversed)
{
sharedState.tempSeenTy.clear();
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 14:06:22 -04:00
bool occurs = occursCheck(sharedState.tempSeenTy, needle, haystack);
if (occurs && FFlag::LuauOccursIsntAlwaysFailure)
{
Unifier innerState = makeChildUnifier();
if (const UnionType* ut = get<UnionType>(haystack))
{
if (reversed)
innerState.tryUnifyUnionWithType(haystack, ut, needle);
else
innerState.tryUnifyTypeWithUnion(needle, haystack, ut, /* cacheEnabled = */ false, /* isFunction = */ false);
}
else if (const IntersectionType* it = get<IntersectionType>(haystack))
{
if (reversed)
innerState.tryUnifyIntersectionWithType(haystack, it, needle, /* cacheEnabled = */ false, /* isFunction = */ false);
else
innerState.tryUnifyTypeWithIntersection(needle, haystack, it);
}
else
{
innerState.failure = true;
}
if (innerState.failure)
{
reportError(location, OccursCheckFailed{});
log.replace(needle, *builtinTypes->errorRecoveryType());
}
}
return occurs;
}
bool Unifier::occursCheck(DenseHashSet<TypeId>& seen, TypeId needle, TypeId haystack)
{
RecursionLimiter _ra(&sharedState.counters.recursionCount, sharedState.counters.recursionLimit);
bool occurrence = false;
auto check = [&](TypeId tv) {
if (occursCheck(seen, needle, tv))
occurrence = true;
};
2022-03-11 11:55:02 -05:00
needle = log.follow(needle);
haystack = log.follow(haystack);
2022-03-11 11:55:02 -05:00
if (seen.find(haystack))
return false;
2022-03-11 11:55:02 -05:00
seen.insert(haystack);
if (log.getMutable<ErrorType>(needle))
return false;
if (!log.getMutable<FreeType>(needle))
2022-03-11 11:55:02 -05:00
ice("Expected needle to be free");
2022-03-11 11:55:02 -05:00
if (needle == haystack)
{
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 14:06:22 -04:00
if (!FFlag::LuauOccursIsntAlwaysFailure)
{
reportError(location, OccursCheckFailed{});
log.replace(needle, *builtinTypes->errorRecoveryType());
}
return true;
2022-03-11 11:55:02 -05:00
}
if (log.getMutable<FreeType>(haystack))
return false;
else if (auto a = log.getMutable<UnionType>(haystack))
2022-03-11 11:55:02 -05:00
{
for (TypeId ty : a->options)
check(ty);
}
else if (auto a = log.getMutable<IntersectionType>(haystack))
{
2022-03-11 11:55:02 -05:00
for (TypeId ty : a->parts)
check(ty);
}
return occurrence;
}
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 14:06:22 -04:00
bool Unifier::occursCheck(TypePackId needle, TypePackId haystack, bool reversed)
{
sharedState.tempSeenTp.clear();
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 14:06:22 -04:00
bool occurs = occursCheck(sharedState.tempSeenTp, needle, haystack);
if (occurs && FFlag::LuauOccursIsntAlwaysFailure)
{
reportError(location, OccursCheckFailed{});
log.replace(needle, *builtinTypes->errorRecoveryTypePack());
}
return occurs;
}
bool Unifier::occursCheck(DenseHashSet<TypePackId>& seen, TypePackId needle, TypePackId haystack)
{
2022-03-11 11:55:02 -05:00
needle = log.follow(needle);
haystack = log.follow(haystack);
2022-03-11 11:55:02 -05:00
if (seen.find(haystack))
return false;
2022-03-11 11:55:02 -05:00
seen.insert(haystack);
if (log.getMutable<ErrorTypePack>(needle))
return false;
if (!log.getMutable<FreeTypePack>(needle))
2022-03-11 11:55:02 -05:00
ice("Expected needle pack to be free");
RecursionLimiter _ra(&sharedState.counters.recursionCount, sharedState.counters.recursionLimit);
while (!log.getMutable<ErrorType>(haystack))
{
2022-03-11 11:55:02 -05:00
if (needle == haystack)
{
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 14:06:22 -04:00
if (!FFlag::LuauOccursIsntAlwaysFailure)
{
reportError(location, OccursCheckFailed{});
log.replace(needle, *builtinTypes->errorRecoveryTypePack());
}
return true;
2022-03-11 11:55:02 -05:00
}
2022-03-11 11:55:02 -05:00
if (auto a = get<TypePack>(haystack); a && a->tail)
{
2022-03-11 11:55:02 -05:00
haystack = log.follow(*a->tail);
continue;
}
2022-03-11 11:55:02 -05:00
break;
}
return false;
}
Unifier Unifier::makeChildUnifier()
{
Unifier u = Unifier{normalizer, mode, scope, location, variance, &log};
u.normalize = normalize;
Sync to upstream/release/566 (#853) * Fixed incorrect lexeme generated for string parts in the middle of an interpolated string (Fixes https://github.com/Roblox/luau/issues/744) * DeprecatedApi lint can report some issues without type inference information * Fixed performance of autocomplete requests when suggestions have large intersection types (Solves https://github.com/Roblox/luau/discussions/847) * Marked `table.getn`/`foreach`/`foreachi` as deprecated ([RFC: Deprecate table.getn/foreach/foreachi](https://github.com/Roblox/luau/blob/master/rfcs/deprecate-table-getn-foreach.md)) * With -O2 optimization level, we now optimize builtin calls based on known argument/return count. Note that this change can be observable if `getfenv/setfenv` is used to substitute a builtin, especially if arity is different. Fastcall heavy tests show a 1-2% improvement. * Luau can now be built with clang-cl (Fixes https://github.com/Roblox/luau/issues/736) We also made many improvements to our experimental components. For our new type solver: * Overhauled data flow analysis system, fixed issues with 'repeat' loops, global variables and type annotations * Type refinements now work on generic table indexing with a string literal * Type refinements will properly track potentially 'nil' values (like t[x] for a missing key) and their further refinements * Internal top table type is now isomorphic to `{}` which fixes issues when `typeof(v) == 'table'` type refinement is handled * References to non-existent types in type annotations no longer resolve to 'error' type like in old solver * Improved handling of class unions in property access expressions * Fixed default type packs * Unsealed tables can now have metatables * Restored expected types for function arguments And for native code generation: * Added min and max IR instructions mapping to vminsd/vmaxsd on x64 * We now speculatively extract direct execution fast-paths based on expected types of expressions which provides better optimization opportunities inside a single basic block * Translated existing math fastcalls to IR form to improve tag guard removal and constant propagation
2023-03-03 15:21:14 -05:00
u.checkInhabited = checkInhabited;
u.useScopes = useScopes;
2022-04-14 19:57:43 -04:00
return u;
}
// A utility function that appends the given error to the unifier's error log.
// This allows setting a breakpoint wherever the unifier reports an error.
//
// Note: report error accepts its arguments by value intentionally to reduce the stack usage of functions which call `reportError`.
void Unifier::reportError(Location location, TypeErrorData data)
{
errors.emplace_back(std::move(location), std::move(data));
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
failure = true;
}
// A utility function that appends the given error to the unifier's error log.
// This allows setting a breakpoint wherever the unifier reports an error.
//
// Note: to conserve stack space in calling functions it is generally preferred to call `Unifier::reportError(Location location, TypeErrorData data)`
// instead of this method.
2022-04-14 19:57:43 -04:00
void Unifier::reportError(TypeError err)
{
errors.push_back(std::move(err));
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 15:20:37 -04:00
failure = true;
}
bool Unifier::isNonstrictMode() const
{
return (mode == Mode::Nonstrict) || (mode == Mode::NoCheck);
}
void Unifier::checkChildUnifierTypeMismatch(const ErrorVec& innerErrors, TypeId wantedType, TypeId givenType)
{
if (auto e = hasUnificationTooComplex(innerErrors))
reportError(*e);
else if (!innerErrors.empty())
reportError(location, TypeMismatch{wantedType, givenType, mismatchContext()});
}
void Unifier::checkChildUnifierTypeMismatch(const ErrorVec& innerErrors, const std::string& prop, TypeId wantedType, TypeId givenType)
{
if (auto e = hasUnificationTooComplex(innerErrors))
reportError(*e);
else if (!innerErrors.empty())
reportError(TypeError{location,
TypeMismatch{wantedType, givenType, format("Property '%s' is not compatible.", prop.c_str()), innerErrors.front(), mismatchContext()}});
}
void Unifier::ice(const std::string& message, const Location& location)
{
sharedState.iceHandler->ice(message, location);
}
void Unifier::ice(const std::string& message)
{
sharedState.iceHandler->ice(message);
}
} // namespace Luau